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Abstract. Stokes’ first and second problems for an incompressible couple stress fluid
are considered under isothermal conditions. The problems are solved through the use
of Laplace transform technique. Inversion of the Laplace transform of the velocity
component in each case is carried out using a standard numerical approach. Velocity
profiles are plotted and studied for different times and different values of couple stress
Reynolds number. The results are presented through graphs in each case.
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Nomenclature

(x, y) space coordinates t time
u velocity of the fluid along f body force per unit mass

thex-direction c body couple per unit mass
U velocity of the plate M couple stress diad
l couple stress parameter

√

η/µ P pressure
R Reynolds numberρUl/µ tij force stress tensor
µ, λ viscosity coefficients dij rate of deformation tensor
η, η′ couple stress viscosity wi,j spin tensor

coefficients mij couple stress tensor
ρ density m trace of couple stress tensor
w spin vector ν frequency of the velocity of the wall

1 Introduction

Stokes’ first and second problems for the flat plate (1851) have received much attention
due to their practicle applications. Consider an infinitelylong flat plate above which a
fluid exists. Initially, both the plate and fluid are at rest. Suddenly, the plate is jerked
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into motion in its own plane with a constant velocity. The resultant motion of the fluid is
studied by many researchers for different types of fluids. Taking the fluid to be Newtonian,
by using a simple transformation, an exact solution was obtained for this problem by
Stokes in 1851 and again Raylegh in 1911 [1]. Tanner [2] gave the exact solution to this
Stokes’ first problem for a Maxwell fluid in 1962. Taipel [3] studied the impulsive motion
of a flat plate in a viscoelastic fluid in 1981. L. Prezoisi and D. D. Joseph [4] studied the
Stokes’ first problem for viscoelastic fluids in 1987. N. Phan-Thien and Y. T. Chew [5]
considered this problem for viscoelastic fluid in 1988. Recently many investigators have
studied the Stokes’ first problem for Non-Newtonian fluids with different constitutive
models (see [6–18] and the references therein).

The motion of a viscous fluid caused by the sinusoidal oscillation of a flat plate is
termed as Stokes’ second problem by Schliching [1]. Initially, both the plate and fluid
are assumed to be at rest. At timet = 0+, the plate suddenly starts oscillating with the
velocity U cos(vt). The study of the flow of a viscous fluid over an oscillating plate is
not only of fundamental theoretical interest but it also occurs in many applied problems
such as acoustic streaming around an oscillating body, an unsteady boundary layer with
fluctuations etc [19]. Penton [20] has presented a closed-form to the transient component
of the solution for the flow of a viscous fluid due to an oscillating plate. Puri and
Kythe [21] have discussed an unsteady flow problem which deals with non-classical heat
conduction effects and the structure of waves in Stokes’ second problem. Erdogan [22]
analyzed the unsteady flow of viscous fluid due to an oscillating plane wall by using
Laplace transform technique. Vajravelu and Rivera [23] discussed the hydromagnetic
flow at an oscillating plate. Much work has been published on the flow of fluid over an
oscillating plate for different constitutive models (see [24–28] and the references therein).

Couple stress fluid theory developed by Vijay Kumar Stokes [29], is one among the
polar fluid theories which considers couple stresses in addition to the classical Cauchy
stress. It is the simplest generalization of the classical theory of fluids which allows
for polar effects such as the presence of couple stresses andbody couples. This fluid
theory is discussed in detail by V.K.Stokes himself in his treatise “Theories of Fluids
with Microstructure” [30] where in he also presented a list of problems discussed by
researchers with reference to this theory. Some of the problems of recent interest can also
be seen in Naduvinamani et al. [31].

In this paper, we propose to study Stokes’ first and second problems for an incom-
pressible couple stress fluid [29]. For both the problems analytical solutions are obtained
in Laplace transform domain. A numerical inversion technique [32] is employed to obtain
velocity component by inverting Laplace transform of the velocity in each case.

2 Basic equations and formulation of the problem

The equations of motion that characterize a couple stress fluid flow are similar to the
Navier-Stokes equations and are given by [29]

dρ

dt
+ ρ div(q) = 0, (1)
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ρ
dq

dt
= ρf +

1

2
curl(ρc) + div

(

τ (s)
)

+
1

2
curl

(

div(M)
)

, (2)

whereρ is the density of the fluid,τ (s) is the symmetric part of the force stress diad,M is
the couple stress diad andf, c are the body force per unit mass and body couple per unit
mass respectively.

The constitutive equations concerning the force stresstij and the rate of deformation
tensordij are given by:

tij = −pδij + λdiv(q)δij + 2µdij −
1

2
εijk[m,k + 4ηwk,rr + ρck]. (3)

The couple stress tensormij that arises in the theory has the linear constitutive relation

mij =
1

3
mδij + 4ηwj,i + 4η′wi,j . (4)

In the abovew = 1
2 curl(q) is the spin vector,wi,j is the spin tensor,m is the trace of

couple stress tensormij , p is the fluid pressure andρck is the body couple vector. Comma
in the suffixes denotes covariant differentiation andwk,rr stands forwk,11 + wk,22 +
wk,33. The quantitiesλ andµ are the viscosity coefficients andη, η′ are the couple stress
viscosity coefficients. These material constants are constrained by the inequalities,

µ ≥ 0; 3λ + 2µ ≥ 0; η ≥ 0; |η′| ≤ η. (5)

There is a length parameterl =
√

η/µ, which is a characteristic measure of the polarity
of the fluid model and this parameter is identically zero in the case of non-polar fluids.

If the fluid is incompressible, in the absence of body forces and body couples the
above field equations (1) and (2) reduce to

div
(

q
)

= 0, (6)

ρ

[

∂q

∂t
+ (q · ∇q)

]

= −grad(p) − µ curl
(

curl(q)
)

− η curl
(

curl
(

curl
(

curl(q)
))

)

(7)

To solve the problem dealing with couple stress fluid flows, inaddition to the usual
assumption of no-slip condition, it is presumed that the couple stresses vanish at the
boundary.

2.1 Mathematical formulation of the problem

Consider the unsteady flow of an incompressible, couple stress fluid which fills the half
spacey > 0 above a flat (solid) plate occupyingxz-plane. Initially, we assume that
both fluid and plate are at rest. At timet = 0+, whether we allow the plate to start with a
constant velocityU alongx-axis or oscillate with velocityU cos(vt), the flow occurs only
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in x-direction. Therefore, the velocity is expected to be in theform q = (u(y, t), 0, 0) and
it automatically satisfies the continuity equation (6).

The equation governingu(y, t), is now seen to be

ρ
∂u

∂t
= µ

∂2u

∂y2
− η

∂4u

∂y4
. (8)

Introducing the non-dimensional variables

u∗ =
u

U
, y∗ =

y

l
, t∗ =

U

l
t, where l2 =

η

µ
, R =

ρUl

µ
, (9)

equation (8) reduces to,

R
∂u∗

∂t∗
=

∂2u∗

∂y∗2 −
∂4u∗

∂y∗4 .

Deleting the∗’s, we get

R
∂u

∂t
=

∂2u

∂y2
−

∂4u

∂y4
. (10)

It is imperative that we have to solve the above equation using the appropriate boundary
conditions depending on whether we are dealing with Stokes’first problem or the second
one.

3 Solution of the problem

3.1 Stokes’ first problem

Initially, both fluid and plate are rest. At timet = 0+, the plate is suddenly set to move
with constant velocityU . The non-dimensional conditions to be satisfied for this problem
are

u(y, t) → 0 as y → ∞ (regularity condition),

u(0, t) = 1 for all t > 0 (usual no-slip condition),
(11)

∂2u

∂y2
= 0 at y = 0 for any t > 0 (vanishing of couple stresses

on the boundary)

in addition to the initial condition

u(y, 0) ≡ 0 for all y. (12)

Taking Laplace transform to equations (10), (11) and using initial condition (12), we
obtain

d4u

dy4
−

d2u

dy2
+ Rsu = 0 (13)
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with conditions,

u(y, s) → 0 as y → ∞,

u(0, s) ≡
1

s
,

d2u

dy2
= 0 at y = 0.

(14)

The solution of equation (13) employing the boundary conditions is seen to be

u(y, s) =
1

s(β2 − α2)

[

β2e−αy − α2e−βy
]

, (15)

whereα2 + β2 = 1, α2β2 = Rs.

3.2 Stokes’ second problem

Initially, both fluid and plate are rest. At timet = 0+, it is assumed that the plate suddenly
oscillates with the velocityU cos(vt). Therefore, the non-dimensional conditions to be
satisfied are

u(y, t) → 0 as y → ∞ (regularity condition),

u(0, t) = cos(vt) for all t > 0 (usual no-slip condition),
(16)

∂2u

∂y2
= 0 at y = 0 for any t > 0 (vanishing of couple stresses

on the boundary)

along with the initial condition

u(y, 0) ≡ 0 for all y. (17)

As in the case of Stokes’ first problem, taking Laplace transform of equations (10), (16)
and using initial condition (17), we get

d4u

dy4
−

d2u

dy2
+ Rsu = 0 (18)

with conditions,

u(y, s) → 0 as y → ∞,

u(0, s) ≡
s

s2 + v2
,

d2u

dy2
= 0 at y = 0.

(19)

The solution of equation (18) employing the boundary conditions (19) is seen to be

u(y, s) =
s

(β2 − α2)(s2 + v2)

[

β2e−αy − α2e−βy
]

, (20)

whereα2 + β2 = 1, α2β2 = Rs.
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4 Numerical inversion of the Laplace transforms

In order to invertu(y, s), we adopt a numerical inversion technique due to Honig and
Hirdes [32]. Using this method the inversef(t) of the Laplace transformf(s) is appro-
ximated by

f(t) =
ect

t1

[

1

2
f(c) + Re

(

N
∑

k=1

f

(

c +
ikπ

t1

)

exp

(

ikπt

t1

)

)]

, 0 < t1 < 2t,

whereN is sufficiently large integer chosen such that,

ect Re

[

f

(

c +
iNπ

t1

)

exp

(

iNπt

t1

)]

< ε,

whereε is a prescribed small positive number that corresponds to the degree of accuracy
required. The parameter c is a positive free parameter that must be greater than the real
part of all the singularities off(s). The optimal choice of c was obtained according to the
criteria described in Honig and Hirdes [32].

5 Discussion of results

The velocity componentu(y, t) is numerically evaluated at different timest for various
values of couple stress Reynolds numberR in each case.

Stokes’ first problem. Fig. 1 shows the variation of the velocity with distance at different
times whenR is fixed. As can be expected, the velocity decreases as distance from the
platey increases. It is observed that, at a fixed distancey, as timet increases, the velocity
increases.

Fig. 1. Variation of velocity with distance at different times forR = 0.5.
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From Fig. 2, it is found that, at any fixed time asR is increasing, the velocity is seen
to be decreasing for a fixed distance.

Fig. 2. Variation of velocity with distance for different values ofR at t = 1.

Stokes’ second problem.For fixed value ofR the oscillatory character of the velocity is
seen in the Fig. 3, as can be expected. In Fig. 4, the variationof velocity with distance is
plotted for different values of couple stress Reynolds number R at a fixed timet. As R
increases, it is seen that the velocity is decreasing.

Fig. 3. Variation of velocity with distance at different times forR = 0.5.
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Fig. 4. Variation of velocity with distance for differentR’s at t = 1.

6 Conclusions

Stokes’ first and second problems for an incompressible couple stress fluid are studied
using the condition that couple stresses vanish on the boundary. It is found that, at any
fixed timet and for a fixed value ofR, the velocity is decreasing as we move far away
from the plate. As couple stress parameterl increases, the couple stress Reynolds number
R increases which leads to a decrease in the velocity. Thus it is observed that an increase
in the couple stress parameter has a decreasing influence on the velocity.
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