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Abstract. The viscoelastic boundary layer flow and mixed convecticat bansfer near
a vertical isothermal surface have been examined in thisrpdjhe governing equations
are formulated and solved numerically using an explicitdiniifference technique. The
velocity and temperature profiles, boundary layer thickess Nusselt numbers and
the local skin friction coefficients are shown graphicalty different values of the
viscoelsatic parameter. In general, it is found that thedaigl decreases inside the
boundary layer as the viscoelsatic parameter is increaseéccansequently, the local
Nusselt number decreases. This is due to higher tensikses®etween viscoelsatic fluid
layers which has a retardation effects on the motion of thesers and consequently, on
the heat transfer rates for the mixed convection heat teapsbblem under investigation.
A Comparison with available published results on speciaksaof the problem shows
excellent agreement.
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Nomenclature

Aq, Ay first two Rivlin-Ericksen tensor h heat transfer coefficient

Cy local coefficient of friction k thermal conductivity

Cp specific heat of the fluid at constant ko elastic parameter
pressure k;  dimensionless viscoelsatic

g magnitude of acceleration due to parameltey/ L?)Gr'/?
gravity L characteristic length of plate

Gr Grashof number, M* mixed convection parameter,
9B(Tw — Toc)L? /12 v?/[98(Tw — Too) L*]'/?
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Nu, local Nusselt number Tw wall temperature

PI  spherical stress T  ambient fluid temperature

Pr Prandtl numben, /o u,v  dimensionless velocity components
T dimensionless time along andy-axes respectively
T temperature z,y  dimensionless coordinates
Greek symbols

e thermal diffusivity 1 dynamic viscosity

ay, g, Q3 material moduli v kinematic viscosity

I} coefficient in the density p fluid density

e non-dimensionaltemperature  I' Cauchy stress tensor
Subscripts Supercripts

w wall surface * dimensional variables

00 free stream condition

1 Introduction

Numerous applications of viscoelsatic fluids in several ufacturing processes have led
to renewed interest among researchers to investigateelsata boundary layer flow
over a stretching plastic sheet, Rajagopal et al. [1, 2],daaat and Gupta [3], Rollins
and Vajravelu [4], Anderson [5], Lawrence and Rao [6], Chdrgnd Rao [8]. Some
of the physical applications of such study are polymer shegtision from a dye, glass
fiber and paper production, drawing of plastic film etc. Thsceelastic fluid model
used by Hassanien was a simplified version of the so-callemhsiegrade fluid [9]. Like
Sakiadis [10], Hassanien relied on boundary layer appration [11] for simplifying
the governing equations. The final equation was in the form fafrth-order non-linear
ordinary differential equation that can not be solved atiely, or even numerically,
due to the lack of sufficient boundary conditions. To circemithis problem, Hassanien
utilized perturbation technique [12] to reduce the govegrequation into a system of
two third-order differential equations which could be smlwvith the available boundary
conditions. Hassanien reported results for elasticity eb@h numbers up to 0.2 and
concluded that the wall skin friction coefficient is incredswhenever a fluid exhibits
elasticity, a prediction which is undesirable from an intdasstandpoint because it trans-
lates into a larger driving force or torque to withdraw theface.

There is no doubt that Hassanien work is of fundamental itapae for it relies on
boundary layer theory and thus can be regarded as a steprébtoveards answering the
still unresolved issue of what would be the effects of fluidstcity on the characteristics
of its boundary layer [13-15]. In spite of its relevance, ewer, Hassanien work has
certain drawbacks. One of the major drawbacks of his work thé use of perturbation
theory to solve the governing equation. That is, due to ther@nt limitation of this
theory, results could be obtained only for small values ob@ah numbers whereas in
most processes of practical interest this number is of ayderor even larger. That is to
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say the range of applicability of Hassanien work is quitdtia. Another shortcoming of
Hassanien work is in the use of the second grade model toseprgiscoelsatic fluids.
That is, a second grade fluid is the first deviation from a Neveto behavior and can not
be expected to render meaningful results for highly eldktids such as polymer melts
and solutions, even for fluids of low elasticity, the use @ thodel is not recommended
in rapid flows.

Since in reality most of the fluids considered in industrigbl&cations are more non-
Newtonian in nature, especially of viscoelsatic type th&@taus type, we extend the
mixed convection heat transfer work to viscoelsatic fluigsvfland heat transfer. The
governing equations for this investigation are written imensionless form using a set
of dimensionless variables and solved numerically usimgMlackCormak’s technique.
Numerical results for the velocity, and temperature prefds well as the local coeffi-
cient of friction and local Nusselt number under the effeotiscoelsatic parameter, are
presented.

2 Problem formulation

The viscoelastic fluid model used in this work is the so-chBecond-order, or more
commonly second-grade model. This rheological model wasifitroduced by Rivlin
and Ericksen [16] and is generally regarded as one of thelsgnpiscoelastic fluid
models available. For an incompressible homogenous flua sfcond-grade type, the
Cauchy stresd; is related to the deformation field through:

I'=-—-PJ] + OzlAl + OLQAQ + OZBABa (1)

where— PI is the isotropic part of the stress tenser, as andas are the material moduli,
andA;, A; andA; are kinematical tensors defined by [17,18]:

Ay = (VV) + (Vo) (2)
Ay = DD? + ALYV + (VV)T Ay, @3)
A3 = Ai (4)

whereVV denotes the velocity gradient tensor, dndDt is the familiar time derivative.
Based on the response of a second-grade fluid to steady shearflis in fact the same
as the coefficient of viscosity, Similarly, «; andas can be related to the first and second
normal stress differenced; andN-, respectively. Experimental data available for a large
number of viscoelastic fluids suggest thét is positive. On the other hand, is often
found to be either positive or negative or zero. Also whéns measured to be non-zero,
it is usually found to be much smaller thaf . This means that for a second-grade fluid to
comply with experimental observations, one should have- 0 andas < 0. Having this

in mind, it should be mentioned that there are some contste®around this rheological
model, particularly about the sign ef and the size of3. Fosdick and Rajagopal [19]
argue that for a second-grade rheological model to be théynemically compatible, the
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Clasius-Duhem inequality should hold together with theritdtz free energy being at its
minimum whenever the fluid is locally at rest. These thermpatyical constraints put
some severe restrictions on the sign and magnitude of therimlanhoduli:

a1 >0, ax>0; and as+as=0. (5)

The sign proposed above fax, is tantamount to saying tha{; is negative. If this sign
is accepted for, then based on equation (5) should be positive. Both signis atieect
contradiction with experimental data available for videséc fluids. The last relationship
in equation (5) also suggests the absolute value¥,06nd N, are equal to each other
which simply cannot confirmed experimentally. Obvioudhgre certain important issues
still unresolved about this controversial rheological mlpdor a critical review of the
second grade model the reader is referred to Dunn [20]. thwhirk we have decided
to takeas < 0 and to letas + a3 # 0 in our second grade fluid. We still go one step
further and in accordance with the so-called Weissenbgugtingsis [22], assume that the
second normal stress difference is zero for our fluids; Wwe.setas = 0 in our model.
With the above arguments in mind, we use the deformatiorteatr, 2d, in place of the
kinematical tensorl; and write the deviatoric part of the stress tensgras Beard and
Walters [23]:

Tij = 2041dij -+ ()ég%dij = 2041 (d” -+ ;.é—(fl%d”> = ZM (d” — )\%d”>, (6)
wherey is the viscosity, and-\ has been used in the place of the ratig2a; . Since this
ratio is a negative number with dimension of timds positive and can be interpreted as
the relaxation time of the fluid. The time derivati#&jt appearing in the above equation
is the so-called “upper convective term derivative”. Tlise derivative when applied to
the deformation rate tensor reads as Larson [24]:

1) D
adij = D_tdij + Lyidyj + Lijdik, (7

where L;; are the components of the velocity gradient ten§6f or du;/dz;. Now,
assuming the fluid to be incompressible and the flow to be lang@nd two-dimensional,
thex*- andy*- momentum equations are written as:

ou* n Lou* n LOut\ o Op | OTpea N OTyry»
Plat " o " 0y ) T o T aar N
) (81}* Lout o ovt >  0p  OTyegr | OTyey

o "o Vo) oy T o T oy

€

The boundary layer approximations can now be invoked;i.e- O(1), u* = O(1),
v* = 0O(9). With these orders of magnitudes, the momentum equation reduces to
Odp/dy* = 0. Consider laminar mixed convection boundary layer flow ofszteelsatic
fluid over an isothermal vertical flat plate which is heatedmunsteady manner. The
problem is described in a rectangular coordinate systeaulatt to the plate such that the
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x*-axis lies along the plate surface and thaxis is normal to the plate. It is assumed that
attimet < 0, the temperatures of the plate and the viscoelsatic fluidhaiatained at the
constant temperatufg,., and at time. > 0, the temperature of the plate is impulsively
increased to the constant valllg such thatl’, > T,.. The continuity, momentum and
energy equations under the boundary layer and Boussingsgpamations can be written

as Cortell [25]:

ou*  ov*
=0, 9
oz oy 9)
* * * * * Bgu* * Bgu*
ou +u*8u +’U* ou :782u2 —kJO ( ’l; W +Ua (zy(;g *>
+98(T - Tw), (10)

oT oT oT 0T

— * * = . 11

ot Vo TV oy “aye (1)

Hereu* andv* are the velocity componentsirt andy™* directions respectively; is the
kinematic coefficient of viscosity;y = —«1/p is the elastic parameter. Hence in the case
of a second order fluid, takes positive values as,, wherea = k/pc, is the thermal

diffusivity and other quantities have their usual meanings

.,
e T
g3

e,
'\.-‘
L

Fig. 1. The transient free convection model for a viscoaldktid near a vertical wall.

3 Boundary conditions on velocity

A critical review on the boundary conditions and the exiseeand uniqueness of the
solution has been given by Rajagopal et al. [1]. Most of add literature on boundary
layer flow of a viscoelsatic over linearly stretching sheddal with the three boundary
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conditions on velocity, which are one less than the numbsprired to solve the problem

uniquely, Rollins and Vajravelu [26], Anderson [5], CoH@b] and Mahapatra and Gupta
[27]. Troy et al. [28] derived a unique solution of the prableontaining exponential

terms of similarity variables. In view of the above discoss on boundary conditions the
physical initial and boundary conditions for this problera given by:

t <0, u'=0, v'=0, T=T forall z* >0, y* >0,
*: *: — *: *>
U 0, v 0, T =T for = 0, y* >0, (12)
t >0, w* =0, v"=0, T =T, for y*=0, 2* >0,

U = Us, Ou*/Oy* =0, T =T for y* — oo,

where(9u*/0y*),+ o = 0 is taken as a boundary layer condition in order to determine
boundary layer thicknesses. Defining the non-dimensicerdlles such that

T=Gr' P/, w=a"/L, y=Gr'/*(y*/L), (13)
u = GTﬁl/Q(V/L)U*, v = G7“71/4(V/L)U*7 0=T- Too/Tw - TOO7 (14)

whereL is the characteristic length of the plate afd = g8(T\, — T )L3/1? is the
Grashof humber and then substituting equations (13) angigid equations (9)—(11)
yields the following dimensionless equations:

ou Ov
b 1
97 + ay 0, (15)

@-i-u@—l—v@—@— Nus—F— v+ — | +06, (16)
or 0z dy oy> '\ 0xd%y By 0z 8% 0Oy dzdy ’

09 090 00 1 9°0

it == T = 17
ot +u5':c v Oy  Pr oy?’ (A7)

O3y Bu  Oud*u Ou O%u

wherek; = (ko/L?)Gr'/? is the modified viscoelsatic parameter aRd = pc,/k is
the Prandtl number. It is noted that for the special cask/of= 0 the fluid is again a
Newtonian fluid. The corresponding dimensionless initiad #oundary conditions can
be written as

t <0, u=0, v=0, =1 forall =z>0, y>0,

= = = = >

u=0, v=0 06=1 for =0, y>0, (18)
t>0, u=0, v=0, ©=1 for y=0, >0,

u=M* Ou/dy=0, ©=0 for y — oo,

where M* = 12 /[gB8(Tw — Two)L?]'/? is the mixed convection parameter. The di-
mensionless skin friction coefficient of frictiofi; and local Nusselt numbe¥u, are
important physical parameters for this type of flow and hestdfer situation Khan and
Sajayanad [29] and Sadeghy and Sharifi [30]. They can be défirdimensionless form
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as:

CfGrS/4 = (au/ay)(x,(),t) - le*(au/ay)(z,o,t)(av/ay)(a:,(),t)v (19)
Nu,Gr=4 = —(80/0y) (2.0.1)- (20)

4 Results and discussion

The transient boundary layer equations represented bytiegeg15)—(17) are solved
subject to the initial and boundary conditions given by Eiue(18) using the MacCor-
mack’s method which is an explicit finite-difference teajuné of second-order accuracy
in space and time. The details of this method of solution &arly explained by An-
derson [31]. The employed numerical solution is a time miagkechnique giving the
downstream velocity, micro-rotation and temperature @Eefising the known upstream
profiles. In the present work, the above quantities have loadéulated by obtaining
explicitly the flow field variables at grid poirft, j) at timet + AT from the known flow
field variables at grid point&, j), (¢ + 1,5), (¢ — 1,4), (4,5 — 1), and (¢, j + 1), at time

t. The flow field variables at all other grid points at time areaited in like fashion.
Once the velocity and temperature fields are obtained at endgime, then the local
coefficient of friction and local Nusselt number are caltedafrom equations (19) and
(20). In order to verify the accuracy of the present methodhgarison of results with the
similarity solutions obtained by Oosthuizen and Naylor][&# the steady laminar free
convection over a vertical isothermal impermeable platdefitonian fluids is performed
and is shown in Table 1. As is clear from Table 1, the resutf@und to be in excellent
agreement. This favorable comparison lends confidenceeimtimerical results to be
reported in the next section.

Table 1. Values of steady state heat transfer coeffidiéns, =, 0) along stream-wise
direction

(au/ay)(oo,x,o)
kf =0, Pr=70,t=o00
T Present Results  Oosthuizen and

Naylor [32]
0.1 1.09978 1.10400
0.2 0.98760 0.92310
0.4 0.87653 0.84325
0.6 0.82341 0.80214
0.8 0.789234 0.79023
1.0 0.700231 0.72145

The viscoelastic fluid effects on this problem are found topbeportional to di-
mensionless viscoelastic parameter. The dimensionles®efiastic parametdr; =
(ko/L?)Gr'/? is found to be directly proportional to the elasticity of fhed and Grashof
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number. Itis noted that the influence of the viscoelastiapeater increases as the value of
Gr or the buoyancy effect increases for the transient freeaction heat transfer problem
under consideration.

Figs. 2 and 3 show the transient veloaity:, y, 7) and temperature profilé¥(z, y, 7)
against dimensionless time= 0.5, 1,2, 4, 6, oo for selected values aPr = 7.0, k' =
0.1 until steady state solution are obtained. Note the momerandhenergy storage
inside boundary layers until steady state solutions arainkd. The steady state velocity
profilesu(0.5, y, o0) and temperatures profileg0.5, y, co) at a distance midway of the
plate against viscoelsatic parametgr= 0,0.4,0.8,1.2 and for selected®r = 70 are
shown in Figs. 4 and 5. Increasing the viscoelsatic parardetzeases the velocity inside
boundary layer and broadens the temperature distribufidns is due to the fact that
a higher viscoelastic parameter means a higher tensilssstretween fluid layers and
consequently, higher resistance to motion which broadentemperature distribution.

10 T= 4.0,6.0, Pr=10
X o5 k=01

06 =1

u(y,t) O(r.)
04
1=0.5,1.0,2.0,4.0,00
02 —
00 T T T T
0 1 2 3
y
Fig. 2. Dimensionless velocity profiles Fig. 3. Dimensionless temperature
with dimensionless time. profiles with dimensionless time.
12 12
|
1.0 = 1.0 =
0.8 = 08 =
u(y,) 06 k' =0,04,08,12 O(y,) 06
047 04 £'=0,04,08, 12
0.0 T T T T T T 0.0 T T T T
[ 1 2 3 4 0 1 2 3
y y
Fig. 4. Dimensionless steady state Fig. 5. Dimensionless steady state
velocity profiles for different values of temperature profiles for selected values
the viscoelastic parameter. of the viscoelastic parameter.

176



Transient Mixed Convection Flow of a Second-Grade Viscaskt Fluid over a Vertical Surface

The transient coefficient of frictio'; Gr3/* and local Nusselt numbenguGr—1/4
are drawn in Fig. 6 for different values of the viscoelsaticgmeterk; = 0,0.4. It
is found that the increasing of the viscoelsatic paramegerehses the local coefficient
of friction due to lower velocities of fluid layers and conseqtly, decreases the local
Nusselt numbers. This figure also shows the progress ofi¢raniecal coefficient of
friction and local Nusselt numbers until steady state cion are reached.

Fig. 7 shows the representative values of the local coefiiciEfriction C; Gr*/* and
the local Nusselt numbe®uGr—1/* for different values of the viscoelsatic parameter

;= 0,0.4 where both values are decreased as the viscoelsatic param@tcreased.

This is due to higher tensile stresses between fluid layeishwhtard motion and conse-
quently, decreases heat transfer rates.

Heat transfer
20 1.16 =

Heat transfer coefficient

coefficient

112 Coefficient of friction

G, G
Nu Nu
1.0 = 1.08 =
%57 ¥ Coefficient e
of friction
0.0 L e e el I 1.00 T T T T
0.0 10 20 3.0 40 5.0 00 0.4 08 .12 16 20
T k/
Fig. 6. Transient local coefficient of Fig. 7. Steady state local coefficient of
friction and local Nusselt numbers for friction and local Nusselt numbers for
different viscoelastic parameters. different viscoelastic parameters.

5 Conclusions

The transient laminar mixed convection heat transfer fromertical surface for a vis-
coelastic fluid were studied. The governing equations wetitten in dimensionless
form using a set of variables and then solved using an exfiitte-difference technique.
Comparisons with previously published work were performed found to be in excellent
agreement. It was found that as the viscoelastic parameterdased, the local coefficient
of friction and local Nusselt numbers at any specific timerdased. On the other hand,
as the velocities are decreased and temperatures aresedrdae to favorable tensile
stresses between fluid layers which had lowered coefficidmtat transfer.
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