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Abstract. Numerical solutions of, unsteady laminar free convection from an
incompressible viscous fluid past a vertical cone with uniform surface heat flux is
presented in this paper. The dimensionless governing equations of the flow that are
unsteady, coupled and non-linear partial differential equations are solved by an efficient,
accurate and unconditionally stable finite difference scheme of Crank-Nicolson type. The
velocity and temperature fields have been studied for various parameters Prandtl number
and semi vertical angle. The local as well as average skin-friction and Nusselt number are
also presented and analyzed graphically. The present results are compared with available
results in literature and are found to be in good agreement.
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Nomenclature

f ′′(0) local skin-friction in [9] Pr Prandtl number
f ′(η) dimensionless velocity in q uniform wall heat flux per unit area

X-direction in [9] R dimensionless local radius of the cone
GrL Grashof number r local radius of the cone
Gr∗L modified Grashof number T ′ temperature
g acceleration due to gravity T dimensionless temperature
k thermal conductivity t′ time
L reference length t dimensionless time
Nu′

x local Nusselt number U dimensionless velocity inX-direction
Nu′

L average Nusselt number u velocity component inx-direction
NuX non-dimensional local Nusselt V dimensionless velocity inY -direction

number v velocity component iny-direction
Nu non-dimensional average NusseltX dimensionless spatial co-ordinate

number x spatial co-ordinate along cone generator
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Y dimensionless spatial co-ordinate along
the normal to the cone generator

y spatial co-ordinate along the
normal to the cone generator

Greek symbols
α thermal diffusivity φ semi vertical angle of the cone
β volumetric thermal expansion µ dynamic viscosity
η dimensionless independent variable in [9]ν kinematic viscosity
∆t dimensionless time-step τ ′

x local skin-friction
∆X dimensionless finite difference grid τX dimensionless local skin-friction

size inX-direction τ ′

L average skin-friction
∆Y dimensionless finite difference grid τ dimensionless average skin-friction

size inY -direction θ temperature in [9]

Subscripts

w condition on the wall ∞ free stream condition

1 Introduction

Natural convection flows under the influence of gravitational force have been investigated
most extensively because they occur frequently in nature aswell as in science and en-
gineering applications. When a heated surface is in contactwith the fluid, the result of
temperature difference causes buoyancy force, which induces the natural convection. Re-
cently heat flux applications are widely using in industries, engineering and science fields.
Heat flux sensors can be used in industrial measurement and control systems. Examples
of few applications are detection fouling (Boiler Fouling Sensor), monitoring of furnaces
(Blast Furnace Monitoring/General Furnace Monitoring) and flare monitoring. Use of
heat flux sensors can lead to improvements in efficiency, system safety and modeling.

Several authors have developed similarity solutions for the axi-symmetrical prob-
lems of natural convection laminar flow over vertical cone insteady state. Merk and Prins
[1, 2] developed the general relation for similar solutionson iso-thermal axi-symmetric
forms and they showed that the vertical cone has such a solution in steady state. Further,
Hossain et al. [3] have discussed the effects of transpiration velocity on laminar free
convection boundary layer flow from a vertical non-isothermal cone and concluded that
due to increase in temperature gradient, the velocity as well as the surface temperature
decreases. Ramanaiah et al. [4] discussed free convection about a permeable cone and
a cylinder subjected to radiation boundary condition. Alamgir [5] has investigated the
overall heat transfer in laminar natural convection from vertical cones using the integral
method. Pop et al. [6] have studied the compressibility effects in laminar free convection
from a vertical cone. Recently, Pop et al. [7] analyzed the steady laminar mixed convec-
tion boundary-layer flow over a vertical isothermal cone forfluids of anyPr for the both
cases of buoyancy assisting and buoyancy opposing flow conditions. The resulting non-
similarity boundary layer equations are solved numerically using the Keller-box scheme
for fluids of anyPr from very small to extremely large values (0.001 ≤ Pr ≤ 10000).
Takhar et al. [8] discussed the effect of thermo physical quantities on the free convection
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flow of gases over iso-thermal vertical cone in steady state,in which thermal conductivity,
dynamic viscosity and specific heat at constant pressure were to be assumed a power law
variation with absolute temperature. They concluded that the heat transfer increases with
suction and decreases with injection.

Recently theoretical studies on laminar free convection flow of axi-symmetric bodies
have received wide attention especially in case of uniform and non-uniform surface heat
flux. Similarity solutions for the laminar free convection from a right circular cone
with prescribed uniform heat flux conditions for various values of Prandtl number (i.e.
Pr = 0.72, 1, 2, 4, 6, 8, 10, 100) and expressions for both wall skin friction and wall
temperature distributions atPr → ∞ were presented by Lin [9]. Na et al. [10, 11]
studied the non-similar solutions for transverse curvature effects of the natural convection
flow over a slender frustum of a cone. Later, Na et al. [12] studied without transverse
curvature effects on the laminar natural convection flow over a frustum of a cone. In
above investigations the constant wall temperature as wellas the constant wall heat flux
was considered. The effects of amplitude of the wavy surfaces associated with natural
convection over a vertical frustum of a cone with constant wall temperature or constant
wall heat flux was studied by Pop et al. [13]. Rama Subba Reddy Gorla et al. [14]
presented numerical solution for laminar free convection from a vertical frustum of a
cone without transverse curvature effect (i.e. large cone angles when the boundary layer
thickness is small compared with the local radius of the cone) to power-law fluids.

Further, Pop et al. [15] focused the theoretical study on theeffects of suction or
injection on steady free convection from a vertical cone with uniform surface heat flux
condition. Kumari et al. [16] studied free convection from vertical rotating cone with uni-
form wall heat flux. Hasan et al. [17] analyzed double diffusion effects in free convection
under flux condition along a vertical cone. Hossain et al. [18, 19] studied non-similarity
solutions for the free convection from a vertical permeablecone with non-uniform surface
heat flux and the problem of laminar natural convective flow and heat transfer from a
vertical circular cone immersed in a thermally stratified medium with either a uniform
surface temperature or a uniform surface heat flux. Using a finite difference method, a
series solution method and asymptotic solution method, thesolutions have been obtained
for the non-similarity boundary layer equations.

Many investigations have been done free convection past a vertical cone/frustum of
cone in porous media. Yih [20, 21] studied in saturated porous media combined heat
and mass transfer effects over a full cone with uniform wall temperature/concentration or
heat/mass flux and for truncated cone with non-uniform wall temperature/variable wall
concentration or variable heat/variable mass flux. Recently Chamkha et al. [22] studied
the problem of combined heat and mass transfer by natural convection over a permeable
cone embedded in a uniform porous medium in the presence of anexternal magnetic field
and internal heat generation or absorption effects with thecone surface is maintained
at either constant temperature, concentration or uniform heat and mass fluxes. Grosan
et al. [23] considering the boundary conditions for either avariable wall temperature or
variable heat flux studied the similarity solutions for the problem of steady free convection
over a heated vertical cone embedded in a porous medium saturated with a non-Newtonian
power law fluid driven by internal heat generation. Wang et al. [24] studied the steady
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laminar forced convection of micro polar fluids past two-dimensional or axi-symmetric
bodies with porous walls and different thermal boundary conditions (i.e. constant wall
temperature/constant wall heat flux). Further, solutions of the transient free convection
flow problems over a vertical/impulsively started verticalplate, cylinder/moving cylinder
and inclined plate have been obtained by following investigators Soundalgekar et al.
[25], Muthucumaraswamy et al. [26, 27] and Ganesan et al. [28–30] using implicit finite
difference method. Recently, Bapuji et al. [31] discussed numerical solutions of flow
past plane/axi-symmetrical shape bodies. Also, Bapuji et al. [32, 33] solved numerical
solutions of problem namely laminar natural convection from an isothermal and non-
isothermal vertical cone in transient state using implicitfinite difference method.

The present investigation, namely unsteady laminar free convection from a vertical
cone with uniform surface heat flux has not received any attention. Hence, the present
work is considered to deal with transient free convection vertical cone with uniform
surface heat flux. The governing boundary layer equations are solved by an implicit finite
difference scheme of Crank-Nicolson type with various parametersPr andφ. In order
to check the accuracy of the numerical results, the present results are compared with the
available results of Lin [9], Pop et al. [15], Na et al. [12] and are found to be in excellent
agreement.

2 Mathematical analysis

An axi-symmetric transient laminar free convection of a viscous incompressible flow past
vertical cone with uniform surface heat flux is considered. It is assumed that the viscous
dissipation effects and pressure gradient along the boundary layer are negligible. Also,
assumed that the cone surface and the surrounding fluid that is at rest are with the same
temperatureT ′

∞
. Then at timet′ > 0, it is assumed that heat is supplied from cone

surface to the fluid at uniform rateq and it is maintained. The co-ordinate system chosen
(as shown in Fig. 1) such thatx measures the distance along surface of the cone from the

Fig. 1. Physical model and co-ordinate system.
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apex (x = 0) andy measures the distance normally outward. Here,φ is the semi vertical
angle of the cone andr is the local radius of the cone. The fluid properties assumed
constant except for density variations, which induce buoyancy force and it plays main role
in free convection. The governing boundary layer equationsof continuity, momentum and
energy under Boussinesq approximation are as follows:

equation of continuity

∂

∂x
(ru) +

∂

∂y
(rv) = 0, (1)

equation of momentum

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= gβ(T ′

− T ′

∞
) cosφ + ν

∂2u

∂y2
, (2)

equation of energy

∂T ′

∂t′
+ u

∂T ′

∂x
+ v

∂T ′

∂y
= α

∂2T ′

∂y2
. (3)

The initial and boundary conditions are

t′ ≤ 0: u = 0, v = 0, T ′ = T ′

∞
for all x, y,

t′ > 0: u = 0, v = 0,
∂T ′

∂y
=

−q

k
at y = 0,

u = 0, T ′ = T ′

∞
at x = 0,

u → 0, T ′
→ T ′

∞
as y → ∞.

(4)

The physical quantities of interest are the local skin friction τ ′

x and the local Nusselt
numberNu′

x are given respectively by,

τ ′

x = µ

(

∂u

∂y

)

y=0

, Nu′

x =
x

T ′

w − T ′

∞

(

−
∂T ′

∂y

)

y=0

. (5)

Also, the average skin frictionτ ′

L and the average heat transfer coefficienth over the cone
surface are given by

τ ′

L =
2µ

L2

L
∫

0

x

(

∂u

∂y

)

y=0

dx, h =
2k

L2

L
∫

0

x

T ′

w − T ′

∞

(

−
∂T ′

∂y

)

y=0

dx. (6)

The average Nusselt number given by

Nu′
L =

Lh

k
=

2

L

L
∫

0

x

T ′

w − T ′

∞

(

−
∂T ′

∂y

)

y=0

dx. (7)
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Further, we introduce the following non-dimensional variables:

X =
x

L
, Y =

y

L
Gr

1/5

L , R =
r

L
,

U =

(

L

ν
Gr

−2/5

L

)

u, V =

(

L

ν
Gr

−1/5

L

)

v,

t =

(

ν

L2
Gr

2/5

L

)

t′, T =
T ′ − T ′

∞

qL/k
Gr

1/5

L ,

(8)

whereGrL = gβqL4/ν2k is the Grashof number based onL, Pr = ν/α is the Prandtl
number andr = x sin φ. Equations (1), (2) and (3) are reduced to the following non-
dimensional form:

∂

∂X
(RU) +

∂

∂Y
(RV ) = 0, (9)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= T cosφ +

∂2U

∂Y 2
, (10)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr

∂2T

∂Y 2
. (11)

The corresponding non-dimensional initial and boundary conditions are

t ≤ 0: U = 0, V = 0, T = 0 for all X, Y,

t > 0: U = 0, V = 0,
∂T

∂y
= −1 at Y = 0,

U = 0, T = 0 at X = 0,

U → 0, T → 0 as Y → ∞.

(12)

The local non-dimensional skin-frictionτX and local Nusselt numberNuX given by (5)
become

τX = Gr
3/5

L

(

∂U

∂Y

)

Y =0

, NuX =
X Gr

1/5

L

TY =0

(

−
∂T

∂Y

)

Y =0

. (13)

Also, the non-dimensional average skin-frictionτ and the average Nusselt numberNu
are reduced to

τ = 2Gr
3/5

L

1
∫

0

X

(

∂U

∂Y

)

Y =0

dX,

Nu = 2Gr
1/5

L

1
∫

0

X

TY =0

(

−
∂T

∂Y

)

Y =0

dX.

(14)
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3 Solution procedure

The unsteady, non-linear, coupled and partial differential equations (9), (10) and (11)
with the initial and boundary conditions (12) are solved by employing a finite differen-
ce scheme of Crank-Nicolson type which is discussed by many authors Soundalgekar
and Ganesan [25], Ganesan and Rani [28], Muthucumaraswamy and Ganesan [26, 27],
Ganesan and Palani [30]. Recently, the heat transfer problem deals with, unsteady free
convection flow past a vertical cone are solved numerically by an implicit finite-difference
method of Crank-Nicolson type as described in detail by Bapuji et al. [32,33]. The finite
difference scheme of dimensionless governing equations isreduced to tri-diagonal system
of equations and is solved by Thomas algorithm as discussed in Carnahan et al. [34].
The region of integration is considered as a rectangle withXmax (Xmax = 1) and
Ymax (Ymax = 26) where corresponds toY = ∞ which lies very well out side both
the momentum and thermal boundary layers. The maximum ofY was chosen as26,
after some preliminary investigation so that the last two boundary conditions of (12) are
satisfied within the tolerance limit10−5. The mesh sizes have been fixed as∆X = 0.05,
∆Y = 0.05 with time step∆t = 0.01. The computations are carried out first by reducing
the spatial mesh sizes by 50 % in one direction, and later in both directions by 50 %. The
results are compared. It is observed in all cases, that the results differ only in the fifth
decimal place. Hence, the choice of the mesh sizes seems to beappropriate. The scheme
is unconditionally stable. The local truncation error isO(∆t2 +∆Y 2 +∆X) and it tends
to zero as∆t, ∆Y and∆X tend to zero. Hence, the scheme is compatible. Stability and
compatibility ensure the convergence.

4 Results and discussion

In order to prove the accuracy of our numerical results, the present results in steady state
at X = 1.0 obtained and considering the modified Grashof numberGr∗L = GrL cosφ,
(i.e. the numerical solutions obtained from the equations (9)–(11) are independent of semi
vertical angle of the coneφ) are compared with available similarity solutions in literature.
The velocity and temperature profiles of the cone forPr = 0.72 are displayed in Fig. 2
and the numerical values of local skin-frictionτX , temperatureT , for different values of
Prandtl number are shown in Table 1 are compared with similarity solutions of Lin [9] in
steady state using suitable transformation (i.e.Y = (20/9)1/5η, T = (20/9)1/5(−θ(0)),
U = (20/9)3/5f ′(η), τX = (20/9)2/5f ′′(0)). It is observed that the results are in good
agreement with each other. It is also noticed that the present results agree well with those
of Pop and Watanabe [15], Na and Chiou [12] (as pointed out in Table 1).

In Figs. 3–6, transient velocity and temperature profiles are shown atX = 1.0, with
various parametersPr andφ. The value oft with star (∗) symbol denotes the time taken to
reach steady state. In Fig. 3, transient velocity profiles are plotted for various values ofφ
andPr = 0.71. Whenφ increases near the cone apex, it leads to decrease in the impulsive
force along the cone surface. Hence, the difference betweentemporal maximum velocity
values and steady state values decreases with increasing the values of semi vertical angle
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Table 1. Comparison of steady state local skin-friction andtemperature values at
X = 1.0 with those of Lin [9]

Temperature Local skin friction
Lin results [9] Present results Lin results [9] Present results

Pr −θ(0) −( 20

9
)1/5θ(0) T f ′′(0) ( 20

9
)2/5f ′′(0) τX

1.52278 0.88930
0.72 1.7864 1.7796 1.2240 1.21541.52278∗ 0.88930∗

1.6327
1 1.39174 1.6263 0.78446 1.0797 1.0721

1.6329∗∗

2 1.16209 1.3633 1.3578 0.60252 0.8293 0.8235
4 0.98095 1.1508 1.1463 0.46307 0.6373 0.6328
6 0.89195 1.0464 1.0421 0.39688 0.5462 0.5423
8 0.83497 0.9796 0.9754 0.35563 0.4895 0.4859

10 0.79388 0.9314 0.9272 0.32655 0.4494 0.4460
100 0.48372 0.5675 0.5604 0.13371 0.1840 0.1813

∗Values taken from Pop and Watanabe [15] when suction/injection is zero.
∗∗Values taken from Na and Chiou [12] when solutions for flow over a full cone.

of the coneφ. The tangential component of buoyancy force reduces as the semi vertical
angle increases. This causes the velocity to reduce as angleφ increases. The momentum
boundary layer becomes thick, and the time taken to reach steady state increases for
increasingφ. In Fig. 4, transient temperature profiles are shown for different values
of φ with Pr = 0.71. It is observed the temperature and boundary layer thickness
increase with increasingφ. The difference between temporal maximum temperature
values and steady state values decrease with increasingφ. In Figs. 5 and 6, transient
velocity and temperature profiles are plotted for various values of Pr with φ = 15◦.
Viscous force increases and thermal diffusivity reduces with increasingPr, causing a
reduction in the velocity and temperature as expected. It isobserved from the figures that
the difference between temporal maximum values and steady state values are reduced
whenPr increases. It is also noticed that the time taken to reach steady state increases
and thermal boundary layer thickness reduces with increasingPr.

The study of the effects of the parameters on local as well as the average skin-friction,
and the rate of heat transfer is more important in heat transfer problems. The derivatives
involved in equations (13) and (14) are obtained using five-point approximation formula
and then the integrals are evaluated using Newton-Cotes closed integration formula. The
variations of local skin-frictionτX and local Nusselt numberNuX for different values
of φ, at various positions on the surface of the cone (X = 0.25 and1.0) in the transient
period are shown in Figs. 7 and 8 respectively. It is observedfrom the Fig. 7 that local
skin-friction τX decreases with increasingφ, due to the fact that velocity decreases with
increasing angleφ as shown in Fig. 3 and the influence ofφ on skin frictionτX increases
asφ increases in the transient period along the surface of the cone moving away from
apex. Fig. 8 reveals that local Nusselt numberNuX values decrease with increasing
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Fig. 2. Comparison of steady state tempe-
rature and velocity profiles atX = 1.0.

Fig. 3. Transient velocity profiles atX=1.0
for different values ofφ.

Fig. 4. Transient temperature profiles at
X = 1.0 for different values ofφ.

Fig. 5. Transient velocity profiles atX=1.0
for different values ofPr.
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Fig. 6. Transient temperature profiles at
X = 1.0 for different values ofPr.

Fig. 7. Local skin friction atX=0.25 and
1.0 for different values ofφ in transient

state.

Fig. 8. Local Nusselt number atX = 0.25
and1.0 for different values ofφ in transient

state.

Fig. 9. Local skin friction atX = 0.25 and
1.0 for different values ofPr in transient

state.
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Fig. 10. Local Nusselt number atX=0.25
and 1.0 for different values ofPr in

transient state.

Fig. 11. Average skin friction for different
values ofφ andPr in transient state.

Fig. 12. Average Nusselt number for diffe-
rent values ofφ andPr in transient state.

Fig. 13. Local Nusselt number, local skin
friction at X = 1.0 for different values of

Pr in steady state.
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angleφ as temperature distribution increases withφ which is shown in Fig. 4. It is
observed that this effect is less near the cone apex. The variation of the local skin-friction
τX and the local Nusselt numberNuX in the transient regime is displayed in Figs. 9 and
10 for different values ofPr and at various positions on the surface of the cone (X = 0.25
and1.0). The local wall shear stress decreases asPr increases because velocity decreases
with an increasing value ofPr as shown in Fig. 5. In transient period initially local
skin friction almost constant through out the surface and gradually increases with time
along the surface until it reaches steady state. Local Nusselt numberNuX increases with
increasingPr and it is clear from the Fig. 10, that decreasing rate ofNuX increases when
the distance increases from the cone vertex along the surface of the cone.

The influence ofφ andPr on average skin-frictionτ transient period are shown
in Fig. 11 and it is more for smaller values of anglesφ and lower values ofPr. Fig. 12,
displays the influence of average Nusselt numberNu in transient period for various values
of Pr andφ. It is clear thatNu is more for smaller values ofφ and larger values ofPr.
Finally, steady state local skin-frictionτX and local Nusselt numberNuX profiles are at
X = 1.0 plotted in Fig. 13, against semi vertical angle of the coneφ for various values
of Pr. It is observed that the local shear stressτX increases asPr or φ decreases, local
Nusselt numberNuX reduces asφ increases orPr decreases.

5 Conclusions

A numerical study has been carried out for the unsteady laminar free convection from
a vertical cone with uniform surface heat flux. The dimensionless governing boundary
layer equations are solved by an implicit finite-differencemethod of Crank-Nicolson type.
Present results are compared with available results in literature and are found to be in good
agreement. The following conclusions are made:

1. The time taken to reach steady state increases with increasingPr or φ.

2. The velocity reduces when the parametersφ, Pr are increased.

3. Temperature increases with increasingφ and decreasingPr values.

4. Momentum boundary layers become thick whenφ is increased.

5. Thermal boundary layer becomes thin whenφ is reduced orPr is increased.

6. The difference between temporal maximum values and steady state values (for both
velocity and temperature) become less whenPr or φ increases.

7. The influence ofφ over the local skin frictionτX and local Nusselt numberNuX are
less near the vertex of the cone and then increases slowly with increasing distance
from the vertex.

8. Local and average skin-frictions increases when the value ofφ or Pr is reduced.

9. Local and average Nusselt numbers reduce with increasingφ or decreasingPr.
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