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Abstract. This paper presents the synthesis and analysis of the ezdhanedictiveduzzy
Hammersteimodel of the water tank systerRuzzy Hammersteimodel was compared
with three other fuzzy models: the first was synthesizedguslamdanitype rule base,
the second Takagi-Sugendype rule base and the third — composedvaEmdaniand
Takagi-Sugencule bases. The synthesized model is invertible so it candael in
the model based control. THazzy Hammersteimodel was synthesized to eliminate
disadvantages of the othierzzymodels. The advantage of thezzy Hammersteimodel
was experimentally proved and presented in this paper.

Keywords: fuzzy modeling, nonlinear modeling, predictive modelitgammerstein
model, fuzzy Hammerstein model, level modeling.

1 Introduction

A critical step in synthesizing model based control systentise development of suitable
model which could sufficiently approximate dynamic chagdstics of nonlinear plant.
Recently fuzzy modeling of nonlinear dynamic systems haw/dma great deal of attention

[1].

Nonlinear autoregressive models with exogenous inputdRKY2] are often used
with many nonlinear identification algorithms [3]. As mogstem identification strate-
gies [4-8], NARX has its own disadvantages: problems wittapeeters estimation in
high dimensions are caused by the course of dimension8lityekponential increasing
memory usage and the prior information requirements. Theg@lems make the NARX
method unpractical for the modeling of the high level dynapriocesses. As an alterna-
tive the block-oriented fuzzy models can be used. The wadkn members of this class
of the models arfuzzy HammersteiandWienermodels.

The aim of this paper is to describe the synthesisfozay Hammersteimodel for
the nonlinear water level plant. As the main advantage gbtbposeduzzy Hammerstein
model is that the model can be described with less parametémgertible (it can be used
in the model based predictive control), and is adequatectoghl plant.
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2 Hammerstein class models

2.1 Hammerstein class models

Enhanced modeling can be obtained by usingammersteirclass model [10] where
linearization is straightforward by the inversion of a Etéput-nonlinearity. Thedam-
mersteirmodels are suitable for the gray box modeling, where th&giatcess behavior
is known in advance. Thdammersteirmodel consists of two parts: a static nonlinearity
part, that describes nonlinearities of a plant, and a limyaamics part, as shown in
Fig. 1 [11], where the intermediate sign&lk) is not available. Such a model structure
has shown to be appropriate for the modeling of the behavViamdde range of systems
such as distillation processes [12], friction dynamicg [W&ter level or air pressure and
etc.

d(k)
Static Linear
ﬂ, Nonlinearity » Dynamics il
AB.u(k) G(z™)

Fig. 1. The structure of Hammerstein model.

TheHammersteimodel is represented by the following equations:

-1
008) = ot + ), @
Blg ") =bo+big "+ +bmg ™, )
Al =14+aq ' +... +ang ™, 3)
the non-measured intermediate variab{&) is given by
(k) = f(©,u(k)), (4)

whereq — 1 is the unit delay operatot, (k) is the input,y(k) is the outputd(k) is the
measurement nois€m; n) is the order of the linear parf;(.) is any nonlinear function
ando is a set of parameters, that describe the nonlinearity [11].

Hence MIMO (multi input multi outputHammersteirmodel can be written using
equation [14]:

B = Auyle =) + 3 B (ulle — i = na). (5)

wherey(k), ..., y(k — n, + 1) is the predicted output of the plant(k — ng), ..., u(k —
ny—ng—+1) —the input to the plant;,, n;, — the rank of polynomialg andB respectfully,
ngq — the delay of the plantA;,..., A, andB,,..., B,, are matrices of polynomials
coefficients. The size of matriA is n, x n, wheren, is the number of outputs of the
plant and the size of matri® is n,, x n,,, wheren,, is the number of inputs to the plant.
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2.2 Fuzzy Hammerstein model

Thefuzzy Hammersteimodel is a special case of the NARX model, which is the combi-
nation of series of nonlinearities and linear dynamics tsustructure is simpler than the
structure of the general NARX fuzzy model. Thizzy Hammersteimodel approximates
nonlinearities of a plant and provides the predictions dpats with a smaller error than
general NARX fuzzy models. Thiuzzy Hammersteimodel consists of the series of
nonlinearities, expressed by a fuzzy system as a non lineatibn and a linear dynamical
part with the transfer functiod” (as shown in Fig. 1), wherg = [y, ... ,yny]T is
the output vectory = [us,...,u,,]t — the input vector, and = [v1,...,v,,]T —
transformed input variables.

Fuzzy logic is chosen here because of its property to coneenplex problems into
simpler problems using approximate reasoning and to allomadel uncertainties and
non-linearity of the plant. The nonlinear part of thiezy Hammersteimodel is usually
approximated with the fuzzy system where zero-ofagi-Sugenéuzzy rules of the
form

R;-L: IF wyisTijand... anduy,, isT,, ; THEN v, = p;-L (6)

are used [4]. Her&; are the membership functions (gaussian, triangular, petaidal
shape), that cover the universes of discourse of the inpgidhlas. Usually symmetric
triangular membership functions are used as they are sitogalculate. In case of the
singleton defuzzification [14] the output of the fuzzy systis calculated according to
the equation:

S Bi(w)ph
S Bi(u)

wherej is the truth value of thg-th rule’s premise. Product operator is used to represent
the premise of the rules:

()

Vp =

B =1]7us ®)
=1

If symmetric triangular membership functions are usedhthe

Ny

> Bj(u) = 1. 9)
j=1

The fuzzy Hammersteimodel is nonlinear in its3; andp; parameters, wher&; are
polynomial coefficients ang; is zero order polynomial coefficient of the fuzzy sub
system’sj-th rule. Thefuzzy Hammersteimodel is described with the equation:

) = Ak — )+ 33 Bipys (k — i — na) (10)
i=1 i=1 j=1
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To easy the identification of the model parameters, the miaafithe parameterB;
andp; is used instead] = B;p,. The generalize€lzzy Hammersteimodel then can
be described using equation [14]:

k) =S Ak — i)+ S BIg(k — i — na) (12)
i=1 i=1j=1

E pl
b—b—{ = 1,Vi, 4, k, 1 then generalizeflzzy Hammersteimodel becomes the original

If 53
fuzéy Hammersteimodel [14].

The advantage of thfieizzy Hammersteimodel is that with the fuzzy logic it is quite
easy to approximate any non-linearity. The model is cleddiaguistically interpretable.
The fuzzy Hammersteimodel is classified as low complexity model because it can be
synthesized with the smaller number of parameters comgpéuithe other fuzzy models.
Besides, simple fuzzy models do not incorporate previcate shformation in their rule
base [15]. The quality of thiizzy Hammersteimodel mainly depends on the identifica-
tion of its parameters.

3 Fuzzy Hammerstein model identification algorithms

The identification of the block-oriented model is a compleskt Different identification
algorithms are available for the parameter estimatiddarhmersteirtlass models. Ham-
merstein model identification methods usually use eitheamatric, like least squares,
recursive least squares [16,17] and gradient method [4]poparametric methods, like
Bayesian regression which describes the unknown map agdiménsional stochastic
process which statistically summarizes the prior infoiorathat is available about the
map [6].

The aim of the nonparametric methods is to relax assumptianghe form of an
underlying nonlinear characteristic, and to let the tragrdata decide which characteristic
fits those best [18]. Also, in the non parametric approachtmdinearity is assumed to
be a continuous function, or a measurable function. In taé&cthe non-linear element is
represented by an approximation of a truncated series orthogonal function. But, the
choice of type and the length of series are not straightfohjid)].

Alternative methods for the estimation of the nonlinear elgzhrameters are avai-
lable when the model is synthesized using polynomials witknown coefficients or by
a piecewise constant function [5]. This approach is préleran control applications,
especially when piecewise linearization is feasible. Tiherparameter estimation can be
solved by using regression techniques, iterating algmstbr combinations of these.

The least square parameter estimation algorithm, first gé&ghuss in 1795, identi-
fies unknown parameters using technique where measureaterdare fitted to the under-
lying governing equations such that the identified parametieies minimize the squared
error (where error is, for example, measurement data mhreigdeal measurement data
that would occur with zero noise and using the identified petar values).
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In this paper the recursive least square (RLS) method is imsatie identification

of fuzzy Hammerstein model parameters. This method wasechioscause of several its
advantages:

It can be applied in the real time, because it is not necessarge all input-output

data pairs to estimate parameters, and method uses eatlieated parameters as
initial conditions or to specify previous estimates (usiman recursive method we
need to recalculate parameters from all data) if plant dandi changes.

The method does not require to have input output data whietradl possible input
output set.

The method works faster because it does not use operatitmsnatrices.
The method faster converges if forgetting factor techrsgeeised [20].
The method is simple for the implementation [21].

The algorithm is able to learn very good policies using onlgnaall number of
samples compared to conventional learning approaches §th as Q-learning
[22].

The algorithm requires little or no modification to adapbitvarious situations [21].

The basic idea behind a RLS algorithm is to compute the pammpdate at time

instant k by adding a correction term to the previous paramettimate once the new
information becomes available. Such reformulation hasiced the computational re-
guirement significantly, making the RLS extremely attnaein the last three decades for
on-line parameter estimation applications. It can be seandue to its recursive nature,
the complexity of the RLS has been reduced considerably @©gNB) in the batch least

squares (BLS) to O(N2) in each estimate update [23, 24].

In case of thduzzy Hammersteimodel parameters identification, RLS algorithm

searches for the best estimates of the model paramétard B, taking into consideration

that the other parts of the model (the number of fuzzy setscénters of membership
functions) are chosen correctly in advance. The paramefeitse fuzzy Hammerstein

model are identified from the linguistic rules and the preceput-output data. The

parameters of the nonlinear static p&tand p are multiplied, making them linear in

their product as the recursive least squares method iglisethe estimate is the product
of nonlinear parameters, used to calculate the output ofrtbéel. The non restricted

weighted recursive least squares method is described eqimation [4,17]:

P(k—2)p" (k= D[g(k) — " (k —1)O(k —1)]

Ok) =6k —1)+ a+@T(k—1)P(k—2)p(k—1) ’ (12)
1 p(k —2)p(k — )" (k — 1)P(k — 2)
Plk-1) =7 |ptk=2)+ a+oT(k—1DPk—-2)p(k—1) |’ (13)
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wherea = [0.9; 1] is a forgetting factor (in this paper the valo®9 was chosen)P is a
covariance matrix [4, 17]:

ok —1) = {y(k—1),...,y(k —ny),

ﬁl(u(kj —Ng — 1)51‘);- --7BN7~(u(k —Ng — 1),$),.. ) (14)
B1(u(k = ng —ny),z), ..., 0N, (wlk — ng —ny),z)},
(k—1)={ai,...,an,,p1,1,--,Pn, N, } — Parameters vectay( k) — measured process

output. If the forgetting factor is smaller, then thiezy Hammersteimodel may become
unstable or its prediction may become weaker if predictiryercomplex signal for a
longer time period. If forgetting factor is not used, thersinot possible to track time-
varying parameter variation since the algorithm gain coypeg to zero whet — oo.
Further, the RLS algorithm converges very slowly, at rat% §25].

In this paper the RLS method is used for the estimation ofrpmtyial A coefficients
and the product of polynomid coefficients with the fuzzy rule base coefficients. During
the process of identification the cost function

E = [jk) — ¢ (k- 1)0(k — 1)]” (15)

is minimized [17], the RLS criterion is

k
J(©,k) =Y a7 [y(j) - ¢"(j — 1)6]’, (16)

j=1

wherey(j) is measured process output, is forgetting factor [20].

4 Nonlinear plant

The laboratory plant used for the modeling is shown in Figlt central part is a close
tank with the adjustable water level within the range fiota 25 cm. The “level” variable
of the process can be varied using water pump (item 1 in Figi12) pump is the actuator

Water

ey

Reservoir

Fig. 2. The plant’s structure.
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and has an electrical input-rangedab 10 V. The tank has two outlets for water flow. The
manual valve (item 3 in Fig. 2) and/or the combination of thegmetic valve (item 2 in
Fig. 2) and manual valve (item 2a in Fig. 2) control the exitavdlow. These valves and
the control of the water pump manipulate the stationary itammof water flow. The water
flows in and out of the tank through rubber hoses, what ardeciiia rings. This water
flow peculiarity increases plant’s nonlinear charactesstThe pumps have dead zones
of different magnitudes and saturation non-linearityythetro-duce electrical noises and
delays into the system. The water flow also depends on the weatgerature and its
softness, what makes the modeling task more difficult.

5 Fuzzy Hammerstein model of nonlinear water plant

Fig. 3 shows the scheme of the two input one output fuzzy Harstieie model.
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Fig. 3. The scheme of fuzzy Hammerstein model.

The inputs are the control signal and the actual water |&l&t. output is the change
of water level in reservoir. The predicted water level attiee moment is calculated
as the sum the previously calculated water level and theigiegdwater level change.
The generalizefuzzy Hammersteimodel was synthesized for the nonlinear plant. The
structure of the model is shown in Fig. 4.

The input linguistic variables are described using symimé&iangular membership
functions, equally spread across the universes of disesurhe universe of discourse
of the control signal is an intervd; 10] and the universe of discourse of the water
level is [0; 20]. The first linguistic variable is composed of 6 membershipcfions, the
second with 21. Fuzzy sub-model uses 126 zero Oraleaigi-Sugentuzzy rules, product
for rules implication and singleton defuzzification. Thengmlizedfuzzy Hammerstein
model is described using parameter vector, containingaotyal A coefficients, the or-
der of the polynomialst and B, theTakagi-Sugentuzzy rule base the meaning of which
is explained in [26] and coefficiexit. The order of the polynomiad was experimentally
chosen to be 3 as higher order makes the model unstable. @aeadrthe polynomiaB
was experimentally chosen to be 6.
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Fig. 4. The structure of generalized fuzzy Hammerstein rhode

In order to increase the prediction rate of fnezy Hammersteimodel, the parame-
ter grouping was introduced. The parameters were estinfiatelde five different groups
of the model input (the plant control signal) valugs: .. 2], [2...4], [4...6], [6...8],
and[8...10] volts. Subject to the input values of thezzy Hammersteimodel different
parameter vectors were used. Besides, the polynamiadefficients are multiplied by
the coefficienC:

G =S Ak — i)+ 30> BBk — i —na). 17)
i=1 i=1 j=1

The coefficient” was introduced in the equation noting from the experimdrds t
the model is more accurate when the roots of the polynoriare closer td). The
influence of the coefficient’ was also analyzed changing the order of the polynomial
It was noticed that the values of the coefficient are symmetniegard to the input signal
of each group and is different when the polynomiabrder changes (higher values if
polynomial B order is higher and lower values if its order is lower). ThefticientC has
always valudl at the ends of group intervals because the model paramegeideatified
at these points. Table 1 presents the experimentally detedhwvalues of coefficient
using which the prediction error is the smallest.

An increase of the order of the polynomi&in most cases makes the model unstable
so the relationship to the values of the coeffici€nwvas not found.
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Table 1. CoefficienC' values for groug4 . . . 6]

Control signal¥) 4 4.1 4.5 5 5.5 59 6
The order of

Polynomial B
2 1 006 04 0.37 0.4 0.06 1
4 1 03 0.46 0.5 0.46 0.3 1
6 1 052 068 075 068 052 1

6 The analysis of fuzzy Hammerstein model

The synthesizeflizzy Hammersteimodel was tested with the real data from the plant
and the results were compared with lamdanitype fuzzy modelTakagi-Sugentype
fuzzy model and the hybrid fuzzy model [26].

The experiments were done in the real time. The step formtisigmal with the
steps of 5 volts, 4.1 volts and 6 volts was passed to the ptambd dhe models at the same
time. The data were acquired at 1 second intervals.

Fuzzy models were compared according to the following Gate

e The number of parameters that need to be identified.

e The number of times the re-identification of the parameters used expressed in %
(the process of re-identification of model parameters idiegpvhen the model’'s
prediction error exceeds the defined limit).

e The accuracy of the prediction (the mean, the mean quaditiation, the standard
deviation and the relative error of prediction were caltady.

The results of the experiments are presented in the Tabld tharFigs. 5-8. From
the figures it can be seen that the best prediction is achisithdhefuzzy Hammerstein
model. This modelis defined with the smallest amount of thapaters (185 parameters)
and it predicts more accurate than the Mamdani type modféheteby 2892 parameters.
Another advantage of theizzy Hammersteimodel is that it never re-identifies its para-
meters as the other models do, so it@® % predictive.

Table 2. Performance analysis of fuzzy models

No. of  No. of Prediction error

para- online Mean Stand.

meters  re-ident quadric  devia-
Fuzzy model (%) Relative  Mean  deviat. tion
Mamdani 2892 45 0.2016 0.2113 0.0413 0.2032
Takagi-sugeno 18 10.60 0.3472 0.3154 0.0893 0.2989
Hybrid 908 5.15 0.2470 0.2204 0.0281 0.1677
Hammerstein 185 0.0 0.1280 0.2066 0.0476 0.2183
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Fig. 5. Outputs of the plant and the Mamdani type fuzzy model.
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Fig. 8. Outputs of the plant and the fuzzy Hammerstein model.

210



Fuzzy Hammerstein Model of Nonlinear Plant

7 Conclusions

In this paper the synthesis of thezzy Hammersteimodel for the nonlinear and non-static
water level plant has been introduced. Taezy Hammersteimodel was experimentally
compared with thélamdanitype, Takagi-Sugentype and Hybrid fuzzy models. It was
experimentally proved, that tHeizzy Hammersteimodel is more adequate to the real
plant than the other fuzzy models and it can be described)lsgs parameters than the
other models, analyzed in this paper. For the identificatftthe model’s parameters the
recursive least square algorithm was used. In order toaseréhe quality of the model,
the parameter grouping during the process of the paranusetification was introduced
to thefuzzy Hammersteimodel. 1t was experimentally proved that fngzy Hammerstein
model with the parameter grouping is more precise than thdetwithout it. It was also
experimentally proved that once identified fiuezy Hammersteimodel is quite precise
for any operating mode of the plant and did not need additjpsr@meter re-identification
as the other analyzed models did.
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