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Abstract. A three-trophic model for marine community is proposed amgstigated
by means of numerical bifurcation analysis. The proposedahbased on a modified
version of the Leslie-Gower scheme, incorporates mutuelfierence in all the three
populations and generalizes several other known modelgiedological literature. We
investigate the dynamical behavior of the model system bgidering the Holling type Il
functional response of toxin liberation process. Bifui@matiagram and two-dimensional
parameter scan suggest that chaotic dynamics is robustitdioas in toxin production
by phytoplankton. Our study suggests that toxic substareteased by TPP population
may act as bio-control by changing the state of chaos to ofidex mutual interference
also induces chaos and acts as both stabilizing and dézitadpilactors.

Keywords: chaotic dynamics, toxin producing phytoplankton, aqusggtem, functional
response.

1 Introduction

Ecological systems have all the necessary character{sticginearity, high-dimensions,
etc.) to support chaotic dynamics [1]. Chaotic dynamics lémd cycles are common
in tri-trophic food chain model and are of common interesbah the theoretical and
experimental population biologists/ecologists. To astbe ecological implications of
chaotic dynamics in different natural system, it is impottto explore changes in the
dynamics when structural assumptions of the system ared:afine such approach to the
study of the dynamics of marine ecological community is d@sd web and the coupling
of interacting species with each other [2]. Upadhyay and[8airovided new examples
of a chaotic population system in a simple tri-trophic foddhin with Holling type I
functional response. Aziz- Alaoui [4] revisited the Upadiyand Rai model and found
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that the chaotic dynamics is observed via sequences ofdddabling bifurcation of
limit cycles which however suddenly break down and reveigimg rise to a sequence
of period-halving bifurcation leading to limit cycles. Ugtayay and Chattopadhyay [5]
modified the model of Upadhyay and Rai [3], by introducing atvamortality term in
middle predator and interpreted the system for aquaticrenmient consisting of TPP-
Zooplankton-Molluscs food chain model. They observed #maincrease in the strength
of toxic substance released by toxin producing phytoplamigopulation reduces the
propensity of chaotic dynamics and changes the state ofsdiedomit cycle and finally
settles down to stable focus. Ruxton [6] also showed thagyktem of linked populations
has a stabilizing effect on tri-trophic food chain modelrtRar study [7] reveals that the
rate of toxin production by TPP plays an important role fomtcolling oscillations in the
plankton system.

Many studies investigated the effect of mutual interfeeenn the population dy-
namics. DeAngelis et al. [8] studied the dynamical propesrtif a continuous-time au-
tonomous model system incorporating their interferencdehorl his model was studied
by Hwang [9] to establish that the periodic orbits, if theystxare unique. The models
considered for interference have different mathematigptessions and different con-
ceptual foundations [10]. From theoretical studies andigogb evidences, a consensus
has been reached to conclude that interference has a Atapilnfluence on population
dynamics [11], although Hassell and May [12] pointed out thare was an upper limit
on the interference constant beyond which the dynamicshesanstable. Predator-prey
models incorporating mutual interference were first prepdes Hassell [13] and Rogers
and Hassell [14]. A model incorporating density-dependiesstth rates was considered
by Levin [15]. Freedman and Rao [16] considered the Gause-tyodel incorporating
mutual interference among predators and a density-depépdedator death rate. Erbe
and Freedman [17] applied it to the simple food chain, matiéle Lotka -Volterra
dynamics. Here, | have used the concept for modelling it witidified version of Leslie-
Gower scheme in a simple food-chain model modelling margusgstems. Motivated
by the above studies, we show that the chaotic behaviourszsided by Upadhyay and
Rai [3, 18] could be controlled by an auto-control mechanism

In this paper, we propose a generalized model of aquatiogimal system by in-
troducing mutual interference in all the three populatjcas extra mortality term in
zooplankton population and also taking into account théntblzeration process of TPP
population. This model generalizes several other knowneisonh the literature like
Upadhyay and Rai model [3, 18] and Hastings and Powell mddgl [One of the main
objectives of this study is to examine the roles of mutuatrig@rence parameters and
the parametef, the rate of toxin release by TPP population on the dynamidhe
model system. Different types of toxin release functiiiz;), which represents the
toxin liberation process of TPP population is consideredhe Tesults reported in this
paper are only for Holling type Il functional response.

This paper is organized as follows: in Section 2, we pregentietails of the model
system. The methodology used is presented in Section 3,Ipousein selecting the
parameter values to perform simulation experiments. Nigalresults are summarized
in Section 4 and conclusions are presented in Section 5.
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2 Themathematical mode

Consider a situation where a prey populatigris predated by individuals of a population
x2. The population:,, in turn serves as a favourite food for individuals of a pepioh
x3. This interaction is represented by the following systeneyp- specialist predator —
generalist predator interaction) of ordinary differehéiquations:

drq 1 mi
— = g1(x1, @2, 23) = a121 — blx% — wo(m) ', (1a)
dxo T1 m1
E = 92(551; 5527353) = —agx2 + Wy <m> 33;”2
mo
—wa [ —Z2 ) 2T — Ofy (21, (1b)
22+ Dy

dx:
d—td = g3(z1, 22, x3) = cxy® — w3 fa(x2)25?, (1c)

wherem,; > 0 fori = 1,2,3,a1,as2,b1,0,wy, wy, ws, ws, ¢ andDo, D1, Dy, D3, Dy are
the positive constants arfd € C°(R..) fori = 1,2. The parametens,; fori = 1,2, 3 are
mutual interference parameters that model the intraspedfnpetition among predators
when hunting for prey [13,16,17, 20, 21].

In this model, TPP population (prey) of size serves as the only food for the
specialist predator (zooplankton) population of size This zooplankton population,
in turn, serves as a favorite food for the generalist predatolluscs) population of size
x3. The equations for rate of change of population size for jaray specialist predator
have been written following the Volterra scheme that is,dpter population dies out
exponentially in the absence of its lone prey. The inteoactietween this predator
xo and the generalist predatag is modeled by the modified version of the Leslie-
Gower scheme, where the loss in a predator population isoptiopal to the reciprocal
of per capita availability of its most favorite food.; is the intrinsic growth rate of the
prey populationz;, as is the intrinsic death rate of the predator populatignin the
absence of the only foad , c measures the rate of self-reproduction of generalist poeda
x3, wp, Wy, we, ws are the maximum values which per capita growth rate camattai
measures the strength of intra-specific competition ambegridividuals of the prey
speciesr;. Dy and D, quantify the extent to which environment provides protattio
the preyx; and may be thought of as a refuge or a measure of the effeetigenf the
prey in evading a predator’s attack; is the value ofc, at which per capita removal rate
of zo becomesuv, /2. Form, = 1 the coefficientvy/(x1 + Do), of the third term on the
right hand side of (1a) is obtained by considering the prébafiect of the density of the
prey’s population on predators attack rate. If this coedfitis multiplied byz; (the prey
population at any instant of time), it gives the attack ratéhe prey per predator. Denote
p(Zl) = ’LU()Il/(Zl + D()), whenz; — oo, p(l‘l) — wp Which is the maximum value
that it can reach. Some aquatic organisms condition thediumeby releasing substances
that stimulate growth of species, which have similar gematike-up. Sparse populations
rarely provide sufficient opportunities for social inteian necessary for reproduction.
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Here, f1(z1) represents the toxin liberation process of TPP populatwnwhich the
mortality of zooplankton increases and as a result, themgamessure of zooplankton on
TPP population decreases. The paramgigthe rate of toxin release by TPP population.
ws Measures the limitation on the growth of the generalistguad:; by its dependence

on per capita availability of its most favorite prey represented by the functigf (x2).
fa(za) = +D where D3 represents the residual lossag population due to severe
scarcity of |ts favourite food,. Equations (1a)—(1c) describe the proposed model system.

A model system could be more realistic from ecological pofrtiew and interesting
from mathematical point of view if one considers differerggator’s functional response
and compares the dynamic effects of these functional regsonSince functional re-
sponse encapsulates attributes of both prey and predatoghij so handling time, search
efficiency, encounter rate, prey escape ability, etc. shaliér, in general, the functional
responses [22]. Therefore, predator’s functional respomasy be different when a partic-
ular predator preys different prey having different escalpiéity and if a particular prey
is predated by different predators having different humaility. The structure of prey
habitat is also responsible to alter the functional respomfikus, a predator which follows
type Il functional response in homogeneous habitat magvidtype 11l in a heterogeneous
medium. Anderson [23] experimentally observed in a kelpsbasdp parch predator-
prey interaction for none and medium amounts of habitattire, the type Il functional
response had a better fit than linear models. However, fohitjieest amount of habitat
structure a type Il functional response had a better fit.ehdity, the raptorial behaviour
of copepods is highly complex and exhibits a hunting behavja4] and hence type |
or type Il is an appropriate choice. To characterize iategf between phytoplankton
and zooplankton populations in the presence of toxic chalptiolling type Il functional
responses fof; (x4 ) is considered to study the dynamical behaviour of the mogdsés.

It is easy to see that the functiogs i = 1,2, 3 in (1a)—(1c) are continuous ar? ,

whereR, = [0,00). Whenm; > 1, the functlons— are continuous o3 . Following
Erbe et al. [17], we determine the conditions under whiclstilations of (1a) (1c) form
a dynamical system.

A separate investigation is required when the parametersare sub-linear
(0 < m; < 1). In this case, we make the following assumptions:

Assumption 1. There exist functions; continuous orR?, where

hj(xl,xg,ng) = l‘;migj(l‘l,l‘g,ng) with 0 < m; < 1, 7=1,2,3.

Assumption 2. &' 5%-h;(x1, x5, z3) are continuous o3 for j # k = 1,2,3.

Assumption 3. All solutions of the systenti = h;(u,uz, us) for i = 1,2,3 are
continuous ork? .
As in Erbe et al. [17], we consider the following change ofi@hales for (1a)—(1c)

1— 1— 1—
up =x; ", ug =z, "2, uz=mx3 O, 2
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The system (1la)—(1c) transforms as

2—mq 1—mg

’U,/l = (177)11) alulfblullfml

= hy(ui,uz,u3), (3a)

uh = (1—ma) |—agus+ws . e
Gy

—0f1 (uf""l )ugl""? = ha(u1, u2, us), (3b)

upy = (1—m3)[c—w3f2(u211’"2)} = hy(uy, us, usz). (3¢c)

The change of variables given in (2) transforms the subtisgatem (3c) into (3b) in
which no sublinearities are present. Biologically, thisoamts to requiring that the mutual
interferences are not too strong.

The above discussions may be summarized as follows.

Theorem 1. Consider the system of equatiqis}-(1c)in which;(0) > 0,0 <m; < 1
fori = 1,2,3. Assume that the Assumptiadhs3hold. Then, the solutions of the system
equationgla)}{(1c)form a dynamical system in the sense of Nemytskii and Stefiz6ip
provided the mutual interference parameters satisfy theviing inequalities:

and mg +msg > 1.

|~

m125, my 2>

3 Methods of investigation

The model system presented above is a multi-parametemsy$teodel parameters are
selected in accordance with a method given in upadhyay ¢8,d8]. A few hundred
parameter combinations (choosing two at a time) are passithlis is simply not feasible
for any one to scan the system in all the parameter spaceslicAfgn of non-linear
dynamics is in unison with the knowledge of biology of theteys and enables one to
choose parameter combinations for simulation experimditite most crucial part of the
present methodology is the following conjecture:

Two coupled Kolmogorov systems in oscillatory mode wowdldiygither cyclic (sta-
ble limit cycles and quasi-periodic) or chaotic solutionspgnding on the strength of
coupling between the two.

In the present case, the set of parameter values for whicéytem admits a limit
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cycle solution is found to be

ay = 2.0, b1 = 0.05, wo = 1.0, as = 1.0, w1 = 2.0, D1 = 10,
wy = 0.55, Dy =10, Dy =10, § = 0.003, ¢ = 0.03, (4)
w3 = 10, D5 = 20, my = 095, mo = 095, ms = 2.0.

There is one more important aspect of these simulation e@rpats i.e., choosing
the step size for the variation of a system parameter frommanpeter combination within
the chosen range. It depends on the nature of the parametegroed: whether it is a
slow varying or fast varying one.

The most useful way to study such a dynamical system is to torothie amplitude
(maxima) of the subsequent oscillations as the controlpater of the system is varied. A
small change in parameter values may lead to a bifurcatimabaupt, qualitative change
in the dynamics. There are number of ways to detect chaotiamyjcs in dynamical
systems. We have used in our study the phase space reptiesgrt#urcation diagram
and two dimensional scan.

4 Numerical results

Model system is integrated numerically using six-order grtiKutta method along with
predictor corrector method. It is observed that the modstesy (1a)—(1c) has a chaotic
solution at the following set of parameter values (see Fig. 1

ap = 1.93, by =0.06, wg =1.0, Dy =10.0, as = 1.0, wy; = 2.0,
D1 =10.0, wy =0.405, Dy =10.0, ¢=0.03, wg =1, D3 = 20.0, (5)
Dy =10.0, m; =1.0, my =1.0, mz =2.0, 6 =0.0.

The parameter values are selected on the basis of previmiss{4, 7] and corres-
pond to quantitative measures of attributes of the TPP-Embgpon-Molluscs food chain.

Molluscs
b

35

Zooplankton

Fig. 1. Phase plane diagram for model system (1a)—(1c) tilegichaotic attractor for
0 = 0, other parameter are same as given in (5) [7].
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To confirm the existence of chaos, the dynamics of the modsksy is studied
by constructing bifurcation diagram. For Holling type linittional response form for
toxin liberation process, we have plotted the successivdmaaof top predator:; as a
function of the parametéf (rate of toxin substances release by TPP population) kgepin
other parameters fixed as given in equation (5) for modeksygiia)—(1c). The Fig. 2
represents the bifurcation diagrams of model system (1a)+(ith Holling type Il func-
tional response. This figure shows the transition from cl@osder through sequences of
period-halving bifurcation. From this bifurcation diagrait is observed that an increase
in the value of toxic substances released by TPP populatisratstabilizing effect. The
blow-up bifurcation diagram (see Fig. 2(b)) shows that theglal system possesses rich
variety of dynamical behaviour for bifurcation parameter the rang€0, 0.06]. A period
— doubling cascade is observed. After the accumulationt pihi@ behaviour settles down
onto a chaotic attractor. Wheh the bifurcation parameter is decreased, new periodic
orbits are created. The chaotic attractor emanating framthin one is destroyed by a
boundary crisis with the unstable periodic orbit createthigysaddle-node bifurcation. A
saddle-node bifurcation is merge and disappearance oftealy states one of them is
saddle and other is node. Two co-existing period — doublasgades are then observed.

50

40 L

30

Max (z)
Max ()

20

0 01 02 03 04 05 06
g a

(a) (b)

Fig. 2. (a) Bifurcation diagram as a function éffor model system withf; (z1) of
Holling type II; (b) blown up bifurcation diagram of (a) inglranged < 6 < 0.2. Here
z stands forrs in model system (1a)—(1c) [7].

Dynamical behavior of model system (1a)—(1c) dependindenésults of bifurca-
tion diagrams given in Fig. 2 is presented in Table 1. From tésult, we observe stable
focus, different order limit cycles and strange chaotiator in different ranges af, the
rate of toxic substance released by TPP. Also, we concluadddahthe model system, the
increase in the value of toxic substances released by TPR $iabilizing effect. These
observations indicate that to maintain the order of an estesyfunctioning, Holling type
Il functional form for toxin liberation process is more appriate.
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Table 1. Dynamical behavior of model system (1a)—(1c) ddipgnon the results of
bifurcation diagrams given in Fig. 2.iP limit cycle of periodi for (i = 2,4, 5,6),
SF — stable focus, LC — limit cycle, LP — long period, SCA —sty@ chaotic attractor

Results of model (1a)—(1c) for Holling type Il functionakponse
f(z) = z/(x + D4), whereD, = 10

0 Dynamical behavior 6 Dynamical behavior
0.001-0.0111 SCA 0.061 P6
0.0112 P6 0.062-0.068 P4
0.0113-0.0115 P5 0.07-0.16 P2
0.0116-0.0123 P4 0.17 LP
0.0124-0.059 SCA 0.18-0.39 LC

0.06 LP 0.4-0.6 SF

We have also investigated the role of mutual interferencarpaters on the dynamics
of trophic system in detail. The values of mutual interfex@parameters were chosen
on the basis of the values reported in Katz [26]. We have obsestable focus, limit
cycles and chaotic dynamics phenomena in the model systeamdayging the mutual
interference parameters;, ¢« = 1,2, 3 and the rate of toxin release by TPP population
0, in the fixed range. We have also reported the function emargument domain error,
the region in the parameter space, where no dynamics isw@usen this domain, the
values of mutual interference parameters are not condtarsimulation experimenti.e.,
in real situation, no species can attain these values ofahirterference. Our approach
is to fix m; andmsg then varymg in the interval[1, 3] andé in the intervall0, 1) and then
observe the exchange of states (stability — limit cycle 4gakedoubling — chaos) in the
model system for three different casesof (m; >, =, < 1).

The results for model system (1a-1c) are summarized below:

Casel. Whenm,; > 1.

(A) For fi(a1) = %57, fo(z2) = ;1p; (see Table 2).

(i) Form; =msy = 1.05and1.5 <ms < 3.0, 0<6 < 1.
Chaos exists at some discrete points. For example, chasts dar (ms,0) =
(1.75,0.4), (2.0,0.45), (2.0,0.5), (2.0,0.55), (2.25,0.5), (2.25,0.55). Rest of
the points it shows the limit cycle attractor.

(i) Form; =mo =20andl <m3<3, 0<6<1.
Itis found that in most of the cases, becomes extinct an;, z3) rests on stable
focus for higher values df. For lower values of), all the three populations rest
on stable focus and limit cycle attractor in the phase pldtnis.also observed that
for m; = me = 1.25,1.5,1.75 and for whole range of the parameter spéaeg, 9)
(i.,e.,1 <m3 <3, 0<80 <1),the model system (1a)—(1c) predicts no dynamics.
The simulation results show function error or argument darageror.

Casell. Whenm; =1 (i.e., m; = mo = mg3 = 1).
(A) For fi(z1) = %5, fa(a2) = 5955 0<0<1.
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Chaos exists in the interval< ¢ < 0.25. Foré € [0.3,0.4] andfd € [0.45,0.7], we obtain
the limit cycle and stable focus behaviour respectively: the values of) € [0.8,1.0],
(x2,z3) becomes extinct and; rests on a stable focus butéat 0.75, only 23 becomes
extinct and other species rests on stable focus. Fig. 3 stieachaotic behaviour of the
model system (1a)—(1c) observed in the dontaith < mgz < 2.25,0 < 6 < 0.35.

Table 2. Simulation experiments of model system (1a)—(1lich Wolling type I

functional response. The values of the common parametersinghe model system

are same as given in (4) with, = 10.0. The mutual interference parametets > 1
(: = 1,2, 3), andé varies in the rang@), 1]

Values ofmi,ms  ms (in[1;3]) @ (in[0;1]) Dynamical behaviour
mi =me =105 15 0.0002-0.001 Limit cycle
1.75 0.0001-0.0003; 0.002—-0.0095 Limit cycle
0.09; 0.5-0.6 Limit cycle
0.4 Chaos
2.0 0-0.0002; 0.0005—-0.0008 Limit cycle
0.0075-0.02 Limit cycle
0.3-0.4; 0.6-0.65 Limit cycle
0.45-0.55 Chaos
2.25 0-0.002 Limit cycle
0.0035-0.015;0.09; 0.3-0.45  Limit cycle
0.5-0.55 Chaos
0.6-0.7 Limit cycle
2.5 0-0.02; 0.3-0.75 Limit cycle
2.75 0.09, 0.3-0.75 Limit cycle
3.0 0.35-0.42; 0.7-0.75 Limit cycle
mi1 =ms = 2.0 1.0 0-1.0 1 SF;(.I'Q, 1'3) extinct
1.25-2.0 0-0.1 x1,x3) SF;x2 extinct
2.25 0—1.0 $1,$2,$3) SF
0.15-1.0 x1,x3) SF;x2 extinct
2.5 0—0.4 $1,$2,$3) SF

(
(
(
(
0.45-1.0 (371, 1’3) SF;.TQ extinct
2.75 0-0.5 (21,22, 23) SF
0.55-0.6 (z1, 2, z3) Limit cycle
0.65-1.0 (371, 1’3) SF; x5 extinct
3.0 0-0.5 (1'1,1'2,1'3) SF
0.55-0.85 (z1, 2, z3) Limit cycle
0.86-1.0 (371, 1’3) SF; x5 extinct

Caselll. Whenm,; < 1.

In this case, chaos does not exist at all. The domain in whiehperform the two
dimensional scans is

mi =ms =0.25, 0.5, 0.75, 0.95, mz=0.25, 0.5, 0.75 and 0<6<1.

We obtain only function error in this domain except faf = ms =0.95. Form; =mo =
0.95 and in the whole range ofi; andd, stable focus and limit cycles are observed. Re-
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sults are presented in Table 3, from which it is observeditrat,; =m, =0.25,0.5,0.75
andmg € [0.25, 3], 6 € [0, 1] the dynamics is settles down to stable focus.

0.4 - chaos
0.35 4 -
0.3 4
0.25 4 - o+ o+
0 02 . »
0.15 4 - -
0.1 * 4 0+ 4+ 3
* * »* * *
0.05 4 P
0— ¢ ¢ ¢ ¢ ¢ &
0 0.5 1 15 2 25
M3

Fig. 3. 2D scan diagram betweéms, ) parameter space for Holling type Il functional
responses with the parameter valugs= 2, b1 = 0.05, w2 = 0.55, D4 = 10.0,
0 = 0.003 other parameters are same as given in (5).

Table 3. Simulation experiments of model system (1a)—(1lith Wolling type I

functional response. The values of the common parametetsinghe model system

are same as given in (4) with, = 10.0. The mutual interference parametets and
6 varies in the rangel.25, 3] and|0, 1] respectively

Values ofmi,m2  ms (in[0.25;3]) 6 (in[0;1]) Dynamical behaviour
mi1 =meo = 0.25 0.25-0.75 0-1.0 Function Error
1.00-3.0 0-1.0 Stable Focus
mi1 =mso = 0.5 0.25-0.75 0-1.0 Function Error
1.0-3.0 0-1.0 Stable Focus
mi1 =mo = 0.75 0.25-0.75 0-1.0 Function Error
1.0-3.0 0-1.0 Stable Focus
mi =mo =095 0.25 0-0.004 Limit cycle
0.01-0.1 Limit cycle
0.2-0.4 Stable Focus
0.5-0.75 0-0.15 Limit cycle
0.2-0.4 Stable Focus
1.0 0-0.15 Limit cycle
0.2-0.7 Stable Focus
0.75-1.0 (.T17 1’2) SF,.Tg extinct
1.25-2.25 0-0.15 Limit cycle
0.2-1.0 Stable Focus
25 0-0.0002 Limit cycle

0.0005-0.0006 Limit cycle
0.001-0.006 Limit cycle

0.03-0.15 Limit cycle

0.2-1.0 Stable Focus
2.75 0.2-1.0 Stable Focus
3.0 0.25-1.0 Stable Focus
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5 Conclusions

In this article, we have attempted to find whether mutuatfetence and toxic substances
released by TPP always stabilize the predator — prey dymsaimiaquatic environment?
Our simulation experiments support the conclusion that 3tBBilizes the predator — prey
dynamics in aquatic environment. From the tables, it is niegbthat for different values
of mutual interference parameters in different rangesadyins of the model system is
also influenced by the functional form of toxin liberatiompess. Fom; < 1, i =1,2,3,
no dynamics was observed in the raig2s < m; < 0.75, but if we take the values of
any one of the interference parameters close tbe system dynamics converges to stable
focus. In this case, the top predator becomes extingiareached. Form; > 1, most
often the dynamics rests on stable limit cycle or stable odtrom Tables 2, it is found
that form; = mg = 1.05 (i.e., close tol) andms in the rangd1, 3], system dynamics
settles down to limit cycle attractor. In this case, modedtegn also supports chaotic
dynamics only at a few discrete points. But fan, = mo = 2 andmgs in the range
[1, 3], the system dynamics mostly settled on stable focus andlenpiddator becomes
extinct. These results show that the interaction betweedgtors is a stabilizing factor.
Chaotic dynamics/situation may arise from an equilibridatesfor different reasons in
any ecosystem. But to overcome this chaotic situation somstsystem itself has some
mechanism and self-adaptability. There are many ways bglwsystem can be self-
adjusted and one of such ways is toxin production by phytdgtan, which reduces the
zooplankton grazing, helps the system to recover chadtiat8dn. In aquatic system
of such condition it is reported in Mandal et al. [2], thatittxare produces by many
phytoplankton and these toxins may turn the ecosystem nakered state from chaos by
reducing the grazing pressure of zooplankton.

From the tables and 2D scan diagram, it was also observedhinamodel system
supports chaotic dynamics fat; > 1. We also observe from bifurcation diagram that
chaotic dynamics is robust to changes in changes agairst imtoxin production by
phytoplankton as it exists for large rangefofalue. Period doubling bifurcations seem to
be responsible for this kind of dynamical behaviour.

In real life situations, it has been observed that increpsire strength of toxic
substances and mutual interference parameters has argritahigizing effect. Here, we
like to see whether this is true or not in our considered magislem. Our simulation
results show that interference might actually stronglytaleiize the dynamics as well
leading to chaotic dynamic behaviour. Further studies aedad to ascertain if this
defense mechanism suppresses chaotic dynamics in modgiasystems.
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