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Abstract. Stokes’ first and second problems for an incompressible lecstpess fluid
are considered under isothermal conditions. The problemsalved through the use
of Laplace transform technique. Inversion of the Lapla@mgform of the velocity
component in each case is carried out using a standard reahagproach. Velocity
profiles are plotted and studied for different times andedéht values of couple stress
Reynolds number. The results are presented through graglzeh case.
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Nomenclature

(x,y) space coordinates t time
U velocity of the fluid along f body force per unit mass
thez-direction [ body couple per unit mass
U velocity of the plate M  couple stress diad
l couple stress parametefn/u P pressure
R Reynolds numbepU1/ tij force stress tensor
1, A viscosity coefficients d;;  rate of deformation tensor
7, couple stress viscosity w;;  Spin tensor
coefficients m;;  couple stress tensor
P density m trace of couple stress tensor
w spin vector v frequency of the velocity of the wall

1 Introduction

Stokes’ first and second problems for the flat plate (1851 mageived much attention
due to their practicle applications. Consider an infinitelyg flat plate above which a
fluid exists. Initially, both the plate and fluid are at restud8enly, the plate is jerked
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into motion in its own plane with a constant velocity. Theuléant motion of the fluid is

studied by many researchers for different types of fluid&ingathe fluid to be Newtonian,
by using a simple transformation, an exact solution wasiobthfor this problem by

Stokes in 1851 and again Raylegh in 1911 [1]. Tanner [2] gageskact solution to this
Stokes’ first problem for a Maxwell fluid in 1962. Taipel [3pslied the impulsive motion
of a flat plate in a viscoelastic fluid in 1981. L. Prezoisi anddDJoseph [4] studied the
Stokes’ first problem for viscoelastic fluids in 1987. N. Pfidrien and Y. T. Chew [5]

considered this problem for viscoelastic fluid in 1988. Relgemany investigators have
studied the Stokes’ first problem for Non-Newtonian fluidghwdifferent constitutive

models (see [6-18] and the references therein).

The motion of a viscous fluid caused by the sinusoidal osicileof a flat plate is
termed as Stokes’ second problem by Schliching [1]. Iytiddoth the plate and fluid
are assumed to be at rest. At time- 0+, the plate suddenly starts oscillating with the
velocity U cos(vt). The study of the flow of a viscous fluid over an oscillatingtels
not only of fundamental theoretical interest but it alsowsdn many applied problems
such as acoustic streaming around an oscillating body, steady boundary layer with
fluctuations etc [19]. Penton [20] has presented a closed-fo the transient component
of the solution for the flow of a viscous fluid due to an osdifigtplate. Puri and
Kythe [21] have discussed an unsteady flow problem whichsde#h non-classical heat
conduction effects and the structure of waves in Stokersgproblem. Erdogan [22]
analyzed the unsteady flow of viscous fluid due to an oscigplane wall by using
Laplace transform technique. Vajravelu and Rivera [23tused the hydromagnetic
flow at an oscillating plate. Much work has been publishedrenflow of fluid over an
oscillating plate for different constitutive models (s2d428] and the references therein).

Couple stress fluid theory developed by Vijay Kumar Stok&§,[® one among the
polar fluid theories which considers couple stresses intiaddio the classical Cauchy
stress. It is the simplest generalization of the classicabtty of fluids which allows
for polar effects such as the presence of couple stressebatydcouples. This fluid
theory is discussed in detail by V.K.Stokes himself in h&atise “Theories of Fluids
with Microstructure” [30] where in he also presented a lis{pooblems discussed by
researchers with reference to this theory. Some of the enobbf recent interest can also
be seen in Naduvinamani et al. [31].

In this paper, we propose to study Stokes’ first and seconllgms for an incom-
pressible couple stress fluid [29]. For both the probleméyéinal solutions are obtained
in Laplace transform domain. A numerical inversion techeif32] is employed to obtain
velocity component by inverting Laplace transform of théoe#y in each case.

2 Basic equations and formulation of the problem

The equations of motion that characterize a couple stregk flaw are similar to the
Navier-Stokes equations and are given by [29]

dp .
e a) = 1
i pdiv(g) =0, 1)
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dg
P
wherep is the density of the fluid;(*) is the symmetric part of the force stress diafljs
the couple stress diad arfdec are the body force per unit mass and body couple per unit
mass respectively.

The constitutive equations concerning the force sttgsand the rate of deformation
tensord;; are given by:

— T+ Sl +div(79) + o (). @

. 1
tij = —pdij + ANdiv(q)ds; + 2ud;; — €k (M + 4nwy r + pci). (3

The couple stress tensor;; that arises in the theory has the linear constitutive retati
1 /
mij; = gméu + 47711}]‘71‘ + 4n Wy, 5 - (4)

In the abovew = 1 curl(q) is the spin vectorw; ; is the spin tensony is the trace of
couple stress tenset;;, p is the fluid pressure angt;, is the body couple vector. Comma
in the suffixes denotes covariant differentiation ang,, stands forwy 11 + wg 22 +

wg,33. The quantities\ andy are the viscosity coefficients amdn’ are the couple stress

viscosity coefficients. These material constants are cainsid by the inequalities,
p=0; 3A+2u>0; n>0; || <n (5)

There is a length parametee= /n/u, which is a characteristic measure of the polarity
of the fluid model and this parameter is identically zero im¢hse of non-polar fluids.

If the fluid is incompressible, in the absence of body foraed laody couples the
above field equations (1) and (2) reduce to

div(g) =0, (6)

0 [g—f +@ va)] — —grad(p) — preurl(curl(q))
— ncurl (curl (curl (curl(q)) ) ) @)

To solve the problem dealing with couple stress fluid flowsaddition to the usual
assumption of no-slip condition, it is presumed that thept®stresses vanish at the
boundary.

2.1 Mathematical formulation of the problem

Consider the unsteady flow of an incompressible, couplestitaid which fills the half
spacey > 0 above a flat (solid) plate occupying:-plane. Initially, we assume that
both fluid and plate are at rest. At time= 0+, whether we allow the plate to start with a
constant velocity/ alongz-axis or oscillate with velocity/ cos(vt), the flow occurs only
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in z-direction. Therefore, the velocity is expected to be infdreng = (u(y, ¢),0,0) and
it automatically satisfies the continuity equation (6).
The equation governing(y, t), is now seen to be

ou _ 0w O ®)
Par —Hay2 ~ oyt

Introducing the non-dimensional variables

*

U
= L t*=—t, where ’=-", R="2, 9)

vy
U’ 1’ l 1 U
equation (8) reduces to,

ou* o?u*  O*u*

ot oyt oyt
Deleting thex's, we get
ou 0%*u 0
o " oF oy 4o

It is imperative that we have to solve the above equationguisia appropriate boundary
conditions depending on whether we are dealing with Stdikesproblem or the second
one.

3 Solution of the problem

3.1 Stokes'’ first problem

Initially, both fluid and plate are rest. At time= 0+, the plate is suddenly set to move
with constant velocity/. The non-dimensional conditions to be satisfied for thidbjm
are

u(y,t) = 0 asy— oo (regularity condition)
u(0,t) =1 forall t>0 (usual no-slip condition) (11)
2
% =0 at y=0 forany ¢t >0 (vanishing of couple stresses
Y on the boundary)
in addition to the initial condition
u(y,0) =0 forall y. (12)

Taking Laplace transform to equations (10), (11) and usimigl condition (12), we
obtain
du  d%u
—_— U = 1
Qi P + Rsu =10 (13)
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with conditions,

U(y,s) — 0 asy — oo,

1

u(0,s) = > (14)
@—0 aty=20

dy? y=">

The solution of equation (13) employing the boundary cdod# is seen to be

u(y,s) = [626_‘”’ - 0426_63’], (15)

1
S =)
wherea? + 32 =1, o?$% = Rs.

3.2 Stokes’ second problem

Initially, both fluid and plate are rest. Attinte= 0+, itis assumed that the plate suddenly
oscillates with the velocity/ cos(vt). Therefore, the non-dimensional conditions to be
satisfied are

u(y,t) — 0 asy — oo (regularity condition)
u(0,t) = cos(vt) forall t>0 (usual no-slip condition) (16)
0%u

902 aty=0 forany ¢ >0 (vanishing of couple stresses
Y on the boundary)
along with the initial condition
u(y,0) =0 forall y. a7

As in the case of Stokes’ first problem, taking Laplace tramafof equations (10), (16)
and using initial condition (17), we get

dy*  dy?
with conditions,

+Rsu=0 (18)

U(y,s) — 0 asy — oo,
S

w0.) = (19)
d*u

— =0 aty=0.

dy? Y

The solution of equation (18) employing the boundary caon# (19) is seen to be

)= @)

wherea? 4+ 32 =1, o?$% = Rs.

Brem ¥ —a?e Y], (20)
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4 Numerical inversion of the Laplace transforms

In order to invertu(y, s), we adopt a numerical inversion technique due to Honig and
Hirdes [32]. Using this method the invergét) of the Laplace transfornfi(s) is appro-
ximated by

ct N . .
ft) = i—l [%T(c) +Re<27<c+ f—f) exp (%))], 0<t <2t
k=1

whereN is sufficiently large integer chosen such that,

— | IN i IN
eCtRe{j(chl ﬂ) exp <Z Ft)] <e,
t1 t1

wheree is a prescribed small positive number that correspondsstalégree of accuracy
required. The parameter c is a positive free parameter that be greater than the real
part of all the singularities of (s). The optimal choice of c was obtained according to the
criteria described in Honig and Hirdes [32].

5 Discussion of results

The velocity componeni(y, t) is numerically evaluated at different timegor various
values of couple stress Reynolds numBRen each case.

Stokes' first problem. Fig. 1 shows the variation of the velocity with distance d#fedent
times whenR is fixed. As can be expected, the velocity decreases as désfeam the
platey increases. Itis observed that, at a fixed distaj@s timet increases, the velocity
increases.

— 05
— - =10
- - 15
ol [—B-t20
"9 |——t=25
—— =30
—e—t=60
——=10.0

Velocity-u

distance-Y

Fig. 1. Variation of velocity with distance at different tasforR = 0.5.
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From Fig. 2, it is found that, at any fixed time &ss increasing, the velocity is seen
to be decreasing for a fixed distance.

——R=0001
— - R=02
- - - R=05
—5—R=08
—A—R=1.0
—%—R=15
—o—R=20

Velocity-u

0 0.5 1 15 2 25 3
distance-Y

Fig. 2. Variation of velocity with distance for differentives of R at¢ = 1.

Stokes’ second problemFor fixed value ofR the oscillatory character of the velocity is
seen in the Fig. 3, as can be expected. In Fig. 4, the variafigalocity with distance is
plotted for different values of couple stress Reynolds nentbat a fixed timet. As R
increases, it is seen that the velocity is decreasing.

1.00E+00
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4.00E-01

—— =05
— - =10

- =15
—B— t=2.0
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Velocity-u
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-4.00E-01
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-8.00E-01

-1.00E+00

distance-Y

Fig. 3. Variation of velocity with distance at different @&®forR = 0.5.
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3.00E-01

Velocity-u
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Fig. 4. Variation of velocity with distance for differefit’'s at¢ = 1.

6 Conclusions

Stokes’ first and second problems for an incompressible lecstpess fluid are studied
using the condition that couple stresses vanish on the lzoyntt is found that, at any
fixed timet and for a fixed value oR, the velocity is decreasing as we move far away
from the plate. As couple stress paraméfeacreases, the couple stress Reynolds number
R increases which leads to a decrease in the velocity. The®liserved that an increase
in the couple stress parameter has a decreasing influenbe @rlbcity.

Acknowledgment

The authors are grateful to the referees for their criticathments. One of the authors
(M. Devakar) is thankful to the U.G.C., India for providingnlor Research Fellowship
No. 2-9/2005 (SA-I).

References

1. H. Schlichting, K. GersterBoundary Layer Theory, 8th edition, Springer, Berlin, 2000.

2. R. Tanner, Notes on the Rayleigh parallel problem for @ogtastic fluid,ZAMP, 13(6),
pp. 573-580, 1962.

3. |. Taipel, The impulsive motion of a flat plate in a viscaitia fluid, Acta Mech., 39(3-4),
pp. 277-279, 1981.

4. L. Preziosi, D.D. Joseph, Stokes first problem for visastit fluids,J. Non-Newtonian Fluid
Mech., 25(3), pp. 239-259, 1987.

188



Stokes’ Problems for an Incompressible Couple Stress Fluid

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

N. Phan-Thien, Y. T. Chew, On the Rayleigh problem for amidastic fluid,). Non-Newtonian
Fluid Mech., 28(1), pp. 117-127, 1988.

. R. Bandelli, K. R. Rajagopal, G. P. Galdi, On some unsteadtjons of fluids of second grade,

Arch. Mech., 47, pp. 661-676, 1995.

. C. Fetecau, J. Zierep, On a class of exact solutions ofthations of motion of a second grade

fluid, Acta Mech., 150(2), pp. 135-138, 2001.

. C. Fetecau, C. Fetecau, The Rayleigh-Stokes problemefateti second grade fluidsit. J.

Non-Linear Mech., 37(6), pp. 1011-1015, 2002.

. P.M. Jordan, P. Puri, Stokes’ first problem for a Rivlineksen fluid of second grade in a

porous half-spacént. J. Non-Linear Mech., 38(7), pp. 1019-1025, 2003.

C. Fetecau, C. Fetecau, A new exact solution for the floav ifaxwell fluid past an infinite
plate,Int. J. Non-Linear Mech., 38(3), pp. 423-427, 2003.

C. Fetecau, J. Zierep, The Rayleigh-Stokes-problemafdiaxwell fluid, ZAMP, 54(6),
pp. 1086-1093, 2003.

C. Fetecau, C. Fetecau, The first problem of Stokes forldroyl-B fluid, Int. J. Non-Linear
Mech., 38(10), pp. 1539-1544, 2003.

P.M. Jordan, A. Puri, G. Boros, On a new exact solutionte&e’ first problem for Maxwell
fluids, Int. J. Non-Linear Mech., 39(8), pp. 1371-1377, 2004.

W. Tan, T. Masuoka, Stokes'’ first problem for an Oldroy@ltld in a porous half spac@hys.
Fluids, 17(2), pp. 023101-023107, 2005.

W. Tan, T. Masuoka, Stokes’ first problem for a secondegyfadd in a porous half-space with
heated boundarynt. J. Non-Linear Mech., 40(4), pp. 515-522, 2005.

M. Devakar, T.K.V. lyengar, Stokes’ first problem for acnaipolar fluid through state-space
approachAppl. Math. Modelling, 2008 (accepted).

P. M. Jordan, P. Puri, Exact solutions for flow of a dipdlaid on a suddenly accelerated flat
plate,Acta Mechanica, 137, pp. 183—194, 1999.

P.Puri, P. M. Jordan, Stokes'’ first problem for a dipolaidfivith nonclassical heat conduction,
Journal of Engineering Mathematics, 36, pp. 219-240, 1999.

N. Tokuda, On the impulsive motion of a flat plate in a visedluid, J. Fluid Mech. 33,
pp. 657—672, 1968.

R. Penton, The transient for Stokes’ oscillating plangolution in terms of tabulated functions,
J. Fluid Mech., 31, pp. 819-825, 1968.

P. Puri, P.K. Kythe, Thermal effects in Stokes’ secorablam, Acta Mech., 112, pp. 44-50,
1998.

M. E. Erdogan, A note on an unsteady flow of a viscous flueltduan oscillating plane wall,
Int. J. Non-Linear Mech., 35, pp. 1-6, 2000.

189



M. Devakar, T.K.V. lyengar

23.

24.

25.

26.

27.

28.

29.
30.
31.

32.

K. Vajravelu, J. Rivera, Hydromagnetic flow at an ostifig plate,Int. J. Non-Linear Mech.,
38, pp. 305-312, 2003.

M. E. Erdogan, Plane surface suddenly set in motion inraN@wtonian fluid,Acta Mech.,
108 pp.179-187, 1995.

Y. Zeng and S. Weinbaum, Stokes’ problem for moving h&hes,J. Fluid Mech., 287,
pp. 59-74, 1995.

P. Puri, P.K. Kythe, Stokes’ first and second problems Radin-Ericksen fluids with
nonclassical heat conductiohSME J. Heat Transfer, 120, pp. 44-50, 1998.

S. Asghar, T. Hayat, A. M. Siddiqui, Moving boundary in anfNewtonian fluid,Int. J.
Nonlinear Mech., 37, pp. 75-80, 2002.

C. Fetecau, C. Fetecau, Starting solution for some adgtanidirectional flows of second
grade fluid,Int. J. Engg. Science, 43, pp. 781789, 2005.

V. K. Stokes, Couple stresses in fluiBbys. Fluids, 9(9), pp. 1709-1715, 1966.
V. K. Stokes Theories of Fluids with Microstructure, Springer, New York, 1984.

N.B. Naduvinamani, P.S. Hiremath, G. GurubasavardgcE of surface roughness on the
Couple stress squeeze film between a sphere and a flat Pidtelogy International, 38,
pp. 451-458, 2005.

G. Honig, U. Hirdes, A method for the numerical inversair_aplace transforms]. Comp.
Appl. Math., 10(1), pp. 113-132, 1984.

190



