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Abstract. A distributed delay model of a class of three-neuron netwoak been
investigated. Sufficient conditions for existence of ueigguilibrium, multiple equilibria
and their local stability are derived. A closed interval toparameter of the system
is identified in which Hopf-bifurcating periodic solutiorcaurs for each point of such
interval. The orbital stability of such bifurcating periodolution at the extreme points
of the interval is ascertained. Lastly global bifurcati@pect of such periodic solutions
is studied. The results are illustrated by numerical sitmra.
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1 Introduction

It is wellknown that human brain is made up of a large numbeeti§ called neurons and
their interaction. An artificial neural network is an infoation processing system that has
certain characteristics in common with biological neurtiworks. In recent years, Hop-
field neural network and their various generalisations ladtracted the attention of many
scientists due to their potential applications in area$ g classification, associative
memory, pattern recognization, parallel computationtipgipation [1-9].

In modelling artificial neural networks, it is necessaryriodrporate the processing
time of each neuron to make the models more realistic. MaaiodsWestervelt [3] first
introduced a single delay in Hopfield model and showed thatnsgtrically connected
continuous time network oscillates as the delay crossetieatwalue. There is an exten-
sive research work on the dynamics of Hopfield neural netsmith time delays [10-17].

The periodic nature of natural impulses is of fundamentalificance in the control
of regular dynamical functions such as breathing and hesatifg. Neural networks
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involving persistent oscillations such as limit cycle maydpplied to pattern recogniza-
tion and associative memory. Thus it is important to und@acgthe mechanism of neural
networks that cause such periodic activities. Howeverraieetworks are complex and
large-scale nonlinear dynamical systems. But in most ot#ses for simplicity,simple

systems are studied. This is still useful, since complestityly may be carried over to
large scale networks.

Several papers [18-21] are devoted to the existence arititgtatperiodic solutions
of neural network models with two neurons with discrete del@lien and Belair [15]
studeid stability and existence of Hopf-bifurcation of axtmeuron system with discrete
delay. Gopalsamy and Leung [16], N. C. Majee and A. B.Roy,[Wgi and Ruan [22],
Liao, Wong, Wu [23] have investigated two neuron network giedvith transmission
delay. Due to the presence of a multitude of parallel patlswaigh a variety of axon
sizes and lengths, neural networks usually have a spatiateiaSo it is desirable to
model them by introducing distributed delays. S. Bernardelair, M. C. Mackey [24]
studied the effect of distributed delay on stability comditof linear delay differential
equations. G. S. K. Wolkowicz, S.Ruan [25, 26] analyzed thba) asymptotic behaviour
and bifurcation aspect of a chemostat model with distrithudelay. Gopalsamy and
He [27], Sree Hari Rao, Phaneendra and Prameela [28] had@&dta lot about the
effect of distributed delays on neural network. Chunhuagi-é&®jean Plamandon [29]
have investigated the stability of delayed neural netwanktuding both discrete and
distributed delay. Two Neuron systems with distributechgidlave been studied in papers
[30, 31]. Three neuron network with discrete delays has lsagied in [32—-35].

In this paper we have investigated local asymptotic stgbdrbital stability of Hopf
bifurcating periodic solution,existence of global bifation for a special kind of three-
neuron model with distributed delay. In Section 2 the modgiresented. In Section 3
some preliminary results about the existence of unique antipte equilibria are shown.
In Section 4 the system of integrodifferential equations baen converted to a system
of six ordinary differential equations with the introdwarti of three auxiliary variables,
then its linear analysis has been done. Routh-Hurwitzraaiteave been applied to derive
the sufficient condition (depending on synaptic weight aachy rate of kernel) for local
asymptotic stability of its equilibria. In Section 5 consithg the decay rate of kernel
as bifurcating parameter, a closed interval of such dedayhas been obtained in which
Hopf-bifurcation occurs. In Section 6 orbital stability thiis Hopf-bifurcating periodic
solution has been analyzed following the subcritical angkseritical approach proposed
by Poore. In Section 7, existence of global Hopf-bifurcati@as been studied. Most of
the mathematical calculations are done by using symbolepedation with the help of
software MATHEMATICA. Numerical simulation of the modelaghconfirms the results
obtained analytically is presented in Section 8. Finallyoadusion has been drawn in
Section 9.

2 Model description

In this paper we consider a three neuron network with disteith delay described by follo-
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wing system of integrodifferential equations

t

da; >

dg; = —px;(t) + Zaii tanh [ / k(t — s)xj(s)ds}, 1=1,2,3, (1)
=1 o

wherep > 0 is the decay rate of neurons, that is, it represents the ritewhich a
neuron will reset to its potential to the resisting statesolation when disconnected from
network.a;; is the the weight of synaptic connections from neufda neuron; andk is
the delay kernel assumed to satisfy the following condgion

(i) k:[0,00) — [0,00);

(i) k is piecewise continuoys
oo oo @)

(iii) /k;(s)ds —1, /sk(s)ds < 0.

0 0
It is assumed that system (1) is provided with initial coimais:
zi(s) = i(s), s€(—o00,0] and
; is bounded and continuous if+-00,0], i =1,2,3.
The general form of delay kerndl(s) is as follows:
e Ps

k(s) = g1 E

. s€(0,00), n=0,1,2,

whereg is a parameter denoting the rate of decay of the effects ohpasories and it is
a positive real number. It is also known as exponentiallyfigdnemory.

n = 0 represents weak kernel, whereas- 1 represents strong kernel. In this paper
we have studied the effect of weak kernel only, that is of the form:

k(s) = Be P, s¢€(0,00). 3

Now (1) takes the form

3 t
d(z: = —pax;(t) Jrjzlaij tanh {ﬂ/ e_ﬁ(t_s):cj(s)ds}, t>0, i=1,2,3. (4)
Due to the complexity of system (4), a special case of gemeode! has been considered
here to make the calculation more tractable. We consider &énree-neuron model, in
which there is no self-connection and there is a pair of nesiravhich are not directly
connected (shown in Fig. 1). To be specific the decay ratkéentas unity and synaptic
weights are as follows:

p=1, a1 =axp =a33 =0, aa =a13 =0, az =az1 =a, a3 =az =0.
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Fig. 1. Three-neuron network model.

Now (4) assumes the form

t t
ij—f = —x(t) + btanh {ﬁ/ e_ﬁ(t_s)y(s)ds} + btanh {ﬁ/ e_ﬁ(t_s)z(s)ds}7

¢
% = —y(t) + atanh{ﬁ/ eﬁ(ts)x(s)d&‘}, %)

¢
% = —2z(t) + atanh {ﬂ/ eﬁ(ts)x(s)ds}.

3 Some preliminary results

Fargue (1973) has shown that if the kernel function is a Boiuif a homogeneous linear
differential equation with constant coefficients, thatifst is a polynomial multiplied
by an exponential function, the integrodifferential edomais equivalent to a system of
ordinary differential equations of higher dimension [36].

In this section system (5) of integrodifferential equatitvas been converted to a set
of ordinary differential equations with the help of threegiary variables defined by

t

u(t) =0 / e P9 1 (s)ds,
o)) =5 [ P ys)is, ©)
w(t) =p / e*’a(t*s)z(s)ds, t>0.
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Now combining (5) and (6) it can be written as

Ccll_jf: = —z(t) + btanh[v(t)] + btanh[w(¢)],
% = —y(t) + atanh[u(t)],
dz

— = — 2(t) + atanh[u(t)],
dt "

du

= = B(a(t) — u(t),

W = Bly(t) (1),

dw

T B(z(t) —w(t)), t>0.

Now the system (7) can be rewritten in the following form {offibr notational, and
computational simplicity):

d

% = -1+ btanh(xg,) + btanh(xﬁ) = fl(x17x57x6)a
d

% = —x5 + atanh(zy) = fo(z2,74),

d$3

= =W + atanh(zy) = f3(xs,z4),
(8)

% — ﬂ(:pl - x4) = f4($1,lﬂ4),
% — 5(12 - x5) = f5(552;555)a
% — ﬂ(:pd - x(,) = fG(fCSa:CG)'

The system (5) and (7) have a common set of bounded solutimhtharefore system (7)
can be studied instead of system (5) to investigate its dijc&|36].

Lemma 1. The systen), that is systeng5) has unique equilibrium i&b < 0.5. Othere-
wise it has three equilibria.

Proof. Let (z1, 22, T3, T4, T35, Zg) be an equilibrium of (8), then we have the following
relations:

1 = btanh[Z5] + btanh[Zg), T2 = atanh[z,], T3 = atanh[Z4],

~

x
x 4, T2 = Ts, T3 = Te-

H
|

following equations

x1 = 2btanh[zs)], 9)
x2 = atanh|x) (10)
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obviously (0,0, 0,0,0,0) is an equilibrium of (8). Both the isoclines (9) and (10) have
(0,0) as the point of inflexion. Curve (9) is concave with respectteaxis while curve
(10) is convex with respect to, -axis. Both the curves are monotonic and bounded. They
will not intersect at nonzero points if

2b <

ISHN

)

(9) and (10) will intersect at two non-zero pointif > %
Thereforg(0, 0, 0,0, 0,0) is unique equilibrium of (8) if

20b <1 = ab<0.5.
If ab > 0.5 origin E, is an equilibrium together with two non-zero equilibfia and £

as shown in Fig. 2. From symmetrical nature of the vector fdI(B), it is clear that if
FE4 is of the form(El, 3)\2, 3)\2, /33\1, /33\2, 3,‘\2) thenEg is (—3)\1, —50\2, —50\2, —551, —50\2, —/33\2).

Yy AV
3 3
2 2
1 1

p 2 4, 4 2 2 4
1 ‘1
2 2
3 3
Y

(a) (b)

Fig. 2. (a) shows the existence of unique equilibrium, hére< 0.5; (b) shows the
existence of three equilibria, heaé > 0.5.

4 Linear analysis

Now we are to study the local asymptotic stability of equilbof system (5), which is
similar in nature to that of system (7).
The variational matrix of system (7) about any paitte, y, z, u, v, w) is given by

-1 0 © 0 bsech?(v) bsech?(w)
0 —1 0 asech’(u) 0 0
0 0 —1 asech®(u) 0 0
A(P) = 11
(P) 5 0 0 5 0 0 (11)
0 8 0 0 -3 0
0 0o B 0 0 -3
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Case 1. First we shall analyse the local asymptotic stability ofqud equilibrium
(0,0,0,0,0,0). The characteristic equation of system (7) aboub, 0,0, 0, 0) is given
by

~1-X 0 0 0 b b
0 —1-X 0 0 0
0 0 —1-\ a 0 0 |_,
3 0 0 —B-X 0 0 12)
0 3 0 0 —B-XA 0
0 0 3 0 0  —B-2A

- )\6—|—a1)\5 +a2)\4+a3)\3+a4)\2+a5)\+a6 =0,
where

a1 = 3(1+ ),
az = 3[(1+ 9)* + 4],
az = (1+p)[(1 + ) + 6],
ag = 361+ B)* + 5°(3 — 2ab),
as = $%(3 — 2ab)(1 + ),
ag = (1 — 2ab).
To derive some sufficient conditions of local asymptotibsity of (0, 0,0, 0,0, 0) Routh-

Hurwitz criteria has been applied.
According to this criteria all the roots of an equation

v oy T ooy TP iyt =0

have negative real part if

(5] Qa3 (67 — — — —
1 Qg Oy — - = —
0 o1 3 oy — — —

D=0 1 ay oy — — —|>0 Vm=12. k
0 — — — — — a,

In case of equation (12)

Dy =3(1+403) >0,
Dy = (14 8)(88%+193+8) > 0,
Dy = 4(1+ B)*[28* + 143% + 3(8 + ab)B° + 148 + 2],

15
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Dy =4B(143)%[68° + (42+8ab)3° + (120429ab)3* + (168+45ab—4a’b?) 3>
+ (120429ab) 3% + (42+8ab)3 + 6],

D5 =168°(1 4 B)*[26° + 48+ (2 — ab)] [(2 — ab)3* + 48 + 2]
x [ +2(1 4 ab)B + 1],

Dg = (1 — 2ab)33Ds.

Now if origin is unique equilibrium, that iab < 0.5, then

D3>0 VB3>0 if (84ab)>0 = —8<ab<0.5,
Dy>0 VB>0 if (42+8ab) >0, (120 + 29ab) > 0,

(168 + 45ab — 4aV?) >0 = (45— /4713)/8 ~ —2.96 < ab < 0.5,
D5 >0, Dg>0 V>0 if —2<ab<0.5.

Combining above results it can be concluded that origindslly asymptotically stable
Ve > 0if =2 < ab < 0.5.

Let us now consider the case€2.96 < ab < —2.
ThenDs, Dg > 0if [3% +2(1 +ab)3+1] > 0 = (8 — p1)(B3 — B2) > 0, where

B1 = —(1+ ab) — \/ab(ab + 2), (13)
By = —(1+ ab) + \/ab(ab + 2).

Hence if—2.96 < ab < —2, then origin is locally asymptotically stabté3¢(0, ;) or
(62, 00) and not locally asymptotically stable for am¢[51, 52], wheres; and 3, are
given by (13).

Case 2.Now we shall study the case wheh > 0.5.

If ab > 0.5, thenDs5 and D¢ are of opposite sign. Therefore origiy is not locally
asymptotically stable.

The characteristic equation of system (7) about non-zerailiequm

AN AN N A A

—1=-X 0 0 0 bsech®(7) bsech?(7)
0 —1-A 0 asech?(7) 0 0
0 0 —1— X\ asech?() 0 0
3 0 0 —B—A 0 0
0 6 0 0 —B—A 0
0 0 3 0 0 —B—A

= M f N N e\ e\ + s\ + g = 0,
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where
Cc1 = 3(1 + ﬂ),
e =3[(1+8)*+8],

=(1+/)[1+8)*+68],
cs =3B(1+ B)* + B°(3 — 2ab sechQ(f)sechQ(ﬂ)),
= (?(3 — 2absech®(7) sech®(9)) (1 + B),
= 3*(1 - 2ab sech?(Z) sechQ(g)).
Applying Routh-Hurwitz criteria as in Case 1 we get
D, =3(1+0) >0,
Dy = (1+3)(85% + 196+ 8) > 0,
D3 =4(1+p)? [2ﬁ4 + 1483 + 3{8 + absech? (%) seChQ(gj)}ﬁ2 + 148 + 2} > 0,
Dy = 4B(1 + B)?[68° + {42 + 8absech®(Z) sech? () } 5°
+ {120 + 29ab sech?(Z) sech? (g )}3*
+ {168 + 45ab sech? (Z) sech? () — 4a2b? sech® (z) sech* () J%x
+ {120 + 29ab sech?(Z) sech? (¥)} B> +{42 + 8ab sech? (%) sech?( Y)}3+6]
D5 =168°(1+ B)*[26° + 48+ {2 — absech?(Z) sechz(ﬂ)}}
X [{2 — absech? () sech?(7) }ﬁQ + 48+ 2]
X [52 + 2{1 + absechQ( sech2 }ﬁ + 1]
Dg = [1— 2absech? (Z) sech? (7 9)]3°Ds.

Using0 < sech(x) < 1, it can be shown thab, > 0, D5 > 0, Dg > 0 V(3 > 0. Hence

F; is locally asymptotically stables > 0. Similarly £5 can be shown to be locally
asymptoatically stabl&3 > 0. Hence from discussions in Case 1 and Case 2 we have the
following theorem:

Theorem 1. For systemn(5):

(i) If —2 < ab < 0.5, then unique equilibriunt, 0,0, 0,0, 0) is locally asymptotically
stableVs > 0;

(i) If —2.96 < ab < —2, then unique equilibriunfo, 0, 0, 0, 0, 0) is locally asympto-
tically stablevs € (0, 81) or (52, o), where3; and 3, are given by(13);

(i) If —2.96 < ab < —2, then unique equilibriun0,0,0,0,0,0) is not locally
asymptotically stable for ang € [51, 2], whereB; and 3, are given by(13);

(iv) If ab > 0.5, then origin Ey is not locally asymptotically stable for any > 0,
where other two non-zero equilibri&; and E» are locally asymptotically stable
vGE > 0.

Stability region inab — 3 parametric space is shown in Fig. 3.
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Fig. 3. Stability region irub — 3 parametric space.

5 Existence of Hopf bifurcating periodic solution in case (i) of
Theorem 1

From Theorem 1 itis clear that#2.96 < ab < —2, then a breakdown of stability occurs
at3 = py andg = fa.

First it will be proved that whe® = 3, or 3 = 35 then equation (12) has a pair of
purely imaginary roots.

Let A = iw, w > 0 be a root of equation (12). Substituting= 4, w in (12) and then
separating real and imaginary parts we get

ag — a4w2 + a2w4 — Wl = 0,

14

asw — a3w3 +ajw® = 0. (14)

Eliminating w from equations in (14) and then substituting values.gfas, as, .. ., ag
after simplification it is obtained as

16(2ab — 1)B%(1 + B)%[8* + 2(ab + 1)8 + 1] [268% + 48 + (2 — ab)] (15)

x [(2—ab)B* + 48+ 2] = 0.

This is possible only whefa? + 2(ab+1)3+ 1 = 0.
Thus wheng = (1, the characteristic equation (12) has a pair of purely imagyi
roots+iw, (say). From (14)

2
2 asai1az — as5a3 — ajdg
wl -

aras — a3ay + arasaz — a3 8=,
_ —p1[(4ab—6) + (bab— 12)5; + (4ab — 6)57] (16)
T 241401 + (3ab+24)32 + 1453 + 238 b

as (7 +2(ab+1)B;1 +1=0.
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Now applying Descarte’s rule and relation between rootscaredficients of a polynomial
it can be shown that, apart fromiw, other 4 roots of equation (12) @& = ;, have
negative real part. Similarly it can be concluded thaBat (3, equation (12) has two
purely imaginary roots-iw, and other 4 roots have negative real part.

Differentiating equation (12) with respect toimplicitly,

d\ 3(1 — 2ab)B% + [(6 — 4ab)B + (9 — 6ab)3*| A

dB (14 B+ 20681+ N)2 +3X2(1+ A\)2 — §2(2ab — 3(1 + \)2)]
[3+2(9—2ab)B+ 962 A2 +3(34 68+ 5%)A3 + (9 + 68)A* + 3\°
(14 842X [68A(1 4+ A)2 +3X2(1 4+ A)2 — 32 (2ab — 3(1 + A)?)]

Sincew? = fandf? = -1 —2(ab+ 1)3

(@) S fr —iwr _ (B —iwn)[(A + B1) By — 2iw 3]
AB ) r=iu, (1+ B1)p1 + 2iw1 B (1+ 51)26% + 4wi B

ax (BB 287 15
e (dﬁ)mwl B e A T

X _ 1— 05
fte <dﬁ)>\=w2 (14 B2)2 445 70

That is all the sufficient conditions for Hopf bifurcation/339] are satisfied.
Hence we have the following theorem:

Theorem 2. If —2.96 < ab < —2 and § = [(; or [ = (s, then there exists
Hopf-bifurcating periodic solutions witl# as bifurcation parameter, about the unique
equilibrium of the systertb).

6 Stability of bifurcating periodic solution

Now to investigate the orbital stability of such Hopf-bifating periodic solution Poore’s
condition has been followed [40].

According to Poore’s sufficient condition, the supercatiand subcritical nature of
Hopf-bifurcating periodic solution is determined by pagtand negative sign of real part
of magic numbe®, where® is given by:

0° fi

T 0x;0x, 0z,

0%fi _ ) _
Ulaij;mUj([(A—2lwcl) qmr)

l ) —1 82 f7‘ _
5z, LA D G v
O fr

——UpUy.
pYq
O0x,0x,

P = VjUmUs + 2
17)

+

Here repeated suffixes indicate sum notation and all the/aterts are evaluated at the
equilibrium (origin). A is the variational matrix of (8) calculated at origin.
u = (uz,uz,us,uq,us,ug) andv = (vy,vza, Vs, vy, Vs, ve) are the left and right
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eigen vectors respectively ef with respect to eigen valuesiw; (j = 1, 2) at the points
B8 = £p,(j = 1,2) and it is important to remember thafv are normalised with require-
mentu-v=1 [Th 41] [40]ﬁ = (al,ag,a3,ﬂ4,ﬂ5,ﬂ6) andv = (51,52,53,54,55,56)
are the complex conjugatesafandv respectively.

Now at origin
2 3

S—Q =-1 a@xfg =0 a@xfg =0,

oon Thoo Thoom

S—Z =1, ‘?;é? =0, %122 =0, (18)
2 3
2 3

Simplifying (17) and substituing values of above partiaiives

b =-— ul(—2b)v5v565 — ul(—Qb)’UGU(;EG
_ _ (19)
— u2(72a)v4v4v4 — ’U,3(72(1)U4’U4’U4.

Now we calculate the right and left eigen vectors of variaianatrix

1 0 0 0 b b
1 0 a 0 0
0 -1 a 0 0
0 0 -3 0 0
B 0 0 -8 0
0 8 0 0 -3

A right eigen vectokz; + iy1, 72 + iys, . .., 6 + iye)’ Of matrix A is given by

oSO WO o

x1 +1iYy1 1 +1iy1

T2 + iy2 To + 1Yo
. = w .

T + 1Ys z6 + Y6

Proceeding in above way and solving the set of equationsaguired right eigen vector
v and left eigen vecton are obtained in the following form (if they are calculated at

20
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bifurcation point3 = (3; corresponding to eigen valde = iw;):

2bw1(i +W1)
(14 61) + (1 —iwr)
a(c+ik) | (1+ B1) + (1 —iw)

T0+me2 | (+p)a (20)
—iw1(1+ B1)
—iw1(1+ B1)
_ nob(c+ik) [ B1(1+01) » » —2aw1i(f1—iwr)
u= EACEND) 5 , —iw1B1, —iw1 B, 45 ; o

(B1—iw1), (B iwl)] ;

wherec, k are real numbers angh is a complex number to be determined using the
conditionu - v = 1. Now

—4 b . .
uv:]_ = 77()#%[(04‘1]{)2(@14’261)] :1
- —(14p) )
= = ey (R 2k ikt (4|

That is ifny is expressed in the formy = ¢1 + i¢s, then

¢ = M[(? — k*)wy — 2¢kB1], ¢ = —M [2ckwy + B1(? — k?)], (22)
where
M= (1+51) 50

_4w1ab(02 + k?)
Now from (19)
(®)g=p, = 2b[u1v5|v5|2 + u1v6|1)6|2] + 2a[uQv4|v4|2 + 'LL3’U4|U4|2}

= 4b[u1v5|v5|2} +4a [U2U4|’U4|2]

. 4abw1n0 (02 + k2)Z(C+ Zk)2 |: w%aQ + :|

B (1+/61) (1+751)2

= ~Pp[(a—b)? 6] | (2cken + 62 (* — k2)) +i(2ckds — 6n (¢ — 2) )]

as vs = vg, U2 = U3,

2 2
whereP = —% > 0. Hence

Re [¢lg—p, = PBIM [(a —b)* —b*] [* + k*]* > 0.
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Proceeding in the same manner, calculating the left and eigfen vectors of matrixi
corresponding to the eigen valie, at the bifurcation poinB = 2, it is obtained that

Re[¢]p=p, >0
From above discussion we get the following result:

Theorem 3. If —2.96 < ab < —2, there exists stable periodic orbits for € [3;, O2]
and the syster(b) undergoes a supercritical Hopf-bifurcation @sis increased through
(1 and also ag3 is decreased through,, where,, 3, are given by(13).

7 Global Hopf-bifurcation

In this section we shall consider the continuation of thegidting periodic solutions as
the bifurcation parametet increases and varies over the inter@l, 52). To study this
we shall use the technique of Alexander and Auchmuty [41].

Let P! denote the space of all: R — R® which are periodic with periodr. The
spaceP! is a Banach space with the norm

d:c;t(t) H .

(1) — )
ol = o s io)] +

Let A denote the open intervél, co). Let L(P!) denote the set of all continuous
linear maps ofP! into itself with the induced norm topology. Lét: P! x A — P!
be continuous and let us consider the problem of finding thdutisas
(y,3,w) € Pt x A x (0,00) of the equation

dy
— =F : 2
w—y = F(y,0) (23)
If y(t) is a solution of equation (23), andift) = y(wt), thenz(t) is a solution of
dx

wherez is periodic with period’ = 27 /w.
Now if we denote the system (8) by

dx

T Fi(X) (25)
then (25) can be rewritten as

W52 = AB)Z + R(Z,5), (26)
where A(Q) is variational matrix of (8) about (0,0,0,0,0,0) a®dZ, 3) = F1(Z,03) —
A(B)Z.

Now we shall use the following result whose proof is in Aledanand Achmuty
[41].
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Theorem 4. Let F' be a Frechet differentiable map @' x A into P'. There is a
global bifurcation of2rr-periodic solutions of equatio¢23) from a solution(y*, 5o, wo)
provided:

(i) A(B) € L(PY) for g € A. The mapping? — A(3) is continuous and 0 is not in
the spectrum ofi(5p).

(i) The number of linearly independent solutionsAh of wo‘il—‘f = A(B)W is finite
and congruent to 2 mod 4.

(iii) There are positivé ande such thatifA(53) is in the spectrum ol(3) andRe A\(3) =
a(B), then|a(B)| > €[B — Bol for |8 — Bo| < 4.

We will verify the above sufficient conditions of global Hepifurcation for the
system (26). We consider the linearized system

w D= Ay (27)

and let us suppose that it has a periodic solution of peXigdet it be

W = i dkeikt.

k=—o0

The coefficientsl;, are solutions of the linear systemikd, = A(8)dk, k = 0, %1,
+2,.... Nontrivial periodic solutions of periogir exist if ikwyis an eigen value ofi(3).
That isikwg is a solution of equation (12). From previous discussios diear that non-
trivial periodic solutions exist only fok = +1 at3 = (3, and = (2, and hence there
are only two periodic solutions of periddr for the linearized system (27).

It can be shown that

Re <@) > 0.
dﬁ B=p1

It follows that if «(3) = Re [A(5)] then

. aB) —a(B)
515%1 B =5 >0
which implies that there exists> 0, > 0 such that
— % Se it [B- B <6
= |a(B)| >¢|B—p1] for [B—pu| <0 (28)
as Oé(ﬂl) =0.
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Also A(f3) is continuous ind. Thus all the conditions of Theorem 4 are satisfied. There-
fore there is a global bifurcation @fr periodic solutions from the poirf0, 31, w1).

The global Hopf-bifurcation has been established in a prbdpace of the phase
space,parameter space and the frequency space. For &ppBdawill be informative to
consider bifurcation by projecting the globally bifureagiarc on the product space of the
phase space and parameter space as it is usually done irHiophbifurcation. So here
we will consider the frequency component of globally bifating arc.

It is known from work of Yorke [42, 43] that the period of anyrjmlic solution
of (25) (that is of (8)) remains bounded below away from zeme tb the Lipschitzian
nature of vector field in equatio@i£ = Ax, whereA is variational matrix of (8) about
equilibrium (0,0, 0,0,0,0). Therefore by relation between frequency and period of any
periodic solution, it can be concluded thatomponent of any bifurcating arc is bounded
above. Again by Lemma 1 in the rang.96 < ab < —2 origin is the unique equilibrium
of system (8) and as the equation (12) has no positive rea(poaved in Section 5), the
unique equilibrium pointis not a saddle point. Consequetiikere is no homoclinic orbit
and hence the period of periodic solutions of equation (&oisnded above and so its
frequency is bounded below.

So it can be concluded thatcomponent of bifurcating arc of global Hopf-bifurcation
is bounded between two positive numbers.

Now we are to calculate the center index introduced by Mallet-Paret and Yorke
[44] at the two bifurcation pointf), 8;), (0, 52) given by

21(0,01) = 3 [B(B1+) ~ B(-)] (-1, (29)

where E(3) denotes the sum of the multiplicities of the eigen valuesi@f) having
strictly positive real partsE(S;+) and E(8;—) denote the right and left hand limit of
E(B) at 1, B2 respectively.

From our previous discussion in Section 2, it is clear tBa8, —) =0, E(8;) =0,
E(f1+) = 2 and hence by (29¥,(0,5,) = 1. Similar calculation shows that
®1(0,32) = —1.

Thus the bifurcation poin(0, 51) is a source, wher€), 5-) is a sink. By results
of [45], each source is connected to a sink by an oriented ananpeter'snake” of
orbits.

8 Numerical simulation

In Section 4 Fig. 3 is drawn to show the nhumber of equilibriumd atability character of
unique equilibrium ineb — 3 parametric space.

Then to simulate the above described model numericallyesyé7) has been solved
by fourth-order Runga-Kutta method and corresponding @lpasraits inzyz plane are
drawn.

First the values ofi, b has been considered in such a way that< ab < 0.5 and in
Fig. 4 it has been shown that for this valueadforigin is locally asymptotically stable.
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Then to illustrate Hopf-bifurcation it has been taken that 1.2, b = —2. Substi-
tuting this value ofzb in equation (13) we ge#; = 0.42; B = (1.4 +1/.96) ~ 2.38.
Then for different values of corresponding figures are drawn.

Then forab = —2.5 (thatis—2.96 < ab < —2) Fig. 8, Fig. 9, Fig. 10 has been drawn
with 5 = 0.5,1.1,2.2 respectively and it has been shown that in the intefgal 32]
(61, B2 are calculated by (13)) period of Hopf-bifurcating permsdolution first increases
and then decreases.

Here Theorem 1 is verified by Fig. 4, Fig 5, Fig 6 and Fig 7. F&<lO illustrates a
“snake” of orbits in the interva( 3, 32).

At last it has been taken = 3,b = 2, thatisab > 0.5. Then for3 = 1 Fig. 11 has
been drawn. From Fig. 11 it is clear that oridily is a repeller and other two non-zero
equilibria Fy andFs; are sink.

I

-4l

2 </>
y 0 o 2

-2 -2 X

Fig. 4. —2 < ab < 0.5. Here origin is Fig. 5. —2.96 < ab < —2, 8 = 0.3. Here
locally asymptotically stable. origin is locally asymptotically stable.

0 I
-2

-1 X

Fig. 6. —2.96 < ab < -2, 8 = 1. Fig. 7. —2.96 < ab < —2, 8 = 2.5. Here
Origin is not locally asymptotically stable origin is locally asymptotically stable.
and there exists a periodic solution.
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(b)

y -1 -1 -0.5 0 5 10 20 30 ) E) 60 70
@) (b)
Fig. 9. -2.96 < ab < —2, 8 = 1.1. (a) phase potrait; (b) waveform plot.

t -

(b)
Fig. 10.—2.96 < ab < —2, B = 2.2. (a) phase potrait; (b) waveform plot.
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-5

Fig. 11. Existence and stability character of multiple &htia.

9 Conclusion

In this paper we analysed a system, composed of three newghglistributed delay.
The system was assumed to be without self-connection anslstimg of two neurons,
which are not directly connected. Sufficient conditiongpleding on values of synaptic
weight and decay rate of kernel) for local asymptotic stghdf equilibria and for exis-
tence of Hopf-bifurcating periodic solution have beenwki A closed interval of decay
rate has been obtained, where Hopf-bifurcating periodigtiem is orbitally stable and
supercritical in nature. Global Hopf-bifurcation aspeattalso been studied following
the theorem of Alexander and Achmuty.

In subsequent work attempt will be taken to study a thregarenetwork with
distributed delay when the kernel is of second order.
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