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Abstract. We prove an alternative for a nonlinear eigenvalue problewolving the
p(x)-Laplacian and study a subcritical boundary value problemttie same operator.
The theoretical approach is the Mountain Pass Lemma andfdtevariants, which is
very useful in the study of eigenvalue problems.
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1 Introduction
For any fixed real number € (1, +00) thep-Laplacian is defined by
Ayu = div (|VulP~2Vu).

This operator appears in a variety of physical fields. Formgda, applications af\, have
been seen in Fluid Dynamics. The equation governing theamati a fluid involves the
p-Laplacian. More exactly the shear stressnd the velocity gradieiV« of the fluid are
related in the manner that

T(x) = r(m)|Vu|”_2Vu,

wherep = 2 (resp.,p < 2 orp > 2) if the fluid is Newtonian (resp., pseudoplastic or
dilatant). Other applications of theLaplacian also appear in the study of flow through
porous mediay = £), Nonlinear Elasticity > 2), or Glaciology ( < p < 3).

This paper is motivated by recent advances in elastic méchand electrorheologi-
cal fluids (sometimes referred to as “smart fluids”) wherespnocesses are modeled by
nonhomogeneous quasilinear operators.

We refer mainly to the(z)-Laplace operatoh,,,yu = div (|Vu[P(®)=2Vu), where
p is a continuous non-constant function. This differentjai@tor is a natural generaliza-
tion of thep-Laplace operatod ,u := div (|Vu[P~2Vu), wherep > 1 is a real constant.
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However, thep(z)-Laplace operator possesses more complicated nonliiesattiat the
p-Laplace operator, due to the fact tig§ ) is not homogeneous.

Throughout this papef) stands for a bounded domaini. In the first section we
are concerned with the following nonlinear eigenvalue fewbwith Dirichlet boundary
condition and constraints on eigenvalues:

—Ap(z)u = )\f(m,u), in Q,

u=0, on 99, (1)
0<A<a,

wherea > 0 is a given constant. The functighis supposed to satisfy

(H,) f is a Carathéodory function, i.e., measurable ia 2 and continuous in. € R,
with f(z,0) # 0 on a subset of? of positive measure;

(Ha) |f(z,u)| < CL+Colult® 1, fora.e.x € Qandallu € R, with constantg; > 0,
Cy > 0andl < p(x) < q(z) < p*(x), where

Np(x)

p*(z) = N —p(z)’
~+o00, if p(z) > N;

if p(z) <N,

(Hs) there are constants > 0, b2 > 0, 1 < v < p(x) < v such that, for a.ex € Q
and everyu € R,

flz,u)u — I//f(s,T) dr > —by — balu|".
0
By the Sobolev embedding Theorem, there exists a conétant0 such that, for
everyu € W, "™ (0),
3 < Cllullyge @)
Forp € L>°(Q), let
p~ () = ess igfp(x), pT(Q) = esssupp(z).
Q
For a later use we denote
a; = 61|Q|(q+_1)/q+ and ay = C(Cl|Q|(q+_1)/q+ n 02(q+)—1). 3)

Our approach relies on the following version of the celedtd#iountain Pass Theo-
rem of Ambrosetti-Rabinowitz (see [1, 2]):
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Lemma 1([3]). Let X be a Banach space and Iét: X x R — R be aC' functional
verifying the hypotheses

(i) there exist constan{s> 0 and« > 0 providedF (v, p) > «, for everyv € X;;
(i) thereis some > pwith F(0,0) = F(0,r) = 0.
Then the number

= inf F
¢:= i oo, F o).

where
I'={geC([0,1], X xR); ¢(0) =(0,0), g(1) = (0,7)},
is a critical value ofF..

Let us now state our main result concerning the eigenvalaklgm (1). We shall
keep the notations given in (2), (3) and, for simplicity, veeun the sequé] - || in place
of || - [y 2.0 -

0

Theorem 1. Assume that the functiofi: 2 x R — R satisfies conditiongH;)—(Hs).
Let 3 € C(R,R) be a function such that, for some constaits: p < r, o > 0, the
following properties hold:

(61) B(0) = B(r) = 0;

u LI+ o .
(B2) pott > q(m)agM% and Tﬁﬂ(p) =aq;

(B3) limjy o0 B(t) = +o00;

(Bs) B'(t) <0 ifandonlyift <0 or p <t <r.

Then, for eacla > 0, the following alternative holds:
either

(i) « > 0 is an eigenvalue in problerfl) with a corresponding eigenfunctian €
W) (Q) located by

1
a< —/ / f(z,t)dtdz + |ullP™) < a; +
) ap(x)

or

(i) one can find a positive numbemwith

p<s<r (4)
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which determines an eigensolutitm \) € Wol’p(””) () x (0, a] of the problen{1) by the
relations

lull = 57/ 9) (=" ()) /42, (5)
)\_1 = a_l + 5(‘1(55)4‘01)(&))/‘1(&) ( _ ﬁl(s))(‘I(i)_P(i))/Q(i), (6)
a(@)41 1 u(x) 1
S o
a< w||2®) 4 O(s f//fx,t dtdx + u|P@
< Sy Il + T G (0 dtde+ sl
Q 0
<aj+a.

In the second section of this paper we consider another @mobtlated to the
p(x)-Laplacian operator:

—Apyu = AulP@ =2y 4 |u]1@) =2y, in Q,
u=0, on 09, (8)
u # 0, in Q.

Our result on this problem is

Theorem 2. If A < A (=Aum) = mf{ [, |[VulP®); u € WyP(Q), u # 0,
lullpre =1} and 1 < p(z) < g(x) < p*(x), then the problen@) has a weak solution.

The key argument in the proof is the Mountain-Pass Theoretmeitfiollowing vari-
ant:

Ambrosetti-Rabinowitz Theorem. Let X be a real Banach space and: X — R be
a C'-functional. Suppose thdt satisfies the Palais-Smale condition and the following
geometric assumptions:

there exist positive constanisandc, such that )
F(u) > ¢, forall uw € X with |lu]| = R;

F(0) < ¢ and there exists € X such that (10)
lv]| > RandF(v) < cp.

Then the functional’ possesses at least a critical point.

We refer to [4] and [5] for related bifurcation results in themi-linear case and to

the works [6-9], and [10] for recent qualitative resultstbiot the semi-linear and in the
quasi-linear case.
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2 Proof of Theorem 1

In order to set problem (1) in terms of Lemma 1 we introduce fthectional FF €
CH(Wy ™ (Q) x R) by
v(z)

F(v,t)|2|(—)|| 9= 4 //f:ctdtd:c+

)||v|\p<$>. (11)

From (3;) and (11) we derive that condition (ii) of Lemma 1 is valid.
From (H), (2) and (3) we see that, for everye Wol’p(””)(Q),
v(z)

//f(x,t)dtdxgclﬂvHLl—i—cQ( ),

Q o TN
< el ol e+ eag™) T 0],

Lat

(12)
< 61|Q|(q+71)/q+ + (01|Q|(q+*1 /at 4 (g™ ||UHLQ+
< 01|Q|(q+71)/q+ + O(CI|Q|(¢1+71)/CI+ Jch(q )1 ) ||qu

= a1 +az |[o]|7

Relations (11), (12) andd) yield

o+1 +
p |[o]]? @ , o+1
F(v,p) > - 1@ 4 T2 3(p) — gy >
(0.0 2 (o5 = oa s ) o1+ 258 o) — an 2

for everyv € Wol”’(’)(ﬂ). This shows that the requirement (i) of Lemma 1 is fulfilled.
We check now thaf" verifies the Palais-Smale condition. To this end(lgt ¢,,) be

a sequence iwol’p(x)(ﬂ) x R such thatF'(v,,, t,,) is bounded and

F'(0n, tn) = (Fo(vn, tn), Fi(vn, tn)) — 0, in W HP'@(Q) x R,

wherep/ (z) = p(””ll. Therefore

p(z)
|F(vn,tn)| < M (13)
—Fy(0n, tn) = [ta|7*! I\vnl\q‘“"p‘“" Ap(z)Vn
+f(yvn) +a Apayvn — 0 in WLPE)(Q) (14)
Fy(Un, ) = |tn]° (SNER) |\vn||q<m> +8'(tn) — 0, in R. (15)

From (11), (12) and (13) we infer that

|| o]l o +1
M > — tn) — ai.
= ( q+ a2 ||v||q(z) + q(x) ﬁ( L) ai
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But, by condition (33), this shows thatt(,) is bounded irR.

Without loss of generality we may assume that)(is bounded away from 0. We
treat separately two cases.

Firstly, assume that along a subsequence one;has 0. Then, by (3,), it follows
thatg'(t,,) — 4'(0) = 0. So, by (15),

tn]”||vn]9®) — 0, asn — . (16)

From (11), (13) and (16) we see that

Un(x)
//f(x,f)deszannp(w) is bounded irR. (17)
Q 0 ap(x)

Sincet,, — 0 and(v,,) is bounded away from zero it is clear from (16) that

[t |7 [ |22 HA @ Vnllyy 10

= [tn] ltn]” [lon]| 97 anll” -

= [t [tn]"[|vn]| ) IIUnH‘1 —0, asn—oo.
Thus, (14) implies
fvp) +at Apzyvn — 0, asn— oc. (18)
From (17) and (18) we find that, for some const&ht> 0 and withv > 2 in (H3),

vy ()
-1 1 (2) _
M+ v HUTLH 2 HUrL |p f Z, 7' dT dz
ap(x)

1
+;</f(:c,vn)vn de+a! /(Ap(x)vn)vn d:c>
Q

Q

()
1 1 1 1
= (a7 =7 )t + ‘/< rmln = /f(x’”d7>dx’
Q

0

if n is sufficiently large. Then hypothesis{}and inequality (2) ensure us that some new
constantgl; > 0 andd, > 0 exist such that

1 1 1 1
-t TL>_ N np(x)__bQ b ”’Y
M+v7 o ”—a(p@) V)'“ 1P =~ (81l + bavnl 1)

1/ 1 1
> - (— - _) [[va [P — dy — da ||va|”.
a\p(z) v
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Recalling thatl < v < p(z) < v, the last estimate shows th@t,) is bounded in
Wol’p(x)(ﬂ). On the other hand, the growth condition ii4) ensures that the restriction
of Nemytskii's operator t(WOLp(””) (€2), namely,

v e WP Q) — f(,0() e WP @ (q),

is a compact mapping, in the sense that it maps any boundedtsed relatively compact
one (see, for details, de Figueiredo [11] or Rabinowitz.[ZDus, passing eventually to a
subsequence,

F(va(-)  convergesinv, "™ (). (19)

By (18) and (19) we conclude th@t,, ) possesses a convergentsubsequen@%lﬁm( Q).
Assume now thatt,,) is bounded away from 0. Then, by (15), we see tha} is

bounded iV, ") (). Hence (19) holds. From (14) it follows that
(1+ alt,]7 o 1@ =PE@)) A v, is convergentin — 12 (@) (Q),

which shows thafA,(,)v,) converges ifV ~17'(*)(Q). Finally, we obtain that, up to

a subsequencéyp,,) converges le ”(‘”)(Q). This concludes the verification of the
Palais-Smale condition for the functlorfal
The hypotheses of Lemma 1 are now verified. Thus, there exiptsint(u, s) €

Wy (Q) x R satisfying

1
—Ap@yu= a1 1 [s]7+ [[u]|d@—P@ fCsu); (20)
5] (sgn s) [|u]| ™) + () = 0; (21)

u(z)

'q'() Jull? + ZE //fxt )drdr + -

From (21) we observe that

sf'(s) <0. (23)

There are two cases:

) [ulP™) > a.  (22)

Case 1.s = 0. Then the assertion (i) in the alternative of Theorem 1 isided from (20)
and (22). The last inequality of (i) is obtained from the diifam of ¢ andI" in Lemma 1,
making use of the path € T given byg(t) = (0,¢r), for0 <t < 1.

Case 2.s # 0. We argue by contradiction. § < 0 then, by (34), it follows that
B'(s) < 0, which contradicts (23). So, the only possibilitysis- 0. Using (3,) again it
turns out

p<t<r. (24)
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If t = port = r, relation (21) and assumptio4) imply v = 0. This leads to a
contradiction between (20) and our hypothesis)(MVe proved that (24) reduces to (4).
Sinces > 0, (21) gives rise to (5). From (20) it is clear that, \) € WOI”’(”)(Q) x Ris
an eigensolution of (1), where

1

R + s ||uf[a@) —p()” (25)

Substituting||u|| as determined by (5) in (25) we arrive at (6). The first ineiyaff (7)
is just (22). The second inequality of (7) follows from Lemihaby choosing the path
g(t) = (0,tr),0 <t < 1.

Corollary 1. Assume that the functigft 2 x R — R satisfies hypothesé@d;)—(Hs) and
leta > 0 be a number which is not an eigenvalue of the probl&nThen there exists a

sequencéu,,, A,) € Wol’p(””)(ﬂ) x (0, a) of eigensolutions ofl) with the properties
U — 0 INWEPE(Q), A, — 0 and A [un|P™) — 0, asn — oo.

Proof. For everys > 0 one can find3. € C*(R,R) satisfying (31)—(34) with p = p. <
r = r., which depends on, andos > 0, « > 0 independent of such that

1BL(t)] < 9=, forevery t > (g(x)ag)/ . (26)

Applying Theorem 1, one obtains the numher= s. € (p.,r.) that describes an
eigensolution(u., ) of (1) by equalities (5) and (6) with = u. and\ = \.. Clearly,
we can assume

Se — 400, ase — 0. (27)
Hence, by (5), (26) and (27), we infer that
luc]| = 57790 (= §'(s2)) V1) < esztD/a® 0, ase 0. (28)

We know that the following equality holds

1

7)\_ Ap(:c)us = f(:cauf)'

Lettinge — 0 we notice that, in view of (H) andu, — 0in Wol’p(””)(Q), it follows that
Ae — 0 ase — 0. In addition, we get from (6) that

(AT!—a™1)1®) = gale)tor() (_ 6’(55))‘1(””)*”(3”) < c1@)(a@)=p(@)) gle+Dp() (29)
By (28) and (29) we observe that
||u8|‘p(x)(>\;1 _ afl) < gi@)
which implies, taking into account (28), that
A7 |lue|P®) — 0, ase—0.

This completes our proof. O
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Corollary 2. Under the hypotheses of Corollaty for every function3 € C* (R, R) sa-
tisfying conditiong3,)—(5,) with fixed constants, r, o, «, there is a one-to-one mapping
from [1, +00) into the set of eigensolutioris, A) of the problen{1). In particular, there
exist uncountable many solutiofis, A) of (1).

Proof. Notice that if3 € C1(R,R) satisfies the requirements;)—(34) for given num-
bersp, r, o, «, then this is true for each functiang, with an arbitrary numbes > 1.
We may suppose that there is some- 0 which is not an eigenvalue of (1). Applying
Theorem 1 withé3, for § > 1, in place ofd, one finds an eigensolutiofus, \s) €

Wy (Q) x (0,a) and a numbess € (p, ) such that

||U6|| _ S(;U/CI(I) ( _ ﬁ,(sé)) 1/q(2) 51/11(58) (30)
and, by (25),
Ayt =at s [fug )| 2 P @), (31)

Letd1,d2 > 1 with §; # d2. Then (31) shows that;, = s5,. Thus (30) yield$; = 5.
This contradiction completes the proof. O

In some situations the qualitative informations providgdliheorem 1 and Corol-
laries 1 and 2 can be improved by direct methods in studyiegeibenvalue problem

).

Example. Assume that the Carathéodory functipn2 x R — R satisfies (H) and the
growth condition

'O/f(x,f) dr

with constant”; > 0 andCy > 0. Using the constant’ > 0 entering in (2), with
q(x) = p(z), we check that every numbar> 0 which satisfies

<O+ GoltP®) ) forae.z € Q andallt € R, (32)

A<\ = (33)

pCCy
is an eigenvalue of the boundary value problem
—Apyu = Af(z,u), in€Q,
u =0, on 0.

In order to justify this, corresponding to eacghin (33) we introduce the functional
Iv: WiP"(Q) — R by

1

o||P@).
o !

v(z)
Iy(v)=— f(z,t)dtdx +
[

153



lonica Andrei

The assumption (32) allows us to write

1 . z
1) 2 s 0P = Gl = Ca el
) (34)
> (- p(z) _ QO
> (55 -~ CC2) IulP - cao,

foreveryv € Wol”’(”)(Q). From (33) and (34) it follows that the functiong| is bounded
from below, coercive and (sequentially) weakly lower semtinuous onWOI’p(””)(Q).

Therefore the infimum of is achieved at some € WOI”’(‘”) (©) which solves the above
boundary value problem corresponding to ann (33).

3 Proof of Theorem 2

Our hypothesis
Jo IVuP@ dz

A< )\1(7A z ) = in
PO e angoy Jo [ulP@ da

implies the existence of son@&, > 0 such that, for every € Wol’p(””)(ﬂ),

/(|Vu|”(“‘) — Ap[P®)) dz > CO/|VU|”(‘”) dz. (35)
Q Q
Set
() wI@=1jf 4 >0,
u) =
g 0, if u<0

andG(u) = [, g(t)dt. Denote

W= [ 19ur® — \ulp@) de — [ Gl de
F(u) Q/p(x)uw Al ™)) d Q/G()d.

Observe that
G(w)| < C fu)?™

and, by our hypothesis < p(z) < q(z) < p*(z), Wy*™(Q) ¢ L1®)(Q), which
implies thatF is well defined otV (") ().

A straightforward computation shows thatis a C'* function and, for every €
we (),

F'(u)(v) = / (|Vu|p(w)_2Vu -Vo—A |u|p(”)_2uv) dz — /g(u)v dz.
Q Q
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We prove in what follows that" satisfied the hypotheses of the Mountain-Pass
Theorem.
Verification of (9): We may write, for every, € R,

lg(u)] < [u] 771

Thus, for every, € R,

1
Glu)| < — |u|?@), 36
Gl < (36)
Now, by (36) and the Sobolev embedding Theorem,
1
> p(z) _ = q(z)
F(u) > Co|[|ull ) [l [, 37)

for everyu € Wy ™) (Q).
Fore > 0 and R > 0 small enough, we deduce by (36) that, for evaryc
Wo P (Q) with [[u]] = R,

F(u) > ¢ > 0.

Verification of (10): Chooser, € Wy (Q), ug > 0in Q. Then, byl < p(z) <
q(z) < p*(x), it follows that if¢ > 0 is large enough,
p() e -
F(tug) = / @) (|Vu0|”(x) - )\|u0|p(*)) dz — /tq(x) ug( ) dz < 0.
Q P Q
Verification of the Palais-Smale conditiohet (u,,) be a sequence i, 7 ()
such that

sup |F(u,)| < 400, (38)
n
”F/(Un)HWfl,p’(z) — 0, asn — oo. (39)

We prove firstly thatu,,) is bounded i) (2). Remark that (39) implies that, for
everyv € W, P (q),

/ (|Vun|p(“’)*2Vun -Vov — )\|un|p(x)*2unv) dz

? (40)
= /g(un)v dz + o(1)|lv||, asn — .
Q
Choosingv = u,, in (40) we find
J (90 = NPy do = [ gtani,da + o). )

Q Q
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Remark that (38) means that there exifs> 0 such that, for any. > 1,

<M.

1
—— (|IVun P — X |, |P)) dz — /G Uy, ) dx
[ S 1 = Ml o~ [ )
Q Q
But a simple computation yields

/g(un)un dz = q(IC)/G(un)dx.

Q Q

Combining (41), (42) and (43) we find

a/G(un)dx = 0(1) + o(1)]unl,
o)

wherea = ¢(z) — p(x) > 0. Thus, by (41) and (44),
[ |7 < O(1) + 0(1) ||,

which means thafu, || is bounded.

It remains to prove thatu,,) is relatively compact. We consider the cage)

First of all we remark that (40) may be written
/ |V, [P 2V, - Vodz = / h(un)v dz + o(1)|v]],
Q Q
for everyv € W, 7")(Q), where
h(u) = g(u) + X |u|P® =2,
Obviously,h is continuous and there exists> 0 such that
|h(u)| < C(1+ |u|(Np(w)—N+p(w))/(N—p(:c))).
Moreover

h(u) = of|uNP@/N=PE)) - g5 |u| — co.

(42)

(43)

(44)

< N.

(45)

(46)

(47)

Observing thaf{—A,,,))~: W=1#'@)(Q) — Wy**)(Q) is a continuous operator, it
follows by (45) that it suffices to show thatu,, ) is relatively compact ifd —1#'(*) ().
By Sobolev’s Theorem, this will be achieved by proving thauasequence df(u,,) is

convergent ir(L(NP(l‘))/(N—I)(JC))(Q) )* = L(NP(QL‘))/(NI)(JC)—N-H)(JC))(Q)_

Since(uy,) is bounded ifV; ) (Q) ¢ LVP@)/(N=p(=))(()) we can suppose that,

up to a subsequence,

Up — u € LNP@/N=p@)(Q) " ae. inQ.
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Moreover, by Egorov’s Theorem, for eagh> 0, there exists a subsdtof Q with |A| < ¢
and such that

un, — u, uniformlyin Q\ A.

So, it is sufficient to show that

/ (1) — h(u) NP@)/ (Np@)=N+p(@) 4 <

for any fixedn > 0. But, by (46),

/|h(u)|Np(z)/(Np(x)fN+p(x)) dz < C/(1—|— |u|Np(:E)/(N7p(x))) dz,

which can be made arbitrarily small if we choose a sufficiesthall§ > 0.
We have, by (47),

/|h ()| NP (Vo) ~N+p(a)) 4 < /|u | VP@)(N=p() 4y O Al

which can be also made arbitrarily small, by Sobolev’s Teevand by the boundedness
of (uy,) in Wy (Q).

Hence F satisfies Palais-Smale Condition and, by Ambrosetti-Rakitz Theorem,
the problem (8) has a weak solution.

Remark. We are not able to decide at this stage what happeAsifA;(—A,,)). The
main difficulty consists in the impossibility of defining isdatable manner the orthogonal
of a set, so to split the Banach spalzle1 ”(”)( Q), p # 2, as a direct sum of its first
eigenspace and the corresponding orthogonal. A more géxersion of Theorerd can
be obtained by replacing the terpa|?(*)~2y in (8) by a function f(x,u) whose behaviour
atu = 0 and for |u| — +oo is similar to the one ofu|?(*)~2y. The final part of
the proof of Theorerd, that is, the deduction of the relative compactness,pfrom its
boundedness, can also be derived using the continuity ofts&irs operatoru — h(u)

on L (®)(Q).
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