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Abstract. An analysis is preformed to study the heat transfer chaiatiteof unsteady
mixed convection flow of a viscous fluid in the vicinity of a gteation point of a general
three-dimensional body embedded in a porous media. Theitselo the potential flow
is assumed to vary arbitrary with time. The non-Darcy efféocluding convective,
boundary and inertial effects are included in the analysBoth nodal-point region
(0 < ¢ < 1), wherec = b/a is the ratio of the velocity gradients ijnandz directions
in the potential flow and saddle point regiorl < ¢ < 0), are considered. The semi-
similar solutions of the momentum and energy equations lat@red numerically using
finite difference method. Also a self-similar solution isufml when the velocity in the
potential flow and the wall temperature vary with time in arfar manner. Many results
are obtained and a representative set is displayed grédlghiz#lustrate the influence of
the physical parameters on the surface shear stresseseasuttiice heat transfer.

Keywords: unsteady flow, mixed convection, stagnation-point, sefflar solution,
porous media.

Nomenclature

a,b

principal curvatures of the body at the stagnation point
curvature ratio at the stagnation point

surface skin friction coefficient in the direction

surface skin friction coefficient in thg direction

specific heat at a constant pressure

E,E; Eckert numbers

dimensionless velocity component in thelirection
acceleration due to gravity
t*) dimensionless temperature
local Grashof number
thermal conductivity
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K permeability

Nuy,, local Nusselt number

Pr Prandtl number

Re, local Reynolds number

s dimensionless velocity component in the y direction

t time

t* dimensionless transformed independent variable basdden t
T temperature

u,v,w Vvelocity components in the, y andz directions, respectively
x,y,z local orthogonal coordinates withandy axes along the body surface and
axis normal to the surface

Greek symbols

@ thermal diffusivity

16} bulk coefficient of thermal expansion

X mixed convection parameter

A second order resistance

€ porosity

) dimensionless velocity component in theirection

n dimensionless transformed independent variable based on
5 first order resistance

r empirical constant

A dimensionless parameter which characterizes the unetsdin the flow field
i fluid dynamic viscosity

v fluid kinematics viscosity

p fluid density

Subscripts

i initial condition

w wall condition

00 condition in the ambient fluid

Super script

! denotes derivative with respectio

1 Introduction

Convective heat transfer in fluid-saturated porous medgitmportant applications in
both technology and geothermal energy recovery. Most ofébent research on convec-
tive flow in porous media has been directed to the problemdeaidy free and mixed
convection flows over heated bodies embedded in fluid-dadinaorous media. Ho-
wever, unsteady convective boundary layer flow probleme ment, so far, received as
much attention. The analysis of many practical fluid meateproblems depends on
understanding the behavior of the unsteady boundary ldlyisr.of interest in problems
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covering dynamic stall of helicopters, rotor blades, antddumachinery, acoustics, aero-
nautics and missile aerodynamics. For such wide applicat#s geothermal serves the
design of high temperature insulation and reactors andfiflhinseparation in chemical
processes. Perhaps, the first study on unsteady boundaryflay on flat surfaces in
porous media was made by Johnson and Cheng [1] who foundasityisolutions for
certain variations of the wall temperature. The more comgases, in general, involve
transient convection, which is non-similar and hence, ncoraplicated mathematically.
The interested reader can find an excellent collection oémapn unsteady convective
flow problems over heated bodies embedded in a fluid-satupdmus medium in the
review papers by Bradean et al. [2] and in the book by Pop agiaam [3].

The present paper address the problem of mixed convectianitildhe region of
a general three-dimensional stagnation point (i.e., nodakhddle point)of a body em-
bedded in a porous medium in the presence of first and secdedsaesistances, which
to the best of our knowledge have not been investigated y#hoédgh the problem of
mixed convection flow over three-dimensional bodies embddd porous media has
not been studied very much, the corresponding case of aleargorous) fluid has been
investigated by a number of researchers. The unsteadydimensional free convection
flow in the stagnation-point region on a general curved isottal surface placed in an
ambient fluid was studied by Hang et al. [4]. Eswara and Nalistiidied the unsteady
laminar incompressible mixed convection boundary layew fidgth large injection rates
at the stagnation point of a three-dimensional body. Kuraad Nath [6] studied the
unsteady flow and heat transfer of a viscous fluid in the stammaegion of a three-
dimensional body surrounded by a magnetic field.

Several investigations have been carried out also for tleediwensional case of
free and mixed convection in porous media. Nazar et al. [Vgtsudied the unsteady
mixed convection boundary layer flow near the region of arsiign point on a vertical
surface embedded in a Darcian fluid-saturated porous mediurdetailed theoretical
study of unsteady free convection boundary-layer flow neastagnation point of a two-
dimensional cylindrical surface embedded in a fluid-saaggorous medium has been
studied by Merkin and Pop [8].

Hassanien et al. [9] have studied recently the unsteadycfseeection flow in the
stagnation-point region of a three-dimensional body erdbddn a porous media. More
recently, the problem of free convection boundary layer fitear a three-dimensional
stagnation point of attachment resulting from a step chamgts constant surface tem-
perature has been studied by Shafie et al. [10].

Motivation to study mixed convection in porous media comesnf the need to
characterize the convective transport processes aroueyl gieological repository for
the disposal of high-level nuclear waste, e.g. spent fuds foom nuclear reactors (see
Lai [11]).

The aim of the this analysis is to study the development ofechigonvection in
the stagnation flow of a three-dimensional body embeddedparaus medium in the
presence of first and second orders resistances. The saitarsolutions of the partial
differential equations are obtained by the local non-ginty solutions. Also a self-
similar solution is found when the velocity in the potenflalv and the wall temperature
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vary with time in a particular manner.

2 Mathematical analysis

Let us consider the unsteady laminar motion of a viscousnmpressible fluid in the
neighborhood of the forward stagnation point of a threeetigional body. The physical
model and coordinate system are shown in Fig. 1.

..N
z
x

S S AL

Fig. 1. Schematic representation of coordinates, velocitynponents and the
streamlines in the external stream.

A locally orthogonal set of coordinatés, y, z) is chosen with the origin o at the
lowest stagnation point, with andy the coordinates along the body surface arttie
coordinate perpendicular to the body surface at 0. Grauvgynormal to the surface = 0
andy = 0 and acts opposite todirection. Letu, v andw denote the velocity components
alongz,y and z directions, respectively. The parameterandb are the curvatures of
the body measured in the plangs= 0 andx = 0, respectively. The components of
buoyancy force in the;, y andz directions arevz3g(T — Tw), byBg(T — Tw), and0
given by Banks [12]. The boundary layer equations of coritygnmomentum and energy
governing the unsteady flow are given below:

% + g—z + Z—ZJ =0, 1)
%1; = fp*1%+yv2u+a:cgﬂ(TfToo)f %U* f{—iuQ, (2)
%: = fpflg—z + V20 + bygB(T — Tso) — %v— II;—EIZUQ, (3)
%1: = 7/)71% + vV — %w — %122“’2’ (4)
pcp%f =kV?T + u(% + %), ®)
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where
9 0? 0? 0? D 0 0 0 0
Vo= — -5 Tt 39 oy u '
ox?2  oy: 022" Dt Ot Ox Oy 0z
The initial conditions (i.e., conditions at= 0) are given by
u=u; v=v;, w=w;, p=p;, 1T =T;, at t=0. (6)
The boundary conditions are
v=v=w=0, p=py, T=Ty at z2=0, >0, y=>0,
u—U v—=>V, w—-W, T—->T, as z—oo, >0, y>0,
u=U, v=V, w=W, T=T, at x=0, y>0, z>0,
u=U v=V, w=W, T=T, at y=0, >0, z>0.

()

Herep is the static pressurd; is the temperaturg; andy are the fluid density and the
dynamic viscosity, respectively; is the kinematics viscosity;, is the specific heat at

a constant pressuré; is the thermal conductivity3 is the bulk coefficient of thermal
expansion;pg is the stagnation pressur&, V and W are the components of velocity
in the potential flow;e, K, T" are the porosity, the permeability and empirical constant.
The subscript$, w andoo denote initial condition, condition at the wall and conalitiat
infinity.

3 Semi-similar equations

The equations governing the unsteady flow (1)—(5) are paliffarential equations with
four independent variableg, z, y, z). To reduce these equation to partial differential
equations with two independent variablest*), the potential velocity components:in
andy directions are taken in the form (Kumari and Nath [6]):

U=axp(t*), V =byo(t"),

8
t*=at, a=(0U/0x)==0 and b= (OV/Iy)t=o. ®

Substituting from equation (8) into the equation of conitinl), we can get the third
component of the potential velocity in the form.

W = —a(l+c)z¢(t*), c=b/a. 9

Using the three-dimensional unsteady Bernoulli equatioapressure is given by

2
po—p= %[(& + 0+ AP® + %)ﬁ + (c¢>2 + )+ AP + jﬁ)cyQ
(10)
+ ((1 +0)¢* - jf) —1¢+ AL+ c)¢2)(1 + c)zQ}
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wherey = ve/Ka is the first order resistance add = I'e>L/K'/? is the second order
resistance.

Now we apply the following transformations (Kumari and Nggly:

n= (a/y)l/sz U = Ufl(mt*)? v = V51(77at*%
w=—(av)2ot*)[f(n,t") + es(n,t7)],
po —p = (pa?/2) [(#* + ¢ + AP + do/dt*)z*

(11)
+ (c¢® + ¢ + AP + do/dt*)cy® + (2v/a)P(n,t*)],
T =T = (Tw = Too) [90(n, ") + (2/L)2g1 (0, t*) + (y/L)?g2(n, t*)]
- (T’w - TOO).Q(nv t*)v
to equations (1)—(5). We get
"+ o(f +es)f" +o(1— f2) + ¢~ (do/dt*) (1= ') +~(1 - f)
+Ap(1— %) = 0f'Jot" — ¢ X [go + (x/1)%g1 + (y/1)%g2] =0, (12)
s" + ¢(f +cs)s" +cp(l—s?) + ¢ (do/dt*) (1 —8') +v(1 - &)
+cpA(1 — 8') — 05 Jot* — ¢~ "x[g0 + (x/1)%g1 + (y/l)Qgg] =0, (13)
1
ﬁgé' + &(f + cs)gy — Dgo/Ot™ =0, (14)
1
B-01 + O(f +es)gy — 20f g1 + B " — 091 /0" =0, (15)
1
P—ng + ¢(f + cs)gh — 26cs' ga + E1¢*s"* — Dgo /Ot = 0, (16)
1 o |
P:§(f+cs)2¢2+(f/+cs’)¢f o /(ercs)qban. a7
0
The initial conditions are
f=1fi, s=5si, go=goi, 91=91, g2=g2 at t*=0, (18)
and the boundary conditions are given by
= /: :/:0’ :]_7 = :0 at :0,
f=f=s=s go g1 =92 n (19)
fr=1, =1, go=91=92=0 as n — oo,
where primes denote the derivative with respeet emd £ = __aL” E| = *E are

CP(Tw_TOC),
Eckert numbersPr = pc,/k is the Prandtl number.

The corresponding steady-state equations are obtainedtipgt* = 0, ¢ = 1,
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0/0t* = 0in equations (12)-(16) and they are given by

f’”—l—(f—i—cs)f”—i— (1_f/2) +’Y(1—f/) —I—A(l—f/Q)

—X[g0 + (z/1)%91 + (y/1)%g2] =0, (20)
"+ (f+es)s" +c(1—5)+y(1—5") +cA(1— f?)

—X[g0 + (x/1)*g1 + (y/1)%g2] =0, (21)
o+ (] + es)gh = 0, 22)
S+ (] + e9)gh —2f g1+ B =0, 23)
S (] + e9)gh — 2659 + Fus'® = 0, (24)
P=3(f + e+ (1 +es')o, (25)

wherey = Gr,/Re2 = gBAT/aU is the mixed convection parameteGr, =
9B(Tw — T )3 /v? is the local Grashof numbeRe,, = U,z /v is the Reynolds number.

The boundary conditions for equations (20)—(24) are giweaduations (18), (19).

Heren andt* are the transformed independent variables; prime denet@gtive
with respect tay; f’ ands’ are the dimensionless velocity components aloragndy di-
rection, respectivelyP is the dimensionless pressuie= (v/a)'/? is the characteristic
length;a andb are the velocity gradients alongandy directions in the potential flow and
¢ = b/ais their ratio. The functior(¢*) should be chosen such that batlanddg/dt*
are continuous functions.

It may be noted that equations (20) and (21)fot A = x = 0 (clear fluid in forced
convection limit) are essentially the same as those of Kuarad Nath [6] but without
magnetic field, those of Howarth [13] for the flow in the nogaint region () < ¢ < 1)
and those of Davey [14] in the saddle-point regiefn (< ¢ < 0). Also equation (20) and
(22) withy = A = x = 0 are identical to those of Kumari and Nath [6] and Hayday and
Bowlus [15] in the region( < ¢ < 1).

Most the dimensional shapes of practical interest lie betwaecylinder ¢ = 0) and
a sphered{ = 1), which are discussed by Kumari and Nath [6].

The quantities of physical interest are the local skin iictcoefficients inc andy
directions and the local heat transfer coefficient in terfite® Nusselt umber.

s = 2(00/02) -0/ pUZ = —==0(E)f"(0.°) (26)
Ciy = 20(00/02).0/pU% = <= (Vi [U)O(E)5" (0,17, (27)
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Nug = —2(0T/02) =0/ (Tw — To)
= 00 + /LRG0 + W/ LP 0,07

1 ’
- 0,1%). 28
Tred (01 (28)
Where
U =az, Vo =by, Re,=Uxzx/v, (29)

hereC, andC', are the local skin friction coefficients inand y directions, respectively;
Nu, is the local Nusselt numbeRe., is the local Reynolds numbel,,, andV,, are the
components of the velocity im andy direction in the potential flow for the steady-state
case. FoC =0,V =0andforC =1,Uy = V.

4 Sef-similar equations

The partial differential equations (1)—(5) with four indemlent variable§, x, y, z) can
be reduced to a system of ordinary differential equatiortkéfvelocity components in
x and y directions in the potential flow vary directly as a &néunction of distance and
inversely as a linear function of time. The velocity compatseare given by

U=az(1-X)"", V=by(l-—x")"" X<l (30)
From the continuity equation, we get thecomponent of the velocity as

w=—a(l+c)(1— M)z (31)
The wall temperatur@, is the value ofl’,, att* = 0 varies

Tw — Too = (Tiwo — Too)(1 — Xt*) 72 (32)

From the Bernoulli equation we get the expression for thesureep as

1
Po—p :§pa2(1 - )\t*)_Q[(l FAF Y+ A2 Fe(c+A+v+ cA)yQ}

(33)
+(1+o)[l+c—A=—v+A(1+0)]2"
We apply the following transformations along with equatig29)—(32)
n=(a/v) (1 —XF)TV22, =at, u=azx(l- X)L (n), (34)
v=by(1—x") "' (), w=—(av)(1 = M) TV2[f(n) + es(n)], (35)
T —Too = (Tw — Too) [90 (1) + (2/1)*92(n) + (/1)*g2(n)]

= (Tw — Ts)g(n), (36)

po—p= lpa (L=X")?[A+ A +7+ D)z +c(c+ A+ 7+ cA)y?
+ (21//(1)(1 — )\t*p(n))} (37)
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to equations (1)—(5) and it is found that (1) is identicaliyisfied and (2)—(5) reduce to

f"'+(f+cs)f"+ (1_f/2) +’Y(1—fl) +A(1—f/2) +)\(1—fl—77f”/2)

= x[g0 + (@/1)%g1 + (y/1)%g2] =0, (38)
s" 4+ (f+es)s" +c(1-57) +v(1=5") + cA(1—57) + AN(1—-5"—ns"/2)
= xclgo + (@/1)%g1 + (y/1)%g2] =0, (39)
1 1
90 + (f +¢s)g0 = 5ng0 — 2A90 = 0, (40)
1 1
P—Tglf +(f+es)gy —2f g1 — 22g1 — §>\779/1 +Ef"™ =0, (41)
1 1
P—TQIQI + (f +cs)gy — 2¢5'g2 — 2XAg1 — §>\779/1 + B8 =0, (42)
1
P = §(f+cs)2—(>\/2)77(f+cs). (43)

The boundary conditions are given by

! /

f=l=s=s=g=g=0, go=1 at n=0, (a4

ff=5=1, go=91=92=0, as 17— oo,
here ) is the dimensionless parameter which characterizes theadisess in the flow
field. For the accelerating flow > 0 and for the decelerating flow < 0. The above
equations reduce to steady-state equationa fer0 which are given by (20)—(24).

It may be noted that equations (38)—(42) foe= A = A = 0 (clear fluid in forced
convection limit) are identical to those of Kumari and Naf \vithout magnetic field.
Also equation (28), (39) and (40) with = A = y = A = 0 are the same as those of
Teipel [16].

The local skin friction coefficients im andy directions and the local Nusselt number
(heat transfer coefficients) are expressed as

Cro = 20(00)02) oo/ pU = \/;_eww*) £7(0,¢), (45)
Cry = 20(00/92) o pU* = e (V/D)OA")s" (0.1°) (46)

Nuz = 71‘(8T/8Z>Z:0/(Tw - TOO)

- —# (990, %) + (5/ L)%, (0, %) + (y/L)2g4(0, )],

1 A
= ———4'(0,%), 47
Rewg( ) (47)

whereRe, = Uz/v.
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5 Method of solution

The partial differential equations governing the semiisinflow, equations (12)-(16)
under boundary conditions (19) and initial conditions (£@%), are solved numerically
using a finite difference scheme developed by Nakamura [H&nce, for the sake of
completeness, we present here only an outline of this metkgdations (12)—(16) are
coupled non-linear parabolic partial differential eqoas in f,s andg;, i = 1,2,3.
First, equations (12) and (13) are linearized and the rieguthird-order linear partial
differential equations are converted into second ordetigdatifferential equations by
substitutingf’ = F ands’ = S. The variablesf ands in equations (14), (16) are
considered as non-linear coefficients and are evaluatedutmerical integration from
F and S. These linear partial differential equations are dissegtiusing the central
difference approximation in the coordinate and backward difference approximation in
the t* coordinate. For the time stefy the discretised equations become tri-diagonal
equations. This system of equations for each time step negjan iterative procedure
due to the presence of non-linear coefficients. Successbsgtitition and iteration are
continued for each time step until convergence is reachepuations (20)—(24) under
boundary conditions (19) were solved by using a double shgahethod in order to
accurately obtain the initial values of the various funetiat timet* = 0.

In a similar manner the systems of equations (38)—(42) wettbbundary conditions
(44) governing the self-similar flow case also been solved.

6 Resultsand discussion

The partial differential equations (12)—(16) governing gemi-similar flow and the or-
dinary differential equations (38)—(42) governing the-sghilar flow have been solved
numerically using the method described earlier. In ordeadses the accuracy of the
method, we have compared the surface shear stressemithy directions (”/(0), s”(0))
for the steady-state case (= 0) wheny = A = x = 0 (clear fluid in forced convection
limit) with those of Kumari and Nath [6], Howarth [13] and Hdgy and Bowlus [15] in
the nodal point region) < ¢ < 1) and with those of Kumari and Nath [6] and Davey [14]
in the saddle-point region{1 < ¢ < 0). The heat transfer parameter(;(0)) for the
nodal-point region wheiy = E; = 0 (without viscous dissipation) are compared with
that of Kumari and Nath [6] and Hayday and Bowlus [15]. In b tases the results are
found to be in excellent agreement. The comparison is ptegém Tables 1-3.
The variation of the surface shear stressesamdy directions,f” (0, t*), s”(0,t*),
and the surface heat transfey’(0,¢*) with time ¢* for the accelerating flowp(t*) =
146t 0 =02,¢c=-0.5,v=0.0,0510,A =00, Pr=07F=FE =0.2,
xz/l = y/l = 0.2, x = 0,0.5 is presented in Figs. 2—4. It is observed that as the first
resistance parametgiincreases botli” (0,¢*) ands” (0, t*) increases and the magnitude
of —¢’(0,t*), which characterize the heat transfer rate decreases. rtdsvihe mixed
convection parametey increases the surface shear stresses and the surfaceansggrtr
all increase. Also both of”(0,¢*) and—g’(0,t*) increases with the increase of tintfe
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whereass” (0, t*) increases up to certain value#fdepends ory and then decreases as
t* increases.

Table 1. Comparison of surface shear stresses for the sstaigycasef” (0), s” (0),
whent* =0,0<c¢<1

Present results Kumari and Nath [6] Howarth [13]
c TS0 70 S0 050
1.0 1.31194  1.31194  1.3153 1.3153 1.312 1.312
0.75 1.28863  1.16433  1.2892 1.1723 1.288 1.164
0.5 1.26687  0.99813  1.2654 1.0142 1.267 0.998
0.25 1.24761  0.80515  1.2453 0.8378 1.247 0.805
0.0 1.23258 0.57049  1.2268 0.5848 1.233 0.570

Table 2. Comparison of surface shear stresses for the sstatgycasef” (0), s (0),
whent*=0,-1<¢<0

Present results Kumari and Nath [6] Davey [14]
c f"(0) s"(0)  f"(0) s"(0) f(0)  $"(0)
-0.1  1.22843 0.45937  1.2282 0.4594 1.2284 0.4594
-0.2  1.22577 0.33533  1.2256 0.3350 1.2258 0.3353
-0.3 1.22501 0.19700 1.2248 0.1973 1.2250 0.1970
-0.4  1.22646 0.04597  1.2262 0.0459 1.2265 0.0460
-0.5 1.23019 -0.11150 1.2304 -0.1113 1.2302 -0.1115
-0.6  1.23593 -0.26659  1.2361 -0.2664 1.2359 -0.2666
-0.7  1.24322 -0.41295 1.2430 -0.4128 1.2432 -0.4130
-0.8 1.25169 -0.54872 1.2519 -0.5485 1.2517  -0.5488
-0.9 1.26115 -0.67521 1.2610 -0.6758 1.2612 -0.6761
-1.0  1.27154 -0.79449 1.2732 -0.8110 1.2729 -0.8112

Table 3. Comparison of surface shear stresses for the sstatgycases-g;(0), when
t*=0,0<c<1

Present results Kumari and Nath [6] Hayday and Bowlus [15]
c Pr=07 Pr=10 Pr=07 Pr=10 Pr=07 Pr=10
1.0 0.66538 1.75208 0.6656 1.7523  0.6654 1.7521
0.75 0.62308 1.64171 0.6233 1.6419 0.6231 1.6417
0.5 0.57967 153140 0.5798 1.5311 0.5797 1.5314
0.25 0.53621 1.42634 0.5358 1.4265 0.5362 1.4263
0.0 0.49587 1.33880 0.4957 1.3386  0.4959 1.3389
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The variation of the surface shear stresses amdy directions,f” (0, t*), s”(0,t*)
and the surface heat transfeg’(0, t*), with the ratio velocity gradients in the free stream
¢ (nature of the stagnation point) fot = 1.5, ¢(t*) = 1 + §t*, § = 0.2, v, A =
0.0,0.5,1.0, F = F; = 0.2, Pr = 0.7, 2/l = y/l = 0.2, x = 0,0.5, 1, 3 are presented
in Figs. 5-7. It can be seen from Fig. 5 that the shear stréissesdlirections,f”(0,¢*)

s (0t)

£ (0.t

¥=0.0,0.5,1.0

0.0
0.0 1.0 e 20 3.0 0.0 1.0 e 20 3.0
Fig. 2. Variation of the surface shear stresBig. 3. Variation of the surface shear stress
in z-direction " (0, ¢*) with time ¢t* for the in y-direction s (0,¢*) with time ¢* for the
accelerating flows(t*) = 1 + 6t*, Pr = accelerating flowp(t*) = 1 + 6t*2, Pr =
0.7, = 02, ¢c = —05, A = 00with 07,0 = 02, ¢ = —-05, A = 0.0 with
various values ofy and. various values ofy and.

0.75

0.73

0.71

0.69

0.67

£7(0,t)

0.65

0.63

g (0,t)

0.61

x=4).0,0.5, 1.0, 3.0

1.4 | ——y=0.0
—-—-y=0.5

- - -y=1.0

0.59
1.2 | t*=1.5

0.57

N
0.55 1.0

0.0 1.0 e 2.0 3.0 : : c

Fig. 4. Variation of the surface heat transfeFig. 5.  Variation of the surface shear
—g'(0,t*) with time ¢* for the accelerating stress inz-direction f”(0,¢*) with ¢ for the
flow ¢(t*) = 1+ 6t*%, Pr = 0.7, = 0.2, accelerating flows(t*) = 1 + 6t*?, Pr =

¢ =-05 A =00 z/L =y/L =01 0.70=021t" =15 A=0.0with various
E = E1=0.2 with various values ofy and . values ofy andy.
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is rather insensitive to the changedn This is similar to the forced convection case
increase with the first and second order resistances andiieg wonvection parameter
also increases. Similar trend has been observed by KumdrNath [6]. Hover, the
effect of bothy and~ parameter is significant. Fig. 6 indicate that the surfa@ash
stresses iy-directions,s” (0, t*), continuously increases with increasingnd vanishes
atc = —0.7536 for x = 0 (forced convection limit) and the reverse flow occurs in the
region 1 < ¢ < —0.7536). Wheny > 0 there is no reverse flow. Therefore, the
increase in the free stream velocity or (and) in the buoydorme delay or prevent the
occurrence of flow reversal. As illustrated in Fig. 7 it is eb&d that, the surface heat
transfer—g’(0, t*), decreases with decreasingy, v until at some negative value of
where the flow is revised. Consequently, the heat transfelimareases as y, -y further
increases.

3.0 1.1
t=1.5 =
25 10 |
2.0 t*=1.5
09 [

-9'(0,t")

o
S 10
‘@ —=0.0
05 — -y=05
- - -y=1.0
0.0 x=0.0,0.5, 1.0, 3.0
0.5
1.0 -05 00 ., 05 1.0

Fig. 6. \Variation of the surface shearFig. 7. Variation of the surface heat transfer

stress iny-direction s’ (0,¢*) with ¢ for the —g’(0,¢*) with ¢ for the accelerating flow

accelerating flowp(t*) = 1+ 6t*%, Pr = ¢(t*) = 1+ 6t*%, Pr = 0.7, § = 0.2,

0.7,6 =0.2,t* = 1.5, A = 0.0 with various t* = 1.5, ¢ = —0.5, A = 0.0 with various
values ofy andy. values ofy andy.

The effects of the second order resistaficen the surface shear stresses iandy
directions,f”(0,t*), s”(0,¢*) and the surface heat transfey’(0,¢*), are illustrated in
Figs. 8-10. The second order parametdnas the same trend as the first order parameter
~ as discussed in Figs. 5-7.

The velocity profiless’(n, t*) for ¢(t*) = 1 + 6t*2, 6 = 0.2, t* = 1.5, Pr = 0.7,
¢ = —0.5 with various values ofy, A andy are shown in Fig. 11. It is observed that the
maghnitude and the region of reverse flow decrease with iszrgdhe mixed convection
parametery and increase with increasing the second order resistamaepgerA while
there is no reverse flow for all values of the first order resise parametey. Since
the velocity profiles inc-direction, f/(n, t*), and the temperature profilegy, t*), show
usual features of boundary layer flows [13—-15], they are howvs here.
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Fig. 8. \Variation of the surface shearFig. 9. Variation of the surface shear
stress inz-direction f”/(0,t*) with ¢ for the stress iny-direction s” (0,¢*) with ¢ for the
accelerating flows(t*) = 1 + 6t**, Pr = accelerating flows(t*) = 1 + 6t*>, Pr =
0.7,6§ = 0.2,¢t" = 1.5, v = 0.0 with various 0.7, 6 = 0.2, t* = 1.5, v = 0.0 with various

values ofA andy. values ofA andy.
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Fig. 10. Variation of the surface heat transfeFig. 11. Effect of the first and second

—g'(0,t*) with ¢ for the accelerating flow resistance parametegsand A on the velocity

o(t") = 1+ 52, Pr = 0.7, § = 0.2, profiles iny-direction,s’ (n, t*), with ¢(t*) =

t* = 1.5, v = 0.0 with various values oA 1 + 5t*2, Pr = 0.7, § = 0.2, t* = 1.5,
andy. ¢ = —0.5andx = 0.0,0.5.

7 Conclusions

Equations of motion and energy governing the unsteady moadrection flow of a
viscous fluid in near a stagnation point of a general thresedsional body embedded in a
porous media are integrated. The velocity in the potential i§ assumed to vary arbitrary
with time. The non-Darcy effects including convective, hdary and inertial effects are
included in the analysis. Both nodal-point region and saqidiint region are consid-
ered. The semi-similar solutions of the momentum and eneggations are obtained
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numerically using finite difference method. Also a self-$amsolution is found when the
velocity in the potential flow and the wall temperature vaithvime in particular manner.
Many results are obtained and a representative set is depigraphically to illustrate
the influence of the physical parameters on the surface stezsses and the surface
heat transfer. Whenever possible, these results are cechpath available numerical
solutions and found to be highly accurate. The results atdithat significant changes
occur in the shear stresses and the surface heat transfea. deotain negative value of
the parameter, flow reversal takes place in the velocity componeng-direction. The
buoyancy force or (and) the accelerating free stream wgloends to delay or prevent
flow reversal. The presence of the buoyancy force and the sw@lirix increases the shear
stress inc andy directions and the surface heat transfer.
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