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Abstract. A distributed delay model of a class of three-neuron networkhas been
investigated. Sufficient conditions for existence of unique equilibrium, multiple equilibria
and their local stability are derived. A closed interval fora parameter of the system
is identified in which Hopf-bifurcating periodic solution occurs for each point of such
interval. The orbital stability of such bifurcating periodic solution at the extreme points
of the interval is ascertained. Lastly global bifurcation aspect of such periodic solutions
is studied. The results are illustrated by numerical simulations.
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1 Introduction

It is wellknown that human brain is made up of a large number ofcells called neurons and
their interaction. An artificial neural network is an information processing system that has
certain characteristics in common with biological neural networks. In recent years, Hop-
field neural network and their various generalisations haveattracted the attention of many
scientists due to their potential applications in areas such as classification, associative
memory, pattern recognization, parallel computations, optimization [1–9].

In modelling artificial neural networks, it is necessary to incorporate the processing
time of each neuron to make the models more realistic. Marcusand Westervelt [3] first
introduced a single delay in Hopfield model and showed that symmetrically connected
continuous time network oscillates as the delay crosses a critical value. There is an exten-
sive research work on the dynamics of Hopfield neural networks with time delays [10–17].

The periodic nature of natural impulses is of fundamental significance in the control
of regular dynamical functions such as breathing and heart beating. Neural networks
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involving persistent oscillations such as limit cycle may be applied to pattern recogniza-
tion and associative memory. Thus it is important to understand the mechanism of neural
networks that cause such periodic activities. However, neural networks are complex and
large-scale nonlinear dynamical systems. But in most of thecases for simplicity,simple
systems are studied. This is still useful, since complexitystudy may be carried over to
large scale networks.

Several papers [18–21] are devoted to the existence and stability of periodic solutions
of neural network models with two neurons with discrete delay. Olien and Belair [15]
studeid stability and existence of Hopf-bifurcation of a two neuron system with discrete
delay. Gopalsamy and Leung [16], N. C. Majee and A. B.Roy [17], Wei and Ruan [22],
Liao, Wong, Wu [23] have investigated two neuron network models with transmission
delay. Due to the presence of a multitude of parallel pathways with a variety of axon
sizes and lengths, neural networks usually have a spatial nature. So it is desirable to
model them by introducing distributed delays. S. Bernard, J. Belair, M. C. Mackey [24]
studied the effect of distributed delay on stability condition of linear delay differential
equations. G. S. K. Wolkowicz, S.Ruan [25,26] analyzed the global asymptotic behaviour
and bifurcation aspect of a chemostat model with distributed delay. Gopalsamy and
He [27], Sree Hari Rao, Phaneendra and Prameela [28] have studied a lot about the
effect of distributed delays on neural network. Chunhua Feng, Réjean Plamandon [29]
have investigated the stability of delayed neural networksincluding both discrete and
distributed delay. Two Neuron systems with distributed delay have been studied in papers
[30,31]. Three neuron network with discrete delays has beenstudied in [32–35].

In this paper we have investigated local asymptotic stability, orbital stability of Hopf
bifurcating periodic solution,existence of global bifurcation for a special kind of three-
neuron model with distributed delay. In Section 2 the model is presented. In Section 3
some preliminary results about the existence of unique and multiple equilibria are shown.
In Section 4 the system of integrodifferential equations has been converted to a system
of six ordinary differential equations with the introduction of three auxiliary variables,
then its linear analysis has been done. Routh-Hurwitz criteria have been applied to derive
the sufficient condition (depending on synaptic weight and decay rate of kernel) for local
asymptotic stability of its equilibria. In Section 5 considering the decay rate of kernel
as bifurcating parameter, a closed interval of such decay rate has been obtained in which
Hopf-bifurcation occurs. In Section 6 orbital stability ofthis Hopf-bifurcating periodic
solution has been analyzed following the subcritical and supercritical approach proposed
by Poore. In Section 7, existence of global Hopf-bifurcation has been studied. Most of
the mathematical calculations are done by using symbolic computation with the help of
software MATHEMATICA. Numerical simulation of the model that confirms the results
obtained analytically is presented in Section 8. Finally a conclusion has been drawn in
Section 9.

2 Model description

In this paper we consider a three neuron network with distributed delay described by follo-
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wing system of integrodifferential equations

dxi

dt
= −p xi(t) +

3∑

j=1

aij tanh

[ t∫

−∞

k(t− s)xj(s)ds

]
, i = 1, 2, 3, (1)

wherep > 0 is the decay rate of neurons, that is, it represents the rate with which a
neuron will reset to its potential to the resisting state in isolation when disconnected from
network.aij is the the weight of synaptic connections from neuronj to neuroni andk is
the delay kernel assumed to satisfy the following conditions:

(i) k : [0,∞) → [0,∞);

(ii) k is piecewise continuous;

(iii)

∞∫

0

k(s)ds = 1,

∞∫

0

sk(s)ds <∞.

(2)

It is assumed that system (1) is provided with initial conditions:

xi(s) = ψi(s), s ∈ (−∞, 0] and

ψi is bounded and continuous in(−∞, 0], i = 1, 2, 3.

The general form of delay kernelk(s) is as follows:

k(s) = βn+1 s
n e−βs

n!
, s ∈ (0,∞), n = 0, 1, 2,

whereβ is a parameter denoting the rate of decay of the effects of past memories and it is
a positive real number. It is also known as exponentially fading memory.

n = 0 represents weak kernel, whereasn = 1 represents strong kernel. In this paper
we have studied the effect of weak kernel only, that isk is of the form:

k(s) = βe−βs, s ∈ (0,∞). (3)

Now (1) takes the form

dxi

dt
= −p xi(t) +

3∑

j=1

aij tanh

[
β

t∫

−∞

e−β(t−s)xj(s)ds

]
, t > 0, i = 1, 2, 3. (4)

Due to the complexity of system (4), a special case of generalmodel has been considered
here to make the calculation more tractable. We consider here a three-neuron model, in
which there is no self-connection and there is a pair of neurons, which are not directly
connected (shown in Fig. 1). To be specific the decay rate is taken as unity and synaptic
weights are as follows:

p = 1, a11 = a22 = a33 = 0, a12 = a13 = b, a21 = a31 = a, a23 = a32 = 0.
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Fig. 1. Three-neuron network model.

Now (4) assumes the form

dx

dt
= −x(t) + b tanh

{
β

t∫

−∞

e−β(t−s)y(s)ds

}
+ b tanh

{
β

t∫

−∞

e−β(t−s)z(s)ds

}
,

dy

dt
= −y(t) + a tanh

{
β

t∫

−∞

e−β(t−s)x(s)ds

}
,

dz

dt
= −z(t) + a tanh

{
β

t∫

−∞

e−β(t−s)x(s)ds

}
.

(5)

3 Some preliminary results

Fargue (1973) has shown that if the kernel function is a solution of a homogeneous linear
differential equation with constant coefficients, that is,if it is a polynomial multiplied
by an exponential function, the integrodifferential equation is equivalent to a system of
ordinary differential equations of higher dimension [36].

In this section system (5) of integrodifferential equations has been converted to a set
of ordinary differential equations with the help of three auxiliary variables defined by

u(t) = β

t∫

−∞

e−β(t−s)x(s)ds,

v(t) = β

t∫

−∞

e−β(t−s)y(s)ds,

w(t) = β

t∫

−∞

e−β(t−s)z(s)ds, t > 0.

(6)
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Now combining (5) and (6) it can be written as

dx

dt
= − x(t) + b tanh[v(t)] + b tanh[w(t)],

dy

dt
= − y(t) + a tanh[u(t)],

dz

dt
= − z(t) + a tanh[u(t)],

du

dt
= β

(
x(t) − u(t)

)
,

dv

dt
= β

(
y(t) − v(t)

)
,

dw

dt
= β

(
z(t) − w(t)

)
, t > 0.

(7)

Now the system (7) can be rewritten in the following form (only for notational, and
computational simplicity):

dx1

dt
= −x1 + b tanh(x5) + b tanh(x6) = f1(x1, x5, x6),

dx2

dt
= −x2 + a tanh(x4) = f2(x2, x4),

dx3

dt
= −x3 + a tanh(x4) = f3(x3, x4),

dx4

dt
= β(x1 − x4) = f4(x1, x4),

dx5

dt
= β(x2 − x5) = f5(x2, x5),

dx6

dt
= β(x3 − x6) = f6(x3, x6).

(8)

The system (5) and (7) have a common set of bounded solutions and therefore system (7)
can be studied instead of system (5) to investigate its dynamics [36].

Lemma 1. The system(8), that is system(5) has unique equilibrium ifab ≤ 0.5. Othere-
wise it has three equilibria.

Proof. Let (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) be an equilibrium of (8), then we have the following
relations:

x̂1 = b tanh[x̂5] + b tanh[x̂6], x̂2 = a tanh[x̂4], x̂3 = a tanh[x̂4],

x̂1 = x̂4, x̂2 = x̂5, x̂3 = x̂6.

That is(x̂1, x̂2, x̂2, x̂1, x̂2, x̂2) is an equilibrium of (8), wherêx1, x̂2 are the solutions of
following equations

x1 = 2b tanh[x2], (9)

x2 = a tanh[x1] (10)

13



P. D. Gupta, N. C. Majee, A. B. Roy

obviously(0, 0, 0, 0, 0, 0) is an equilibrium of (8). Both the isoclines (9) and (10) have
(0, 0) as the point of inflexion. Curve (9) is concave with respect tox1-axis while curve
(10) is convex with respect tox1-axis. Both the curves are monotonic and bounded. They
will not intersect at nonzero points if

2b ≤ 1

a
,

(9) and (10) will intersect at two non-zero points if2b > 1
a
.

Therefore(0, 0, 0, 0, 0, 0) is unique equilibrium of (8) if

2ab ≤ 1 ⇒ ab ≤ 0.5.

If ab > 0.5 originE0 is an equilibrium together with two non-zero equilibriaE1 andE2

as shown in Fig. 2. From symmetrical nature of the vector fieldof (8), it is clear that if
E1 is of the form(x̂1, x̂2, x̂2, x̂1, x̂2, x̂2) thenE2 is (−x̂1,−x̂2,−x̂2,−x̂1,−x̂2,−x̂2).

-2-4 2 4 -2-4 2 4

2

3

1

-1

-2

-3

2

3

1

-1

-2

-3

x x

yy

(a) (b)

Fig. 2. (a) shows the existence of unique equilibrium, hereab < 0.5; (b) shows the
existence of three equilibria, hereab > 0.5.

4 Linear analysis

Now we are to study the local asymptotic stability of equilibria of system (5), which is
similar in nature to that of system (7).

The variational matrix of system (7) about any pointP (x, y, z, u, v, w) is given by

A(P ) =





−1 0 0 0 b sech2(v) b sech2(w)

0 −1 0 a sech2(u) 0 0

0 0 −1 a sech2(u) 0 0
β 0 0 −β 0 0
0 β 0 0 −β 0
0 0 β 0 0 −β




. (11)
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Case 1. First we shall analyse the local asymptotic stability of unique equilibrium
(0, 0, 0, 0, 0, 0). The characteristic equation of system (7) about(0, 0, 0, 0, 0, 0) is given
by

∣∣∣∣∣∣∣∣∣∣∣∣

−1 − λ 0 0 0 b b
0 −1 − λ 0 a 0 0
0 0 −1 − λ a 0 0
β 0 0 −β − λ 0 0
0 β 0 0 −β − λ 0
0 0 β 0 0 −β − λ

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

=⇒ λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ+ a6 = 0,

(12)

where

a1 = 3(1 + β),

a2 = 3[(1 + β)2 + β],

a3 = (1 + β)[(1 + β)2 + 6β],

a4 = 3β(1 + β)2 + β2(3 − 2ab),

a5 = β2(3 − 2ab)(1 + β),

a6 = β3(1 − 2ab).

To derive some sufficient conditions of local asymptotic stability of (0, 0, 0, 0, 0, 0) Routh-
Hurwitz criteria has been applied.

According to this criteria all the roots of an equation

yk + α1y
k−1 + α2y

k−2 + . . .+ αk−1y + αk = 0

have negative real part if

Dm =

∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 α3 α5 − − − −
1 α2 α4 − − − −
0 α1 α3 α5 − − −
0 1 α2 α4 − − −
...
0 − − − − − αm

∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0 ∀m = 1, 2, . . . , k.

In case of equation (12)

D1 = 3(1 + β) > 0,

D2 = (1 + β)
(
8β2 + 19β + 8

)
> 0,

D3 = 4(1 + β)2
[
2β4 + 14β3 + 3(8 + ab)β2 + 14β + 2

]
,
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D4 = 4β(1+β)2
[
6β6 + (42+8ab)β5 + (120+29ab)β4 +

(
168+45ab−4a2b2

)
β3

+ (120+29ab)β2 + (42+8ab)β + 6
]
,

D5 = 16β3(1 + β)3
[
2β2 + 4β + (2 − ab)

][
(2 − ab)β2 + 4β + 2

]

×
[
β2 + 2(1 + ab)β + 1

]
,

D6 = (1 − 2ab)β3D5.

Now if origin is unique equilibrium, that isab ≤ 0.5, then

D3 > 0 ∀β > 0 if (8 + ab) > 0 =⇒ −8 < ab ≤ 0.5,

D4 > 0 ∀β > 0 if (42 + 8ab) > 0, (120 + 29ab) > 0,
(
168 + 45ab− 4a2b2

)
> 0 =⇒

(
45 −

√
4713

)
/8 ≃ −2.96 < ab ≤ 0.5,

D5 > 0, D6 > 0 ∀β > 0 if − 2 ≤ ab < 0.5.

Combining above results it can be concluded that origin is locally asymptotically stable
∀β > 0 if −2 ≤ ab < 0.5.

Let us now consider the case−2.96 < ab < −2.

ThenD5, D6 > 0 if [β2 + 2(1 + ab)β + 1] > 0 =⇒ (β − β1)(β − β2) > 0, where

β1 = −(1 + ab) −
√
ab(ab+ 2),

β2 = −(1 + ab) +
√
ab(ab+ 2).

(13)

Hence if−2.96 < ab < −2, then origin is locally asymptotically stable∀βǫ(0, β1) or
(β2,∞) and not locally asymptotically stable for anyβǫ[β1, β2], whereβ1 andβ2 are
given by (13).

Case 2.Now we shall study the case whenab > 0.5.

If ab > 0.5, thenD5 andD6 are of opposite sign. Therefore originE0 is not locally
asymptotically stable.

The characteristic equation of system (7) about non-zero equilibrium
E1(x̂, ŷ, ŷ, x̂, ŷ, ŷ) is given by

∣∣∣∣∣∣∣∣∣∣∣∣

−1 − λ 0 0 0 b sech2(ŷ) b sech2(ŷ)

0 −1 − λ 0 a sech2(x̂) 0 0

0 0 −1 − λ a sech2(x̂) 0 0
β 0 0 −β − λ 0 0
0 β 0 0 −β − λ 0
0 0 β 0 0 −β − λ

∣∣∣∣∣∣∣∣∣∣∣∣

=⇒ λ6 + c1λ
5 + c2λ

4 + c3λ
3 + c4λ

2 + c5λ+ c6 = 0,
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where

c1 = 3(1 + β),

c2 = 3
[
(1 + β)2 + β

]
,

c3 = (1 + β)
[
(1 + β)2 + 6β

]
,

c4 = 3β(1 + β)2 + β2
(
3 − 2ab sech2(x̂)sech2(ŷ)

)
,

c5 = β2
(
3 − 2ab sech2(x̂) sech2(ŷ)

)
(1 + β),

c6 = β3
(
1 − 2ab sech2(x̂) sech2(ŷ)

)
.

Applying Routh-Hurwitz criteria as in Case 1 we get

D1 = 3(1 + β) > 0,

D2 = (1 + β)
(
8β2 + 19β + 8

)
> 0,

D3 = 4(1 + β)2
[
2β4 + 14β3 + 3

{
8 + ab sech2(x̂) sech2(ŷ)

}
β2 + 14β + 2

]
> 0,

D4 = 4β(1 + β)2
[
6β6 + {42 + 8ab sech2(x̂) sech2(ŷ)}β5

+
{
120 + 29ab sech2(x̂) sech2(ŷ)

}
β4

+
{
168 + 45ab sech2(x̂) sech2(ŷ) − 4a2b2 sech4(x) sech4(ŷ)

}
β3

+
{
120 + 29ab sech2(x̂) sech2(ŷ)

}
β2+

{
42 + 8ab sech2(x̂) sech2(ŷ)

}
β+6

]

D5 = 16β3(1 + β)3
[
2β2 + 4β +

{
2 − ab sech2(x̂) sech2(ŷ)

}]

×
[{

2 − ab sech2(x̂) sech2(ŷ)
}
β2 + 4β + 2

]

×
[
β2 + 2

{
1 + ab sech2(x̂) sech2(ŷ)

}
β + 1

]
,

D6 =
[
1 − 2ab sech2(x̂) sech2(ŷ)

]
β3D5.

Using0 < sech(x) < 1, it can be shown thatD4 > 0, D5 > 0, D6 > 0 ∀β > 0. Hence
E1 is locally asymptotically stable∀β > 0. Similarly E2 can be shown to be locally
asymptotically stable∀β > 0. Hence from discussions in Case 1 and Case 2 we have the
following theorem:

Theorem 1. For system(5):

(i) If −2 ≤ ab < 0.5 , then unique equilibrium(0, 0, 0, 0, 0, 0) is locally asymptotically
stable∀β > 0;

(ii) If −2.96 < ab < −2 , then unique equilibrium(0, 0, 0, 0, 0, 0) is locally asympto-
tically stable∀β ∈ (0, β1) or (β2,∞), whereβ1 andβ2 are given by(13);

(iii) If −2.96 < ab < −2 , then unique equilibrium(0, 0, 0, 0, 0, 0) is not locally
asymptotically stable for anyβ ∈ [β1, β2], whereβ1 andβ2 are given by(13);

(iv) If ab > 0.5 , then originE0 is not locally asymptotically stable for anyβ > 0,
where other two non-zero equilibriaE1 andE2 are locally asymptotically stable
∀β > 0.

Stability region inab− β parametric space is shown in Fig. 3.
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Fig. 3. Stability region inab − β parametric space.

5 Existence of Hopf bifurcating periodic solution in case (iii) of
Theorem 1

From Theorem 1 it is clear that if−2.96 < ab < −2, then a breakdown of stability occurs
atβ = β1 andβ = β2.

First it will be proved that whenβ = β1 or β = β2 then equation (12) has a pair of
purely imaginary roots.

Let λ = iω, ω > 0 be a root of equation (12). Substitutingλ = i, ω in (12) and then
separating real and imaginary parts we get

a6 − a4ω
2 + a2ω

4 − ω6 = 0,

a5ω − a3ω
3 + a1ω

5 = 0.
(14)

Eliminatingω from equations in (14) and then substituting values ofa1, a2, a3, . . . , a6

after simplification it is obtained as

16(2ab− 1)β6(1 + β)3
[
β2 + 2(ab+ 1)β + 1

][
2β2 + 4β + (2 − ab)

]

×
[
(2 − ab)β2 + 4β + 2

]
= 0.

(15)

This is possible only whenβ2 + 2(ab+ 1)β + 1 = 0.
Thus whenβ = β1, the characteristic equation (12) has a pair of purely imaginary

roots±iω1 (say). From (14)

ω2
1 =

[
a5a1a2 − a5a3 − a2

1a6

a1a5 − a2
1a4 + a1a2a3 − a2

3

]

β=β1

=
−β2

1

[
(4ab− 6) + (5ab− 12)β1 + (4ab− 6)β2

1

]

2 + 14β1 + (3ab+ 24)β2
1 + 14β3

1 + 2β4
1

= β1

as β2
1 + 2(ab+ 1)β1 + 1 = 0.

(16)
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Now applying Descarte’s rule and relation between roots andcoefficients of a polynomial
it can be shown that, apart from±iω1 other 4 roots of equation (12) atβ = β1, have
negative real part. Similarly it can be concluded that atβ = β2 equation (12) has two
purely imaginary roots±iω2 and other 4 roots have negative real part.

Differentiating equation (12) with respect toβ implicitly,

dλ

dβ
= − 3(1 − 2ab)β2 +

[
(6 − 4ab)β + (9 − 6ab)β2

]
λ

(1 + β + 2λ)
[
6βλ(1 + λ)2 + 3λ2(1 + λ)2 − β2

(
2ab− 3(1 + λ)2

)]

−
[
3 + 2(9 − 2ab)β + 9β2

]
λ2 + 3

(
3 + 6β + β2

)
λ3 + (9 + 6β)λ4 + 3λ5

(1 + β + 2λ)
[
6βλ(1 + λ)2 + 3λ2(1 + λ)2 − β2

(
2ab− 3(1 + λ)2

)] .

Sinceω2
1 = β andβ2

1 = −1 − 2(ab+ 1)β1

(
dλ

dβ

)

λ=iω1

= − β1 − iω1

(1 + β1)β1 + 2iω1β1
= − (β1 − iω1)[(1 + β1)β1 − 2iω1β1]

(1 + β1)2β2
1 + 4ω2

1β
2
1

Re

(
dλ

dβ

)

λ=iω1

= − (1 + β1)β
2
1 − 2β2

1

(1 + β1)2β2
1 + 4β3

1

=
1 − β1

(1 + β1)2 + 4β1
6= 0

Re

(
dλ

dβ

)

λ=iω2

=
1 − β2

(1 + β2)2 + 4β2
6= 0.

That is all the sufficient conditions for Hopf bifurcation [37–39] are satisfied.
Hence we have the following theorem:

Theorem 2. If −2.96 < ab < −2 and β = β1 or β = β2, then there exists
Hopf-bifurcating periodic solutions withβ as bifurcation parameter, about the unique
equilibrium of the system(5).

6 Stability of bifurcating periodic solution

Now to investigate the orbital stability of such Hopf-bifurcating periodic solution Poore’s
condition has been followed [40].

According to Poore’s sufficient condition, the supercritical and subcritical nature of
Hopf-bifurcating periodic solution is determined by positive and negative sign of real part
of magic numberΦ, whereΦ is given by:

Φ = − ul

∂3fl

∂xj∂xm∂xs

vjvmvs + 2ul

∂2fl

∂xj∂xm

vj

[(
A−1

)
mr

] ∂2fr

∂xp∂xq

vpvq

+ ul

∂2fl

∂xj∂xm

vj

([
(A− 2iωcI)

−1
]
mr

) ∂2fr

∂xp∂xq

vpvq.

(17)

Here repeated suffixes indicate sum notation and all the derivatives are evaluated at the
equilibrium (origin). A is the variational matrix of (8) calculated at origin.
u = (u1,u2,u3,u4,u5,u6) andv = (v1,v2,v3,v4,v5,v6) are the left and right
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eigen vectors respectively ofA with respect to eigen values±iωj (j = 1, 2) at the points
β = ±βj(j = 1, 2) and it is important to remember thatu,v are normalised with require-
mentu · v = 1 [Th 4.1] [40].u = (u1, u2, u3, u4, u5, u6) andv = (v1, v2, v3, v4, v5, v6)
are the complex conjugates ofu andv respectively.

Now at origin

∂f1
∂x1

= −1,
∂2f1
∂x2

1

= 0,
∂3f1
∂x3

1

= 0,

∂f1
∂x5

= b,
∂2f1
∂x2

5

= 0,
∂3f1
∂x3

5

= −2b,

∂f1
∂x6

= b,
∂2f1
∂x2

6

= 0,
∂3f1
∂x3

6

= −2b,

∂f2
∂x2

= −1,
∂2f2
∂x2

2

= 0,
∂3f2
∂x3

2

= 0, (18)

∂f2
∂x4

= a,
∂2f2
∂x2

4

= 0,
∂3f2
∂x3

4

= −2a,

∂f3
∂x3

= −1,
∂2f3
∂x2

3

= 0,
∂3f3
∂x3

3

= 0,

∂f3
∂x4

= a,
∂2f3
∂x2

4

= 0,
∂3f3
∂x3

4

= −2a.

Simplifying (17) and substituing values of above partial derivatives

Φ = − u1(−2b)v5v5v5 − u1(−2b)v6v6v6

− u2(−2a)v4v4v4 − u3(−2a)v4v4v4.
(19)

Now we calculate the right and left eigen vectors of variational matrix

A =





−1 0 0 0 b b
0 −1 0 a 0 0
0 0 −1 a 0 0
β 0 0 −β 0 0
0 β 0 0 −β 0
0 0 β 0 0 −β




.

A right eigen vector(x1 + iy1, x2 + iy2, . . . , x6 + iy6)
T of matrixA is given by

A





x1 + iy1
x2 + iy2

...
x6 + iy6




= iω





x1 + iy1
x2 + iy2

...
x6 + iy6




.

Proceeding in above way and solving the set of equations our required right eigen vector
v and left eigen vectoru are obtained in the following form (if they are calculated at
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bifurcation pointβ = β1 corresponding to eigen valueiω = iω1):

v =
a(c+ ik)

(1 + β1)2





2bω1(i+ ω1)
(1 + β1) + (1 − iω1)
(1 + β1) + (1 − iω1)

(1 + β1)
2/a

−iω1(1 + β1)
−iω1(1 + β1)




(20)

u =
η0b(c+ ik)

β1(1 + β1)

[
β1(1+β1)

b
,−iω1β1,−iω1β1,

−2aω1i(β1−iω1)

(1+β1)
,

(β1−iω1), (β1−iω1)

]
,

(21)

wherec, k are real numbers andη0 is a complex number to be determined using the
conditionu · v = 1. Now

u · v = 1 =⇒ η0
−4ω1ab

β1(1 + β1)2
[
(c+ ik)2(ω1 + iβ1)

]
= 1

=⇒ η0 =
−(1+β1)

4ω1ab
(
c2+k2

)2

[((
c2−k2

)
ω1−2ckβ1

)
−i

(
2ckω1+β1(c

2−k2)
)]
.

That is ifη0 is expressed in the formη0 = φ1 + iφ2, then

φ1 = M
[(
c2 − k2

)
ω1 − 2ckβ1

]
, φ2 = −M

[
2ckω1 + β1

(
c2 − k2

)]
, (22)

where

M = − (1 + β1)

4ω1ab
(
c2 + k2

)2 > 0

Now from (19)

(Φ)β=β1
= 2b

[
u1v5|v5|2 + u1v6|v6|2

]
+ 2a

[
u2v4|v4|2 + u3v4|v4|2

]

= 4b
[
u1v5|v5|2

]
+ 4a

[
u2v4|v4|2

]

= −4abω1η0
(
c2 + k2

)
i(c+ ik)2

(1 + β1)

[
ω2

1a
2

(1 + β1)2
+ 1

]

= −Pβ1

[
(a− b)2 − b2

][(
2ckφ1 + φ2

(
c2 − k2

))
+ i

(
2ckφ2 − φ1

(
c2 − k2

))]

as v5 = v6, u2 = u3,

whereP = − 4abω1(c
2+k2)

(1+β1)3
> 0. Hence

Re [φ]β=β1
= Pβ2

1M
[
(a− b)2 − b2

][
c2 + k2

]2
> 0.

21



P. D. Gupta, N. C. Majee, A. B. Roy

Proceeding in the same manner, calculating the left and right eigen vectors of matrixA
corresponding to the eigen valueiω2 at the bifurcation pointβ = β2, it is obtained that

Re [φ]β=β2
> 0

From above discussion we get the following result:

Theorem 3. If −2.96 < ab < −2, there exists stable periodic orbits forβ ∈ [β1, β2]
and the system(5) undergoes a supercritical Hopf-bifurcation asβ is increased through
β1 and also asβ is decreased throughβ2, whereβ1, β2 are given by(13).

7 Global Hopf-bifurcation

In this section we shall consider the continuation of the bifurcating periodic solutions as
the bifurcation parameterβ increases and varies over the interval(β1, β2). To study this
we shall use the technique of Alexander and Auchmuty [41].

Let P 1 denote the space of allx : R → R
6 which are periodic with period2π. The

spaceP 1 is a Banach space with the norm

‖x‖(1)
∞ = max

1≤i≤6
max

0≤t≤2π

[
|xi(t)| +

∣∣∣∣
dxi(t)

dt

∣∣∣∣

]
.

Let Λ denote the open interval(0,∞). Let L(P 1) denote the set of all continuous
linear maps ofP 1 into itself with the induced norm topology. LetF : P 1 × Λ → P 1

be continuous and let us consider the problem of finding the solutions
(y, β, ω) ∈ P 1 × Λ × (0,∞) of the equation

ω
dy

dt
= F (y, β). (23)

If y(t) is a solution of equation (23), and ifx(t) = y(ωt), thenx(t) is a solution of

dx

dt
= F (x, β), (24)

wherex is periodic with periodT = 2π/ω.
Now if we denote the system (8) by

dX

dt
= F1(X) (25)

then (25) can be rewritten as

ω
dZ

dt
= A(β)Z +R(Z, β), (26)

whereA(β) is variational matrix of (8) about (0,0,0,0,0,0) andR(Z, β) = F1(Z, β) −
A(β)Z.

Now we shall use the following result whose proof is in Alexander and Achmuty
[41].
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Theorem 4. Let F be a Frechet differentiable map ofP 1 × Λ into P 1. There is a
global bifurcation of2π-periodic solutions of equation(23) from a solution(y∗, β0, ω0)
provided:

(i) A(β) ∈ L(P 1) for β ∈ Λ. The mappingβ → A(β) is continuous and 0 is not in
the spectrum ofA(β0).

(ii) The number of linearly independent solutions inP 1 of ω0
dW
dt

= A(β)W is finite
and congruent to 2 mod 4.

(iii) There are positiveδ andε such that ifλ(β) is in the spectrum ofA(β) andReλ(β) =
α(β), then|α(β)| > ε|β − β0| for |β − β0| < δ.

We will verify the above sufficient conditions of global Hopf-bifurcation for the
system (26). We consider the linearized system

ω0
dW

dt
= A(β)W (27)

and let us suppose that it has a periodic solution of period2π; let it be

W =

∞∑

k=−∞

dke
ikt.

The coefficientsdk are solutions of the linear systemω0ikdk = A(β)dk, k = 0,±1,
±2, . . .. Nontrivial periodic solutions of period2π exist if ikω0is an eigen value ofA(β).
That isikω0 is a solution of equation (12). From previous discussion it is clear that non-
trivial periodic solutions exist only fork = ±1 at β = β1 andβ = β2, and hence there
are only two periodic solutions of period2π for the linearized system (27).

It can be shown that

Re

(
dλ

dβ

)

β=β1

> 0.

It follows that ifα(β) = Re [λ(β)] then

lim
β→β1

α(β) − α(β1)

β − β1
> 0

which implies that there existsε > 0, δ > 0 such that

=⇒
∣∣∣∣
α(β) − α(β1)

β − β1

∣∣∣∣ > ε if |β − β1| < δ,

=⇒ |α(β)| > ε|β − β1| for |β − β1| < δ

as α(β1) = 0.

(28)
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AlsoA(β) is continuous inβ. Thus all the conditions of Theorem 4 are satisfied. There-
fore there is a global bifurcation of2π periodic solutions from the point(0, β1, ω1).

The global Hopf-bifurcation has been established in a product space of the phase
space,parameter space and the frequency space. For applications it will be informative to
consider bifurcation by projecting the globally bifurcating arc on the product space of the
phase space and parameter space as it is usually done in localHopf-bifurcation. So here
we will consider the frequency component of globally bifurcating arc.

It is known from work of Yorke [42, 43] that the period of any periodic solution
of (25) (that is of (8)) remains bounded below away from zero due to the Lipschitzian
nature of vector field in equationdx

dt
= Ax, whereA is variational matrix of (8) about

equilibrium(0, 0, 0, 0, 0, 0). Therefore by relation between frequency and period of any
periodic solution, it can be concluded thatω-component of any bifurcating arc is bounded
above. Again by Lemma 1 in the range−2.96 < ab < −2 origin is the unique equilibrium
of system (8) and as the equation (12) has no positive real root (proved in Section 5), the
unique equilibrium point is not a saddle point. Consequently, there is no homoclinic orbit
and hence the period of periodic solutions of equation (8) isbounded above and so its
frequency is bounded below.

So it can be concluded thatω-component of bifurcating arc of global Hopf-bifurcation
is bounded between two positive numbers.

Now we are to calculate the center indexΦ1 introduced by Mallet-Paret and Yorke
[44] at the two bifurcation points(0, β1), (0, β2) given by

Φ1(0, β1) =
1

2
[E(β1+) − E(β1−)] (−1)E(β1), (29)

whereE(β) denotes the sum of the multiplicities of the eigen values ofA(β) having
strictly positive real parts.E(β1+) andE(β1−) denote the right and left hand limit of
E(β) atβ1, β2 respectively.

From our previous discussion in Section 2, it is clear thatE(β1−)=0, E(β1)=0,
E(β1+) = 2 and hence by (29)Φ1(0, β1) = 1. Similar calculation shows that
Φ1(0, β2) = −1.

Thus the bifurcation point(0, β1) is a source, where(0, β2) is a sink. By results
of [45], each source is connected to a sink by an oriented one parameter“snake” of
orbits.

8 Numerical simulation

In Section 4 Fig. 3 is drawn to show the number of equilibrium and stability character of
unique equilibrium inab− β parametric space.

Then to simulate the above described model numerically, system (7) has been solved
by fourth-order Runga-Kutta method and corresponding phase potraits inxyz plane are
drawn.

First the values ofa, b has been considered in such a way that−2 < ab < 0.5 and in
Fig. 4 it has been shown that for this value ofab origin is locally asymptotically stable.
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Then to illustrate Hopf-bifurcation it has been taken thata = 1.2, b = −2. Substi-
tuting this value ofab in equation (13) we getβ1 = 0.42; β2 = (1.4 +

√
.96) ≃ 2.38.

Then for different values ofβ corresponding figures are drawn.
Then forab = −2.5 (that is−2.96 < ab < −2) Fig. 8, Fig. 9, Fig. 10 has been drawn

with β = 0.5, 1.1, 2.2 respectively and it has been shown that in the interval[β1, β2]
(β1, β2 are calculated by (13)) period of Hopf-bifurcating periodic solution first increases
and then decreases.

Here Theorem 1 is verified by Fig. 4, Fig 5, Fig 6 and Fig 7. Figs.8–10 illustrates a
“snake” of orbits in the interval(β1, β2).

At last it has been takena = 3, b = 2, that isab > 0.5. Then forβ = 1 Fig. 11 has
been drawn. From Fig. 11 it is clear that originE0 is a repeller and other two non-zero
equilibriaE1 andE2 are sink.

−2 0 2
−2

0
2

−4

−2

0

2

4

x
y

z

Fig. 4. −2 ≤ ab < 0.5. Here origin is
locally asymptotically stable.
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0
2

−3

−2

−1

0

1

2

3

xy

z

Fig. 5. −2.96 < ab < −2, β = 0.3. Here
origin is locally asymptotically stable.
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xy
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Fig. 6. −2.96 < ab < −2, β = 1.
Origin is not locally asymptotically stable

and there exists a periodic solution.
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Fig. 7. −2.96 < ab < −2, β = 2.5. Here
origin is locally asymptotically stable.

25



P. D. Gupta, N. C. Majee, A. B. Roy

−1 −0.5 0 0.5 1

−1

0

1
−1

−0.5

0

0.5

1

1.5

x
y

z

0 20 40 60 80 100 120 140
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

t

x,
y,

z

(a) (b)

Fig. 8.−2.96 < ab < −2, β = 0.5. (a) phase potrait; (b) waveform plot.
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Fig. 9.−2.96 < ab < −2, β = 1.1. (a) phase potrait; (b) waveform plot.
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Fig. 10.−2.96 < ab < −2, β = 2.2. (a) phase potrait; (b) waveform plot.

26



Asymptotic Stability, Hopf-Bifurcation, Orbital Stability

−5
0

5
−5

0

5
−4

−2

0

2

4

x
y

z

E
1
 

E
2
 

E
0
 

Fig. 11. Existence and stability character of multiple equilibria.

9 Conclusion

In this paper we analysed a system, composed of three neurons, with distributed delay.
The system was assumed to be without self-connection and consisting of two neurons,
which are not directly connected. Sufficient conditions (depending on values of synaptic
weight and decay rate of kernel) for local asymptotic stability of equilibria and for exis-
tence of Hopf-bifurcating periodic solution have been derived. A closed interval of decay
rate has been obtained, where Hopf-bifurcating periodic solution is orbitally stable and
supercritical in nature. Global Hopf-bifurcation aspect has also been studied following
the theorem of Alexander and Achmuty.

In subsequent work attempt will be taken to study a three-neuron network with
distributed delay when the kernel is of second order.
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