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Abstract. In the paper, a two-dimentional discrete limit theorem ie tense of
weak convergence of probability measures in the space éftantunctions for Mellin
transforms of the Riemann zeta-function on the critica imobtained.
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1 Introduction

Let s = o + it be a complex variable, and let, as usudk) denote the Riemann zeta-
function. The modified Mellin transforr&y, (s) of [((5 + it)|?*, k > 0, is defined, for
o > oo(k) > 1, by

o[z

In [1] and [2], discrete limit theorems on the complex plaaethe functionsz; (s) and
Z,(s) were proved. Denote bg(S) the class of Borel sets of the spageand put, for
N e NU{0} = Ny,

2k
% dx.

0<m<N

where in place of dots a condition satisfiedsbyis to be written. Leth > 0 be a fixed
number.
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Theorem 1([1]). Let o > 1. Thenon (C, B(C)) there exists a probability measure P,
such that the probability measure

pn (Z1(o 4+ imh) € A), A€ B(C),
convergesweaklyto P, as N — oc.

Theorem 2([2]). Leto > 2. Thenon (C, B(C)) there exists a probability measure P,
such that the probability measure

pn (Z2(0 4+ imh) € A), A€ B(C),
convergesweakly to P, as N — oo.
In [3], a two-dimentional generalization of Theorems 1 anda® obtained.

Theorem 3([3]). Supposethat oy > £ and o, > 2. Thenon (C?, B(C?)) thereexists a
probability measure P,, , such that the probability measure

1N ((Z1(o1 +imh), Z5(02 + imh)) € A), A€ B(C?),

converges weakly to P, asN — oo.

1,02

Let G be a region on the complex plane. DenotelyG) the space of analytic
on G functions equipped with the topology of uniform convergein compacta. Let
Dy ={seC:1<o<1}landD; = {s € C: 2 <o < 1}. Thenin[1] and [2] discrete
limit theorems forZ, (s) in H(D1) and forZ,(s) in H(D2) were obtained, respectively.

Theorem 4([1]). On (H(D;),B(H(D;))), there exists a probability measure P; such
that the probability measure

pn (Z1(s +imh) € A), A€ B(H(D1)),
convergesweakly to P; as N — .

Theorem 5( [2]). On (H(D3), B(H(D3))), there exists a probability measure P, such
that the probability measure

pn (Z2(s +imh) € A), A€ B(H(Ds)),
convergesweakly to P, as N — .

The aim of this paper is to prove a two-dimentional discréetétltheorem in the
space of analytic functions for the p&i; (s), Z2(s)).
LetH = I{(Dl7 Dg) = H(Dl) X H(DQ), and

Py (A) = pun ((21(s1 + imh), Z5(sa +imh)) € A), A € B(H).

Theorem 6. On (H, B(H)), there exists a probability measure P such that the probability
measure Py convergesweaklytoPas N — co.
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2 Alimit theorem for the integrals over finite interval

Leta > 1 ando, > 3 be fixed numbers, for > y, y > 1, definev(z,y) =
exp{—(§)?"}, and let

Zhay(s) = / ‘C(% + wc)
1

For brevity, we put

2k
" %v(x,y)de, k=1,2.

ga,y (51; 52, 7_) = (Zl,a,y (51 + iT); ZQ,a,y (52 + iT));
and consider the probability measure
PN7a7y(A) :uN(Zaﬂy(Sl,Sg,mh) EA), A EB(H)

Theorem 7. On (H, B(H)), there exists a probability measure P, ,, such that the proba-
bility measure Py, convergesweakly to P, , as N — oo.

For the proof of Theorem 7, we will apply a limit theorem on theus

wherey, = {s € C: |s| = 1} e forallu e [1,a]. By the Tikhonov theorem, with

the product topology and pointwise multiplication, theusf, is a compact topological
Abelian group. On(Q2,, B(€2,)) define the probability measure

Qna(A) = pn (w7 we [1,4]) € A).

Lemma 1. On (Q,, B(2,)) there exists a probability measure @, such that the proba-
bility measure ) x,, convergesweakly to (), as N — oc.

Proof. The lemma is Theorem 5 from [2]. O

Proof of Theorem 7. Define a functiorh, ,, : 2, — H by the formula

hay({yz: = € [1,al}) .
2x*51v(x,y)gm dx,/‘{(%Jrix)

([kG+)

.}y« if y, is integrable over [L],
an arbitrary circle integrable ovér, ] function otherwise

4

™ 20(2, Y)Vs dx) )
where

r =
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The functionh, , is continuous, and

ha,y({:c*imh: z € [1,a]})

([

x(s1+zmh)1)(x7y)dx7/‘C<§+ilﬂ>
1
= Z(/L,y(sla Svah)'

4
g2 Hmh) g (0 ) dx)

Therefore,Py a,(A) = Qn.ahay(A) = Qn.a(h,,A), and the theorem is a conse-
qguence of Theorem 5.1 from [4], Lemma 1 and continuity:f,. O

3 Alimit theorem for absolutely convergent integrals

In [1] and [2], it was observed that the integrals

o leaee)

are absolutely convergent for> % ando > 2 respectively. We put

2k
2 %v(z,y)de, k=1,2,

Z,(s51,52,7) = (Z1y(81 +47), Z2,4(s2 + i7))
and define the probability measure

PN7y(A) :,UN(Z (81,52,mh) EA), AEB(H)

=Y

Theorem 8. On (H, B(H)), there exists a probability measure P, such that the proba-
bility measure Py ,, convergesweakly to P, as N — oo.

Proof. By Theorem 7, the probability measuRy; . , converges weakly to the measure
P, , asN — oo. First we will prove the tightness of the family of probatyilmeasures
{P,,y} for fixedy.

On a certain probability spac€, B(2), P), define a random variaby by

P(HN:hm):N—H, m:(),l,...,N,

and put

KN,a,y(Sla 82) = (XN7a7y,1(51)a XN,a,y,Q(SQ))
= (Zlﬂavy(sl + ZHN)7 ZQ,a7y(82 + ZGN)) .

Then, by Theorem 7,

D
XN7a7y(51,52) E’Xw}(shsﬂa (1)
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whereX, , = X, ,(s1,52) is a H-valued random element with the distributiéh ,,
and% denotes the convergence in distribution.

Now w_éofntroduce a metric in the spaéewhich induces its topology. Fgr= 1, 2, let
{K;;} be a sequence of compact subsets of the &¥figuch that

o0
D; =Ky,
=1

Kj C Kji+1,0 € N, and if K; C D, is a compact subset, theti; C K for some

l € N. Then, forj = 1,2,
- SUP.ek,, 191(s) = gj2(s)]

pi(gj1,952) = > 27" : :

1100129, ; 1+ supse,, [951(5) — g52(5)]

whereg;1, 952 € H(Dj), is a metric onH (D;) which induces its topology of uniform
convergence on compacta. Putting
Plg,:9,) = max p;(g;1, 952),

whereg, = (g11,921), g, = (912, 922) € H, we obtain the desired metric i.
We takeM;; > 0,1 € N, j=1,2. Then

lim sup IP( sup | Xn,a,y,j(s5)| > Mj; for at least ong = 1,2)

N—oo Sj GKjl
2

< limsupZP< sup | Xna,y,;(s5)] > Mjl)

N—oo j=1 s; €K

2 (2)
= limsupZuN< sup |Zj.a,y(s; +imh)| > Mjl)
N—oo j=1 s; €Ky
2. . N
<1 — Z oo(s: +imh)|.
- lj{lnj;lop; Mju N +1 mZZ:() SJ‘SSII();Z 1Zsanls +imh)

The integrals foiZ; , (s) converge absolutely oB;, thus uniformly on compact subsets
of D;, j =1,2. Hence,

N

sup lim sup sup |Zj.a,y(sj +imh)| < Rj; < o0. (3)
a>1 N—oo N 1 m:()SjGKjL

Now we chooseVl;; = R;;2!T'e~! j = 1,2, 1 € N, wheree is an arbitrary positive
number. Then from (2) and (3) we deduce

limsupP( sup | Xn,a,y,i(s;)| > M, foratleastong =1, 2)
N—oo s; €Ky
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This and (1) imply

P( sup |Xnauy,(sj)] > M; foratleastong = 1,2) < %, leN. 4)
SjEKjL
Now we set
K. ={(91.92) € H: swp |g;(s;)| < My, j=1,21€N}.
sjEK

Then the sef{, is compact orf{, and in view of (4)
P(X,,€K.)>1—¢,

or, by the definition ofX,

P, (K)>1—¢

forall ¢ > 1. Thus, we proved that the famifyP, , } is tight. Therefore, by the Prokhorov
theorem, see, for example, [4], it is relatively compactnéts we have that there exists
a sequencéP,, ,} C {P,,}} suchthatp,, , converges weakly to a certain probability
measureP, on (H, B(H)) ask — oo. In other words,

D
Xovw = b )

The definition ofZ, , ,(s), and the absolute convergence of the integrafpy (s) show
that

lim Zj ,(s) = Z;,(5)

a— 00

uniformly on compact subsets &f;, j = 1,2. Therefore, putting

Xy =Xn,(51,52) = (Xnya(s1), X y.2(52))
= (Z1,y(s1 +i0N), Z2,y(s2 + 10N)),

we find that, for every > 0,

lim limsupP(p(XMy(sl, 52),11\,7@@(51, 52)) > 5)

a— 00 N —o0

= lim limsup uN (p(éy(sla Svah)véa.y(Slv S2, mh’)) > 5)
a—00 N—oo /
N
L 1
< lim hmsupm Z (P(Zy(sl,827mh)7§a,y(51,827mh)) >¢e)=0.

A= N 00 € m—0

This, (1), (5) and Theorem 4.2 of [4] imply that

D
X —— P,
=Ny N—oo v

or thatPy , converges weakly t&’, asN — oo. The theorem is proved.
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4 Approximation in the mean
Let, for brevity,
é(sl, 59, T) = (21(51 —+ iT), ZQ(SQ —+ Z’T'))

In this section, we approximat&(si, sz, mh) by gy(sl, s2,mh) in the mean.
Theorem 9. We have

N
ylggo li]{]nj;lop Nl mzzo p(g(sl, s2,mh), Z,(s1, SQ,mh)) =0.

Proof. In [1] it was obtained that

N
Z p1(Z1(s +imh), Z1 (s + imh)) = 0. (6)

m=0

lim limsu
ymroo N oo N+ 1

Similarly, in [5] it was proved that

lim limsu

N
Z p2(Z2(s +imh), Z3 (s + imh)) = 0. (7)
m=0
Therefore, the assertion of the theorem follows from (6) éfgdl and the metrip as
defined in the proof of Theorem 8.

5 Proof of Theorem 6
We use a method similar to that of the proof of Theorem 9. By tinéorem,
X,y (51,82) ﬁ X, (s1,52), (8)

whereX, = Ly(sl, s9) is a H-valued random element with the distributiéy).
LetM; >0,l €N, j=1,2. Then

limsupP( sup |Xw,y,;(s;)| > Mj; for atleast ong = 1,2)
N—oo SjEKjl
2
< limsupZP< sup | Xw,y,;(s5)] > Mjl)
N —o00 j=1 SjGKjl
2 C)

= limsupZuN< sup |Zj.y(s; +imh)| > Mjl)

N—oo j=1 s; €Ky

N

2
1 1
glimsupg _— E sup |Z;4(s; +1imh)|.

Neoo S M N +1 2= ek, 12555 )
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We have that, foj =1, 2,

lim Sup — sup |Z;,(s; +imh)|
N—oo 1 —0%i €K
N
< lim sup Z sup |Zj4(s; +imh) — Z;(s; + imh)| (20)
N—oo +1 m=05i €K1

N

+ lim sup sup |Z;(s; +tmh)]|.

o g 30 s (250 + i)

Since by [1]
N
lim sup Z sup |Z1(s1 +imh)| < 1,

N—oo N+1 m—0 S1€K1

and by [5]

N

lim sup sup |Z2(s2 +imh)| < 1
s =7 3 sup [ < 1,

(9), (10) and (6), (7) show that

2
limsupP< sup |Xn,y.;(s;)| > M;; for at least ong = 1, 2) < Z %
— gl

N—oo sjeKjl

Now takingM;; = R;;2!*1e~1, ¢ > 0, from this we have that

limsupP< sup |Xw,y.;(s;)| > Mj; for at leastong = 1 2) < 5 leN.
N—oo SJEKJL 2
This together with (8) shows that

IP’( sup |X,;(s;)| > Mj foratleastong =1 2) 25 leN.

SjEKjL
Thus, preserving the notation of Section 3, we obtain that

P/ (K.,)>1—¢

for all y > 1, that is, the family of probability measur¢#,: y > 1} is tight. Hence,
by the Prokhorov theorem, it is relatively compact, andetestists a sequende,, } C
{P,} such thatP,, converge to some probability measureon (H, B(H)) ask — oo,
or

X P.p

_yk(ShSz) ?——> .

— 00

Now this, (8), Theorem 9 and Theorem 4.2 of [4] prove Theorem 6 O
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