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Abstract. The heat generation effect on natural convection flow along and conduction
inside a vertical flat plate is investigated. The developed governing equations with the
associated boundary conditions for this analysis are transferred to dimensionless forms
using a local non-similar transformation. The transformednon-linear equations of the
non-dimensional equations are then solved using the implicit finite difference method
with Keller box-scheme. Numerical results are found for different values of the heat
generation parameter, conjugate conduction parameter andPrandtl number. The overall
investigation of the velocity, temperature, skin frictionand heat transfer rate are presented
graphically.
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Nomenclature

b plate thickness Nux local Nusselt number
Cfx local skin friction coefficient p conjugate conduction parameter
cp specific heat at constant pressure Pr Prandtl number
f dimensionless stream function Q heat generation parameter
g acceleration due to gravity Q0 constant
h dimensionless temperature qw heat flux
κf , κs fluid and solid thermal conductivities, Tb temperature at outside surface of

respectively the plate
l length of the plate Tf temperature of the fluid
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T∞ fluid asymptotic temperature η dimensionless similarity variable
u, v velocity components τw shearing stress
u, v dimensionless velocity components µ, ν dynamic and kinematic viscosities,
x, y cartesian coordinates respectively
x, y dimensionless cartesian coordinates ρ density of the fluid
β coefficient of thermal expansion ψ stream function
θ dimensionless temperature

1 Introduction

The interaction between the conduction inside and the buoyancy forced flow of fluid along
a solid surface is termed as conjugate heat transfer (CHT) process. In practical systems,
such as heat exchangers, the convection in the surrounding fluid significantly influences
the conduction in a tube wall. Accordingly, the conduction in the solid body and the
convection in the fluid should be determined simultaneously.

The CHT problems have been studied by several research groups [1–3] with the
help of mathematical models for simple heat exchanger geometries. Gdalevich et al.
[4] and Miyamoto et al. [5] reviewed the early theoretical and experimental works of
the CHT problems for a viscous fluid. Miyamoto observed that amixed-problem study
of the natural convection has to be performed for an accurateanalysis of the thermo-
fluid-dynamic (TFD) field if the convective heat transfer depends strongly on the thermal
boundary conditions. Pozzi et al. [6] investigated the entire TFD field resulting from the
coupling of natural convection along and conduction insidea heated flat plate by means
of two expansions, regular series and asymptotic expansions. Moreover, Vynnycky et
al. [7] studied the two dimensional conjugate free convection for a vertical plate of finite
extent adjacent to a semi-infinite porous medium using finitedifference techniques. Pop
et al. [8] extended the analysis of Vynnycky for the mixed convection flow.

The CHT problems associated with the heat generating plate washed by laminar
forced convection flow were studied by Karvinen [9], Sparrowet al. [10] and Garg et
al. [11] using an approximate method. Moreover, an analytical and numerical solutions
were performed by Vynnycky et al. [12] for the CHT problem associated with the forced
convection flow over a conducting slab sited in an aligned uniform stream.

This article illustrates the effect of heat generation on the coupling of conduction
inside and the laminar natural convection flow along a flat plate. According to the au-
thors’ best knowledge the effects have not been studied yet.The developed equations
representing the effects are converted into the dimensionless equations by using suitable
transformations with a goal to attain similarity solutions. The non-dimensional equations
are then transformed into non-linear equations by introducing a non-similarity transfor-
mation. The resulting non-linear equations, together withtheir corresponding boundary
conditions based on conduction and convection, are solved numerically with the help of
the finite difference method utilizing Newton’s linearization approximation. There are
emphases on the evolution of the surface shear stress in terms of the local skin friction
coefficient and the rate of heat transfer in terms of local Nusselt number. The velocity
profiles as well as temperature distributions are also studied.
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2 Mathematical analysis

A time independent natural convection flow of a viscous incompressible fluid along a
vertical flat plate of lengthl and thicknessb (Fig. 1) is considered.

Fig. 1. Physical model and coordinate system.

A greater temperatureTb than the ambient temperatureT∞ is maintained constant at the
outer surface of the plate. The governing equations of such flow under the usual boundary
layer and the Boussinesq approximations can be written as

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂v
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∂2u
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The term Q0

ρcp
(Tf − T∞), Q0 being a constant, represents the amount of generated or

absorbed heat from per unit volume. Heat is generated or absorbed from the source term
according asQ0 is positive or negative.

The physical situation of the system suggests the followingboundary conditions
[13–16]

u = 0, v = 0,

Tf = T (x, 0),
∂Tf

∂y
=

κs

bκf
(Tf − Tb)







on y = 0, x > 0,

u→ 0, Tf → T∞ as y → ∞, x > 0.

(4)

The governing equations and the boundary conditions (1)–(4) can be made dimensionless
by using the following dimensionless quantities:

x =
x

l
, y =

y

l
Gr1/4, u =

ul

ν
Gr−1/2, v =

vl

ν
Gr−1/4,

θ =
Tf − T∞
Tb − T∞

, Gr =
gβl3 (Tb − T∞)

ν2

(5)
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whereGr is the Grashof number andθ is the dimensionless temperature. The non-
dimensional momentum and energy equations can now be written as

∂u

∂x
+
∂v

∂y
= 0, (6)

u
∂u

∂x
+ v

∂u

∂y
=
∂2u

∂y2
+ θ, (7)

u
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+ v
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∂y
=

1

Pr

∂2θ

∂y2
+Qθ (8)

whereQ = Q0l2

µcpGr1/2
is the heat generation parameter andPr =

µcp

κf
is the Prandtl

number. The corresponding boundary conditions in dimensionless forms are obtained as

u = 0, v = 0, θ − 1 = p
∂θ

∂y
on y = 0, x > 0,

u→ 0, θ → 0 as y → ∞, x > 0

(9)

wherep = (
κf b
κsl )Gr

1/4 is the conjugate conduction parameter. The present problem
is governed by the magnitude ofp as the heat generation parameterQ. This coupling
parameter determines the significance of the conduction resistence within the wall.

The variablesψ, η andθ are considered in the following forms to solve the equation
(7) and (8) for the boundary conditions described in (9):

ψ = x4/5(1 + x)−1/20f(x, η),

η = y x−1/5(1 + x)−1/20,

θ = x1/5(1 + x)−1/5 h(x, η),

(10)

hereη is a quasi-similarity variable andψ is the non-dimensional stream function which
satisfies the continuity equation related to the velocity components in the usual way asu =
∂ψ/∂y andv = −∂ψ/∂x. Moreover,h(x, η) represents the dimensionless temperature.
The dimensionless equations are obtained as:

f ′′′ +
16 + 15x

20(1 + x)
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10(1 + x)
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(
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1

Pr
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16 + 15x

20(1 + x)
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1

5(1 + x)
f ′h+Qx2/5(1 + x)1/10h

= x

(

f ′
∂h

∂x
− h′

∂f
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)

(12)

where prime denotes partial differentiation with respect to η. The boundary conditions as
mentioned in equation (9) then take the form:

f(x, 0) = f ′(x, 0) = 0,

p h′(x, 0) = −(1 + x)1/4 + x1/5(1 + x)1/20h(x, 0),

f ′(x,∞) → 0, h(x,∞) → 0.

(13)
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Equation (11) and (12) are solved numerically using the implicit finite difference
method with Keller box scheme [17, 18] based on the boundary conditions as described
in equation (13). The rate of heat transfer in terms of Nusselt number,Nu, and the shear
stress in terms of the skin friction coefficient,Cf , are calculated because of their physical
significance. These parameters can be written in the non-dimensional form as

Cf =
Gr−3/4l2

µ ν
τw and Nu =

lGr−1/4

κf (Tb − T∞)
qw (14)

whereτw = µ (∂u/∂y)y=0 andqw = −κf (∂Tf/∂y)y=0 are the shearing stress and the
heat flux, respectively. Using the new variables described in equation (5), equation (14)
can be written as

Cfx = x2/5(1 + x)−3/20f ′′(x, 0), (15)

Nux = −(1 + x)−1/4h′(x, 0). (16)

Besides, the numerical values of the surface temperature are also obtained from the
relation

θ(x, 0) = x1/5(1 + x)−1/5h(x, 0). (17)

We have also discussed the velocity profiles and the temperature distributions for different
values of the heat generation coefficient, the conjugate conduction parameter and the
Prandtl number.

3 Results

The main objective of the present work is to analyze the flow ofthe fluid and the heat
transfer processes due to the conjugate heat transfer for a vertical flat plate. The Prandtl
numbers are considered to be4.24, 1.74, 1.0 and0.73 for the simulation that correspond
to sulfur dioxide, water, steam and air, respectively. Detailed numerical results of the
velocity, temperature, rate of heat transfer and skin friction coefficient for different values
of the heat generation parameter, the conjugate conductionparameter and the Prandtl
number are presented.

The temperature and the velocity fields obtained from the solutions of the equation
(11) and (12) are depicted in Figs. 2–4. The increased value of the heat generation parame-
ter means that more heat is produced and eventually, that heat increases the fluid motion
as obtained in Figs. 2(a) and (b), respectively. The interfacial temperature, tabulated in
Table 1, increases with the increasingQ at a particular position on the surface. Moreover,
the solid-fluid interface temperature increases along the upward direction of the plate for
a particularQ. Temperature variation at the interface for differentQ is also observed due
to the conduction within the wall.

The effect of the conjugate conduction parameter on the temperature and the velocity
within the boundary layer withQ = 0.01 andPr = 0.73 is shown in Figs. 3(a) and (b),
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respectively. It can be noted from Fig. 3(a) that the temperature decreases monotonically
with the increasingη for a particular value ofp. The temperature and the velocity
also decrease with the increasingp. A lower wall conductanceκs or higher convective
cooling effect due to greaterκf andGr increases the value ofp as well as causes greater
temperature difference between the two surfaces of the plate. The temperature at the
solid-fluid interface is reduced since the temperature at the outside surface of the plate
is kept constant. As a result the temperature profile as well as the velocity profile shifts
downwards in the fluid. Numerical values, presented in Table2, also show that the surface
temperature decreases with the increased value ofp for a particular value ofQ andPr.
Moreover, the interfacial temperature along the upward direction of the plate increases for
a particular value ofp.

In Fig. 4, different values of Prandtl number withQ = 0.01, and p = 1 are
considered for the velocity and temperature distributions. The peak velocity decreases
as well as its position moves toward the interface with the increasingPr. The overall
temperature profiles also shift downwards with the increasingPr as observed in Fig. 4(a).
The physical fact that the thermal boundary layer thicknessdecreases with increasingPr
supports the result. The tabulated result in Table 3 also demonstrates that the surface
temperature for a particular position decreases with the increasingPr. Moreover, for a
givenPr the surface temperature increases along the positive direction of x.

The variation of the local skin friction coefficientCfx and local rate of heat transfer
Nux with Pr = 0.73, andp = 1.0 for different values ofQ at different positions are
illustrated in Fig. 5(a) and (b), respectively. The heat generation accelerates the fluid flow,
as mentioned earlier, and increases the shear stress at the wall. The increased skin friction
coefficients with the increasingQ represent this phenomenon as illustrated in Fig. 5(a).
Moreover, a hot fluid layer is created adjacent to the interface of the wall due to the heat
generation mechanism and ultimately the resultant temperature of the fluid exceeds the
surface temperature. Accordingly, the heat transfer rate from the surface decreases as
shown in Fig. 5(b).

The variation of the reduced local skin friction coefficientCfx and the local rate
of heat transferNux for different values ofp with x are shown in Fig. 6(a) and (b),
respectively whereQ = 0.01 andPr = 0.73. The increased value ofp decreases the
velocity of the fluid within the boundary layer, as mentionedin Fig. 3(b), and decreases
the viscosity of the fluid. As a result the corresponding skinfriction coefficient decreases
as shown in 6(a). On the other hand, from Fig. 6(b), it can be obseved that an increase in
thep is associated with a decrease in the local rate of heat transfer. Fig. 7(a) and (b) deal
with the effect ofPr on the skin friction coefficient and the rate of heat transferagainstx
with Q = 0.01 andp = 1.0. Fig. 7(a) shows that an increase in the Prandtl numberPr
is associated with a decrease in the skin friction coefficient and from Fig. 7(b) it is seen
that an increase in the Prandtl numberPr is associated with an increase in the rate of heat
transfer.
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Fig. 2. (a) Variation of temperature profiles and (b) variation of velocity profiles against
η for varying ofQ with p = 1.0 andPr = 0.73.

Fig. 3. (a) Variation of temperature profiles and (b) variation of velocity profiles against
η for varying ofp with Q = 0.01 andPr = 0.73.

Fig. 4. (a) Variation of temperature profiles and (b) variation of velocity profiles against
η for varying ofPr with Q = 0.01 andp = 1.0.
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Fig. 5. (a) Variation of skin friction coefficients and (b) variation of rate of heat transfer
againstx for varying ofQ with p = 1.0 andPr = 0.73.

Fig. 6. (a) Variation of skin friction coefficients and (b) variation of rate of heat transfer
againstx for varying ofp with Q = 0.01 andp = 1.0.

Fig. 7. (a) Variation of skin friction coefficients and (b) variation of rate of heat transfer
againstx for varying ofPr with Q = 0.01 andp = 1.0.
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Table 1. Numerical values of surface temperature distribution againstx for different
values ofQ whenp = 1.0,Pr = 0.73

θ(x,0)
x (Q = 0.01) (Q = 0.05) (Q = 0.08) (Q = 0.10)

0.0001 0.2604 0.2606 0.2608 0.2609
0.0801 0.6166 0.6215 0.6252 0.6277
0.1607 0.6533 0.6600 0.6651 0.6686
0.2423 0.6747 0.6827 0.6889 0.6930
0.3255 0.6898 0.6989 0.7059 0.7107
0.4108 0.7016 0.7116 0.7194 0.7246
0.4986 0.7113 0.7221 0.7306 0.7363
0.6605 0.7251 0.7373 0.7468 0.7533
0.7838 0.7334 0.7465 0.7566 0.7636
0.9981 0.7450 0.7593 0.7706 0.7783

Table 2. Numerical values of surface temperature distribution againstx for different
values ofp whenQ = 0.01,Pr = 0.73

θ(x,0)
x (p = 1.00) (p = 2.00) (p = 2.50) (p = 3.00)

0.0001 0.2604 0.1529 0.1271 0.1087
0.0801 0.6166 0.4564 0.4073 0.3691
0.1607 0.6533 0.4951 0.4447 0.4049
0.2423 0.6747 0.5186 0.4677 0.4272
0.3255 0.6898 0.5356 0.4846 0.4436
0.4108 0.7016 0.5491 0.4980 0.4568
0.4986 0.7113 0.5604 0.5093 0.4679
0.6605 0.7251 0.5767 0.5257 0.4841
0.7838 0.7334 0.5867 0.5358 0.4942
0.9981 0.7450 0.6008 0.5501 0.5084

Table 3. Numerical values of surface temperature distribution againstx for different
values ofPr whenQ = 0.01,p = 1.0

θ(x,0)
x (Pr = 0.73) (Pr = 1.00) (Pr = 1.74) (Pr = 4.24)

0.0001 0.2604 0.2431 0.2157 0.1790
0.0801 0.6166 0.5905 0.5469 0.4829
0.1607 0.6533 0.6285 0.5863 0.5231
0.2423 0.6747 0.6507 0.6095 0.5471
0.3255 0.6898 0.6665 0.6261 0.5644
0.4108 0.7016 0.6788 0.6391 0.5781
0.4986 0.7113 0.6889 0.6499 0.5896
0.6605 0.7251 0.7034 0.6654 0.6061
0.7838 0.7334 0.7121 0.6747 0.6162
0.9981 0.7450 0.7242 0.6877 0.6303
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4 Conclusion

A steady, two-dimensional, laminar natural convection flowis analyzed considering con-
duction and heat generation effects. The transformed partial differential equations to-
gether with the boundary conditions are solved numericallyby implicit finite difference
method. The effects of the heat generation parameter, conjugate-conduction parameter
and Prandtl number are studied on the fluid flow and at the solid-fluid interface. The
velocity of the fluid and the skin friction at the interface increase with the increasing heat
generation parameter while they decrease with the increasing Prandtl number and conduc-
tion parameter. The temperature of the fluid increases with the increasing heat generation
parameter and the decreasing conduction parameter and Prandtl number. Furthermore, the
rate of heat transfer decreases with the increasing heat generation parameter, conduction
parameter and the decreasing Prandtl number.
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