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Abstract. This paper examines the synchronization performance ofvivdely used

chaos synchronization techniques: active control anddtapking control. It is shown
that the two methods have excellent performance, with thigeacontrol marginally

outperforming the backstepping control in terms of tramisinalysis. However, the
complexity of active controllers suggests that the baghstey control would be more
attainable in engineering applications.
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1 Introduction

The control and synchronization of chaotic systems arensitely studied fields in non-
linear dynamics that were introduced in 1990 by Ott et alugihg a scheme now known
as OGY closed-loop method; and Pecora and Carroll [2] usisgheme called APD
method respectively. Various linear and nonlinear methaal®e emerged thereafter in
search of more efficient algorithms for controlling and dymmizing identical and non-
identical chaotic systems. Two of the most recently progasethods are the active
control [3, 4] and backstepping control [5, 6].

Chaos synchronization using active control was proposdghibgnd Lonngren [3,4]
and has recently been widely accepted as an efficient taahifiag the synchronization
of chaotic systems, because it can be used to synchronizilantical systems as well;
a feature that gives it an advantage over other synchraoizatethods. This method has
been applied to many practical systems such as spatiotamgporamical systems [7],
the Rikitake two-disc dynamo — a geophysical system [8],linear Bloch equations
modeling nuclear magnetic resonance [9], Van der Pol Duffisgllators [10], electric
circuits modeling “jerk” equation [11], Chua’s circuits4J. complex dynamos [13], non-
linear equations of acoustic gravity waves [14], Qi systém 15], parametrically excited
systems [16] and RCL-shunted Josephson junctions [17]. dtfitian, we have very
recently presented a novel technique using active conasédh synchronization scheme
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for controlling directed transport arising from co-exgfiattractors in non-equilibrium
physics — the so-called ratchets [18].

Backstepping design on the other hand was originally useadtaslding block for
adaptive control of chaotic systems [19] and was recentigreded to the synchronization
of chaotic systems [5, 6]. Backstepping design has beenagmegblrecently to control
a third-order phase-locked loops [20], permanent magrattence machine [21], a
hydraulic servo system [22]; and to synchronize the Genelsamtic systems [23] as
well as demonstrate the control of directed transport irtialeratchets [24]; among other
applications. The method is a systematic design approadtcansists in a recursive
procedure that skillfully interlaces the choice of a Lyapuifiunction with the control.
Indeed, backstepping control can guarantee global dtghitkcking and transient perfor-
mance for a broad class of strict-feedback nonlinear sysf{éf 25].

In this paper, we design active controllers and a recursaek&tepping control
that will guarantee global synchronization between twanigal chaotic systems and
compare simulation results of the two methods. The rest ®fpiiper is organized as
follows: In Section 2, synchronization via active cont®piresented; while in Section 3,
backstepping control design for chaos synchronizationésgnted. Section 4 deals with
comparison of numerical simulation results. Finally, tla@er is concluded in Section 5.

2 Design of active control for synchronization

To present the synchronization problem, we consider thesystem used by Harb and
Zohdy to study bifurcation and chaos control based on bapksétg [26]. The drive-
response system is given by:

x-l = —Z1,

Y1 =T1— Y1, (1)

3 =ar) +yi +bxn
for the drive system and

jj2 = —Z2 +U17
Yo = T — Y2 + U2, (2)

29 = awy +y5 + b2y +u3

for the response system, wherg(i = 1,2, 3) are active control functions to be deter-
mined; a andb are the parameters of the system. Defining the error stateébdcstate
variables as

€y =To—T1; €y =Y2—Y1; €= 22— 21, 3)

and following the procedures of active control design, wbtict equation (1) from
equation (2) and using the definitions in equation (3), weaiobthe error dynamics
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equation given by:
éx = —e; + u,
€y = €z — ey + U2, 4)
é, = ae, + (y% — m%) + be, + us.

Re-defining the control functions as follows:
up = 01,
U9 = Vg (5)
u3z = vz — (y% —303)

the error dynamics equation (4) becomes

eJ, = —€; +U17
€y = €z — €y + V2, (6)
¢, = aey, + be, + vs3.

In the active control method, we choose a constant maitnixhich will control the error
dynamics (6) such that

[01,U2,U3]T = A[€1,€27€3]T- (7)

Several choice ofd can satisfy system (7). Here, we choose the following maikrat
satisfy the Routh-Hurwtiz criteria for the stability of tegnchronized state:

A 0 1
A=[-1 X+1 0
—a 0 )\571)

; (8)

which immediately yields the control functions

uy = )\161 + €z,
Uz = —ez + (A2 + 1ey, (9)
us = —aeg + (Mg — ble, — ey(ey + 2y1)

provided the eigenvaludsa, A2, A3) are negative. Here, we have chosam, A2, A3) =
(—1,-1,—1) for simplicity.
3 Design of backstepping control for synchronization

In [26], the author presented a recursive backsteppingalofar chaos control. Here,
we present backstepping control for chaos synchronizafibis will enable us to give a
reliable performance comparison of the two control metifodghaos synchronization.
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To treat this problem, we follow the method used by Tan et5l. Consider the drive-
response systems given below:
i‘l = —Zz1,
Y1 =1 — Y1, (10)
21 =az1 +y; +bn

for the drive system and

j;‘g = —2Z2,
Y2 = Tz — Y2, (11)
Z9 :a:cngngrszJru,

wherew is a control function to be determined. In backsteppingy ame controller is

required. Subtracting equation (5) from (6) and using therestates definition (3), we
obtain

eJ, = —€z,
€y =€y — €y, (12)
é, = aey +be, +ey(ey +2y1) + u.

In the absence of the contral equation (12) would have an equilibriuf, 0,0). If

u were chosen such that the equilibriui®, 0,0) is unchanged, then the problem of
synchronization of the drive-response system would beaedito that of asymptotic

stability of system (12). Thus, the goal is to find a contral lasuch that system (12) is

stabilized at the origin. Considering the stability of yst(13) given below:

€p = —€, (13)

and regarding:, as a virtual control, an estimate stabilizing functiop(e,,) can be
designed for the virtual contrel,. Choosing a Lyapunov function

Viley) = %ei. (14)
The derivative is

Vi(ex) = exés. (15)
For Vi (e, ) to be negative definite, thea, = —e,, so that

Vi(es) = —€2 < 0. (16)

Thusa; (e,) = —e,. Note that the functiony (e,,) is an estimate control function when
e, Is considered as a controller. Let

wy = ey —ai(ey) (17)
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and consider the subspae,, ws) given by

éa: = —€z,
. (18)
€y = 2e; — wo.
Let e, be a virtual controller in system (18) and assume that wher- a; (e, ws),
system (18) is made asymptotically stable. Choose the Lyapfunction

Valearuz) = Vilex) + 02 (19
for subspace above. The derivative of (19) is given by

Vg(ex, wg) = Vl(ez) + wothy = fei — w3 + wo(2es +e,). (20)
If aq(eg,ws) = —2e,, thene, = —2¢, and

Va(ew, ws) = —e2 —w3 <0 (22)

is negative definite.
Define the error dynamiass as

ws = e, — as(eyws). (22)
We now study the full dimension or the complete spage w2, w3)
ér = 2eg,
e = 2€, — Wwa, (23)
w3 = (a+ 2)ey + b(wa — 2ey) + ey(ey + 2y1) + u.
Choose a Lyapunov function

Va(er, wa) = Va(eq, wa) + %wg (24)
If

u=—(a+2)e; —blws — 2e,) — ey(ey, + 2y1) — ws, (25)
then,

Va(eq, wy) = —€2 —ws — w3 <0 (26)

is negative definite and according to LaSalle-Yoshizawart@ [19], the error dynamics
(ex, ey, e.) Will converge to zero as — oo, while the equilibrium(0,0,0) remains
asymptotically stable. Thus, the synchronization of thesdresponse system is achieved.

4 Numerical results
In the following numerical results, we employed the 4th orBenge-Kutta algorithm

with time grid 0f0.05, « = 3.1, b = 0.5 and the initial conditiong:; (0) = y1(0) =
21(0) =0, x2(0) =0.05, y2(0) =0.01, 22(0) =0.06. InFig. 1 we display the same
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chaotic attractor as obtained in [26] as well as the syndhation errors when control is
de-activated.
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Fig. 1. Dynamics of the chaotic system when control is désietd: (a) chaotic
attractor in the £1-y1) plane; (b) error dynamicsef) for the state variable: and
(c) average error dynamics)(

To examine and compare the synchronization performanceom@ute the synchro-
nization quantity, defined as the average error propagatiathe system state variables
[8,27,28] given by

e=/e2+e2 +el. (27)
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Fig. 2 shows the synchronization erra) for the two methods when controls are
activated at = 0 for both methods. We find that at= 5 s, the synchronization was
already attained for active control while synchronizatieas attained at a later time £
13 s) for backstepping control, the time delay bethg. Though it is clear that the active
control performs better and is much easier to design, threréheee controllers required in
the design, while only one controller is needed for the bisglsing. Thus, the controllers
in active control are more complex for practical impleménta Comparing equation
(1) defining the chaotic system and equation (4) defining thigeacontrollers, one can
readily observe that the controller is more complex tharsifstem itself.
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Fig. 2. Error dynamics in the synchronized state when ctsmtrave been activated at
t = 0. Solid (backstepping method), dashed line (active comtrethod): (a)e; (b)
average erroe and (c) zoom of the initial transient in (b).
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The problem of controller complexity is a very crucial isSnethe practical im-
plementation [29], for example in electronics and engimgeapplications. Two funda-
mental issues in this direction are (a) the cost implicatiod density requirement for
designing controllers and (b) the need to make the compl&fithe controller to be
comparable with, or less than, the device being controifelde controlling technique is
desired to achieve a useful end and not merely a scientifiosity.

5 Conclusions

This paper has examined the performance of two control sekdor chaos synchro-
nization: active control and recursive backstepping aintit has been shown that the
two schemes have excellent transient performance; witrathige control marginally
outperforming the backstepping. However, the complexitthe active controllers with
regard to the system being synchronized suggests that tkstepaping controller, with
one control function would be more attainable in applicagimwing to cost effectiveness
and density requirement.
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