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Abstract. This article investigates the joint probability of correld defaults in the first

passage time approach of credit risk subject to conditianttte underlying firms’ assets
values and the default boundaries follow geometric Brownigotion processes. The
exact analytical expression of joint probability of two mated defaults in the case of
stochastic default boundaries is presented. Also, somgepies of this solution are

provided.
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Introduction

Together with the evaluation of loss given default and etgubtosses of any defaultable
financial claim, there is equally important to estimate thimalative distribution function
of correlated defaults. The knowledge of marginal prolitisdl is not sufficient to assess
the credit risk of corporate bonds portfolio due to existoggrelation (or interdepen-
dence) between the asset returns. Usually, default ctmels defined by correlation
between the Brownian motions driving the individual comiparand plays a crucial role
in determining the joint probability of default, i.e. thegmability of multiple defaults.
Also, the default correlations are the important factorsriter to calculate portfolio risk.

In this paper we analyze the credit risk of portfolio of céated defaultable claims.

One of the most important measures of credit risk, the pritibabf default of one claim

is investigated extensively in the literature. Howevenriag the credit risk of portfolio,

it is also important to measure the joint probability of edated defaults and the general
probability of portfolio default.‘Modeling correlated default risk is a new phenomenon
currently sweeping through the credit markets. Due to thaidagrowth in the credit
derivatives market and the increasing importance of maaguand controlling default
risks in corporate bonds portfolios, derivatives, and thieev securities, the importance

*The research was supported by bilateral France-Lithuastantific project Gilibert and Lithuanian State

Science and Studies foundation (V-07058).
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of default correlation (or inter-dependence) analysis haen recognized by the financial
industry” (Zhou, [1]). The losses on the initial credit portfolio dwethe default of the
underlying firms depend on the default probability of eacmfaind the losses given
default. In addition, the degree of dependence between tims’fdefault probability
plays an important role on the timing of the firms’ defaultsl a&s a consequence, on the
distribution of the portfolio losses. The correlation beem several assets is important for
estimating general credit risk of portfolio because higtmrelation of defaults implies
a greater likelihood that losses will wipe out the assets.nv@osely, higher general
correlation also makes the extreme case of very few defendte likely.

In general, the structure of default correlation is a crdsgue in pricing multi-name
credit derivatives as well as in credit risk managementduitéon, the joint probability of
correlated defaults is important for assessment systemisiti of whole financial system
due to financial contagion (more about the economic and fiabimeportance of default
correlation see, for example [2] and [3]).

Many papers analyzing the default correlation are focusethe joint probability
of default in reduced form models, but there are fewer pakibois concerning the joint
probability of correlated defaults in structural approaustably, [2,4—7] and [1]. Drawing
on literature, we noticed that one of the biggest disadegegtaf structural models is their
limited possibilities of calculating the joint probabyliof correlated defaults. The aim of
this paper is to enlarge this possibility for structural mggeh of credit risk. We derive
the joint probability of two correlated defaults in the cageen the default thresholds (in
special case the values of bonds) are also stochastic.

In many papers (see, for example, Overbeck and Stahl [8]uZhp the default
correlation is defined as the correlation of Bernoulli digtted random variables. In
this paper, we generalize the Zhou’s model for two correlatefaults by defining the
more general structure of default correlation. Unlike Zlfijy Patras [7], Overbeck and
Schmidt [6] approaches, in this paper we assume that the wéitth default threshold is
stochastic without jumps. That means the case when, for gleainvestors do not have
full information about financial markets (notably, some g@awous shocks, depositors
panics or other changes) or due to stochastic behavior efdst rates. In fact, by
assuming stochastic behavior of default boundary, we adssider other exogenously
defined type of financial risk, notably, liquidity and markbfainges risk. Other economic
interpretation is that stochastic default threshold canegent some debt covenant viola-
tion. Unlike other structural models with incomplete infaation, we assume that there
are no jumps and that default time of company remains prgaietdue to the continuity
of both stochastic processes and we avoid the further modelf transformed structural
approach to reduced form model wiémdogenougtensity processes. Also, presented
model differs from others by the correlation structureroplied Brownian motions and
by the defined structure of this correlation.

The paper is organized as follows. In Section 2 we give a shantview of related
literature. In Section 3 we present a generalized first prestiane model. In Section 4 we
outline the expression of the probability of single defaiihe closed form expression of
the joint probability of correlated defaults is given in 8en 5, and in Section 6 we give
some conclusions.
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2 Overview of the literature

In practice, it is complicated way to find an analytical exgsien of cumulative distri-
bution function of correlated defaults. There are threennagiproaches to estimate the
joint probability of correlated defaults: calculationsngs credit market historical data
(Lucas, [3]), reduced form credit risk approach and stmadtapproach of credit risk
which is the less developed in this sense.

Calculation using historical data has some important deskb because it is hard to
determine whether historical fluctuations in default ratescaused by default correlations
or by changes in default probability. Also, there are notugfiodata concerning the
default correlation among and between specific industnesdefaultable bonds, it does
not use firm-specific information and default correlatiorestane-varying, so past history
may not reflect the current reality. Das and Geng [9] caledlgbint probabilities of
default for U.S. corporations using credit ratings datacfmpula functions They used a
metric that compares alternative specifications of the jéfault distribution using three
criteria: (a) the level of default risk, (b) the asymmetrydiefault correlations, and (c) the
tail-dependence of joint defaults.

In reduced form (or intensity) approach of credit risk thisfdem has been investi-
gated in several waysnodels of conditionally independent defauttedels of contagion
and copula functions The intensity models the conditional default arrival rdteing
some period. These models can incorporate correlationgeket defaults by allowing
hazard rates to be stochastic and correlated with macroetorvariables. To induce
correlation between defaults, one would typically introecorrelation between the in-
tensity processes. However the problems begin when onmpgtieto estimate them.
These problems are, in part, due to the lack of sufficientggaete default information
about the dependence structure of the credit risk of the finnger consideration. Their
main disadvantage is that the range of default correlatiwaiscan be achieved is limited.
Even when there is a perfect correlation between two hazgesrthe corresponding
correlation between defaults in any chosen period of timesiglly very low (for more
details, see [3]). The recent so called second generatiateimdhat come under the
heading of “intensity based top down models” avoid this peob(see, for example, [10]).
Moreover, these models, (for more details, see the papeBawis and Lo [11] and
Giesecke and Goldberg [10]) incorporate the contagionrebsgén credit markets.

Due to their intuitive simplicity, structural approach i©ra attractive than reduced
form approach but one of the biggest problems of applicatinrctural models in assess-
ment the credit risk of corporate bonds portfolio is the cbogped way of estimation
of the joint probability of correlated defaults. In structbapproach, the default corre-
lation between issuers is introduced through asset retmelation. With predictable
defaults, however, jumps in bond prices and credit spreadeat appear at all: prices
converge continuously to their default-contingent valugkis means that, although the
existing structural models provide important insightoithe relation between firms’
fundamentals and correlated default events as well asipaigtmost valuable tools,
they fail to be consistent in particular with the observedtagion phenomena. Zhou [1]
obtained the closed form expression of the joint probahidftcorrelated defaults in the
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case when default boundaries are exponential functiongu derived this formula in
both cases: when firm’s asset value and default threshold gtdhe same and at the
different rates. Overbeck and Schmidt [6] derived simitgpression in the case where
the underlying ability-to-pay process for each bond is adfarmation of Brownian
motions with default trend. Patras [7] presented a gerrerdlieflection principle and
evaluated digital swap on two credit instruméritsthe case when the default boundaries
are deterministic functions in planar Brownian motion amel ¢orrelation follows Bessel
process. Giesecke [2] derived similar formulas in the cdssmplete and incomplete
information. This paper provides a structural model of elated default which is con-
sistent with several significant credit spread charadtesisthe implied short-term credit
spreads are typically non-zero, credit spreads cycligabtations across firms, and, most
importantly, contagion effects are predicted. Gieseckaratterized the joint default
probabilities and the default dependence structure assesbdoy investors, using the
modeling of dependence with copulas for stochastic boueslarin the paper of He,
Keirstead and Rebholz [5] the closed form expressions ofidhe probability of the
maximum and minimum values of two correlated Brownian mumi@re derived and
applied to the valuation of double lookback and barrier f@wdkout) options in the case
when hitting boundaries are constants. Fouque, WignallZdnud [4] extended the first
passage time model by defining the default dependence initections: by extending
to multi-dimension and by incorporating stochastic vditsti They derived analytical
approximations for the joint survival probabilities andsaquently for the distribution of
number of defaults in a corporate bonds portfolio when defaaundaries are defined as
exponential functions.

3 Generalized setup of the first passage time approach

Throughout the papet,denotes the running time variable. Unlike as in Black-Sekol
financial market model, there is no risk-free asset gengratonstant interest rate. In
structural approach, the evolution of each rating procésggtofirm is determined by the
behavior ofi-th firm’s asset valué process V;(t), t > 0}, i = 1, 2. The rating process
jumps down to the respective state at the first morg@&hit), ¢ > 0} crosses the default
barrier. Assume that the both firms’ default thresholdsespnt the financial liabilities,
starting from the timg = 0. The liabilities ofi-th firm mature at deterministic time
T, >0, i =1,2andT := min{Ty,T>}. Assume that two Bernoulli binomial random
variablesF; (T') and F>(T') describe the default status of two companies:
FT) = {1, f i-th firm defaults byr', i = 1,2 @

0 otherwise

1swap is of digital type: the payoff is settled at the matudateT; it is A (resp. B) if only one of the two
instruments defaults (resp. if both default). In particwehenA = 0 (resp.A = B), we get a pricing formula
for a second to default (resp. first to default) digital swap.

2More exactly, pre-default total value of the firm’s asset.
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On the Probabilities of Correlated Defaults: a First PasSame Approach

In what follows, the default correlation is defined@srr[F; (T'), F>(T)]. SinceF;(T)
andF5(T) are Bernoulli random variables the probability of both firdesaulting before
the maturityT" is as follows:

= E[F\(T)] - E[F»(T)] 4+ Corr[F\(T), Fo(T)] - /Var[Fy(T)] - Var[F»(T)],

2

whereE[F;(T)], i = 1,2 is the probability of default of single company. So, it foll®

that defining the joint default probability is equivalentgpecifying the default event

correlation. Let us consider a continuous trading econotitly the time interval0, 7).

A complete probability spacg?, F, P) satisfies the usual conditions. Assume that the

value ofi-th firm’s asset and théth default threshold (in partial case the valueith

bond) under the probability for all ¢ > 0 is given by’
dVi(t) = Vi(t) (pvadt + ov.idWri(#)), 3)
dD; (t) = D,(ﬁ) (,uDﬂ'dt + 0'D7idWD7i(t)),

whereup i, pv.i, op,; > 0andoy,; > 0, i = 1,2 are constant§,Wp ,(t), ¢ > 0} and
{Wv..(t), t > 0}, i = 1,2 are correlated real-valued standard Brownian motions with
instantaneous correlatio@®rr([Wp.;(t), Wy.,i(t)] = p;;" foranyt >0, i = 1,2 and

8 :
P12 ) 7

PPy = Cort[Wp 1 (t), W2 (t)],
pPY = Corr[Wp o (t), Wy, (1)]

The most usual practice is to consider default correlat@mstant through time, simi-
lar across firms, and independent of the firms’ default priitiab. It is reasonable
to assume that if one company defaults, another positivelyetated company has a
higher likelihood to default because they are both expeimenpressures from the same
sources: general economy or pressures from their spedifissiries or regions and, vice
versa, negatively correlated company has a smaller ligetinto default. All possible
instantaneous correlations between the Brownian mofitins, (¢), ¢ > 0}, i = 1,2and
{Wp,;(t), t >0}, j = 1,2 mean that the firms’ asset is influenced by the developments
and perturbations in secondary market of credit derivataed vice versa, i.e., interest
rates and various macroeconomic factors. The correlatigmeans the inter-companies
ties and the shocks from the area of each firm activity (ireexdernal factor that directly
impacts multiple companies, either in the same industogpseregion or related for some
other reason), i.e. direct contagion effe,@f2 means the shocks in secondary market

of credit derivatives and interest rates aﬁrﬁz‘/ and py, DV denote the interdependence
between secondary market of credit derivatives and ecaradséctors. We generalize

3These equations assume that thg D;(t) andlog V;(t), i = 1,2,...,n follow a unit root, i.e., non
stationary processes.
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the definition of default correlation allowing the corrédetnot only between firms’ asset
returns but also between the rates of default tresholdstanthterdependence between
i-th asset return and rate pth default boundary.

Let us define the four-dimensional Brownian motigfy. 1 (¢), Wy,2(t), Wp 1(t),
Wp2(t)) with zero mearE[Wy;(t)] = 0 andE[Wp ;(t)] =0, t > 0, i = 1,2 and the
nonnegatively defined correlation matrix

v D)V D)V
1 P12 P11 P1,2

D,v
PO I 1 P21 P;/,Q
1 P?,Q
1

All these parameters must be estimated using historicagrebsons until time¢ > 0. The
as exact as possible estimation of correlation always shmeicalculated on the basis of
internal information concerning the firm’s asset and liéib. Assume that at initial
time thei-th firm's asset value is greater thanh default threshold, i.e. the condition
Vi(0) > D;(0), ¢ = 1,2 holds.

Definition 1. Thei-th firm defaults if for any > 0 andi = 1, 2 the value of its asset hits
the default threshold. The default timeieth company is a random variable defined as
follows:

)r:?ﬁﬁEOWHwDﬁﬂ,

: (4)
o, if Vi(t) # Di(t), Vt > 0.

The event of default should be known for all agents of findno@rket at any time
because we assume a perfect market with a free flow of comipfetenation.

It is clear that the probability of any company defaultinghiér, < T or, < T}
= P{Tl < T}+P{’7’2 < T}*P{’Tl < Tandm < T} WhereP{Ti < T} =
E[F;(T)], i = ,2andP{ry < T andmn < T} = E[F1(T) - F»(T)]. Clearly,
assuming the independence of default events, the joinullgfeobability of the two
firmsisP{m < T andm, < T} = P{n < T}P{r < T} and this probability is
easy to calculate. However default correlation plays anoigmt role in determining
the joint default probability. After some simple calcutats we obtain implied processes
Yi(t) = DAO)&—%e”DW with initial valuesY;(0) = V;(0), ¢ = 1,2 and which are
described by the following equation:

dY;(t) = Yi(t) (pedt + o, dW5(t)), i=1,2, (%)
where

Hi = pv,i + 0%7,- - pf{VUD,iUV,i,

Wit) = ov, Wy, (t) — UD,iWD,i(t), )

g;

_ 2 2 D,v
0i = \/UD,i + 0y, =20 0,0V
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under the initial conditiond’;(0) > D;(0), ¢« = 1,2 and the implied instantaneous
correlationCorr[WW (t), W2 (t)] = p, where the correlation coefficientis defined as
follows:

\% D,v D,V D
Ov,10v,2P1 2 —OD,10V2P1 5 —OV,10D2P5] +0D10D 2012

0102

()

Remark 1. Fori # j, i, =1,2

oV D,V
IV,jP1,279D,jP; i

1 limgy, oo p = >

D,V D,V
9D,19D,2Py 2 —9D,iOV,jPj

2. limgy, ,op = 00D,

In other words, the implied correlation does not depend ftoevolatility of thei-th
firm's assetibry,; — cooroy,; — 0

D . D,V
3. 1 _ 9D, jP1279V,jP;
Nme, eo p = —
\% D,V
OV,10V,201 2= 09D,jOV,iP; i
o'jo'V,i

4. hn’lo-D'i*,() p =

In other words, the implied correlation does not depend ftoevolatility of thei-th
default threshold itp ; — cc0rop; — 0

The default time of-th company for alt > 0 can be rewritten as follows:
7 = inf{t > 0: V;(¢t) = D;(t)} = inf {t > 0: Y;(t) = D;(0)e'>i*}, i=1,2.

The correlation of implied Brownian motioq$V;(¢), ¢ > 0}, ¢ = 1, 2, defined using the
formula (7), absorbs all type shocks and can be treated asmoa (i.e. macroeconomic)
shock which in particular case causes financial contagibaiking sector and influences
the credit risk of corporate bonds portfolio. The correlattdefined in such way is used
for calculations of the default probability for implied pesseqY;(t), t > 0}, i = 1,2
defined above. Gersbach and Lipponer [12] highlighted thim mi@perties of the rela-
tionship between the asset returns and the default camedatillustrating how adverse
macroeconomic shocks raise not only the likelihood of défabut also the correlations
of defaults in the case when firm’s asset values are jointipdomally distributed. Fi-
nally, it is possible to use directly results of Zhou [1] fonplied correlated processes
{Y:(t), t > 0}, i = 1,2 to obtain formula (9).

4 Probability of single default

In this section, we analyze the probability of single compadefault and its properties in
the previously defined setup.
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Proposition 1. Assume that the value ofth firm’s asset{V;(¢), ¢ > 0} and thei-th
default threshold D;(t), ¢ > 0}, ¢ = 1, 2 follow dynamicg3). Then

P{ < T} (I)( b1 V; T) n _9 biv; (I)( bz n V; T) (8)
Ty S = — _ — e T — — s
O’i\/T g; O’i\/T g

where®(-) denotes the cumulative probability distribution functifra standard normal

. i i+oZ i D, iOV,i o
variable and; = log l‘;—((%)), v = PR ATIDa TP ODATVE _gr =9,

g4

See the proof in Appendix.

This formula can be used not only for estimation the proligtolf default. It can
be useful to define the probability of a change of market iatpliating of an entity. It
is necessary in such case redefine the stopping time as aftstreictural change of any
firm’s asset leverage ratio to upper or lower level.

The impact of correlation of processgb;(t), t > 0} and{V;(¢), t > 0} and the
initial conditionsV;(0) > D;(0), ¢ = 1,2 to the probability ofi-th company default, by
Proposition 1, in the case whern ; = 0.05, py,; = 0.1, op; =ov,; =2, i =1,2and
T = 1is presented in Table 1.

Table 1. The impact of credit quality at initial timﬁ% and individual correlatiom;’;"’
to the probability ofi-th company default

Individual correlation  Credit quality  Probability of defta

p” V;(0)/Di(0) P{r, < T}
—-0.75 1.5 0.9130
—-0.75 3 0.7676
—-0.75 5 0.6653
-0.5 1.5 0.9061
-0.5 3 0.7495
-0.5 5 0.6402
—-0.25 1.5 0.8971
—-0.25 3 0.7265
—-0.25 5 0.6085

0 1.5 0.8849

0 3 0.6956

0 5 0.5668
0.25 1.5 0.8671
0.25 3 0.6512
0.25 5 0.5082
0.5 1.5 0.8372
0.5 3 0.5795
0.5 5 0.4175
0.75 1.5 0.7704
0.75 3 0.4331
0.75 5 0.2515
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The influence of volatilities of processé®;(t), ¢t > 0} and{V;(t), ¢t > 0} to the
probability of default, by Proposition 1, in the case wheedit quality at initial time is
Vi(0)/Ds(0) = 1.5, pp; = 0.05, py; = 0.1, p2Y = 0,75, i = 1,2 andT = 11is
given in Table 2. 7

Table 2. The impact of volatilitiesp ; andov,; to the probability ofi-th company
default

\olatility Volatility Probability of default

OD,i ov,i P{r; <T}
0 0.25 0.1003
0 0.5 0.4747
0 0.75 0.6866

0.25 0 0.1312

0.25 0.25 0.0667

0.25 0.5 0.3021

0.25 0.75 0.6189

0.5 0 0.3238

0.5 0.25 0.2081

0.5 0.5 0.2255

0.5 0.75 0.5026

0.75 0 0.4514

0.75 0.25 0.3407

0.75 0.5 0.3099

0.75 0.75 0.4143

Next, we give some properties of the probability of singlenpany default.

Remark 2. 1. Assume that at initial time the value 6th firm's asset is equal té-th
default threshold, i.eD;(0) = V;(0), i = 1,2. ThenP{r; < T} = 1.

2. Assume that both thieth underlying firm’s asset andth default threshold grow at the

same rate, i.eup,; — 2+ = py,; — 5t i =1,2. ThenP{r; < T} = 2@(707’%).

3. Assume that the returitth of firm’s asset is greater than the rate #th default

2 2
threshold, i.epv,; — 25 > pp; — 224, i =1,2. Then

biv

Jim P{r <T} = e

4. Assume that the credibility @fth company is infinitely high at initial time. Then

lim P{r; <T}=0, i=12.

b; — o0
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5. lim P{TigT}q><§)+Df(o)q><‘/_T), i=1,2.

OD,i—00

In addition,
D;
Jim i Pl <T) = T =12
. VT | Vi(0) VTN .
. < — - - — = .
6. im  PAm < T} cI)< 2 >+Di(0)®< 2 > i=12
In addition,

lim lim P{r, <T}=1, i=1,2.

T—00 OV, —00

Since the closed form expression of the probability of sndéfault in case of
stochastic default boundary is known, it's sufficient to fthd probabilityP{r < T or
7o <T}orP{r <Tandr, <T}.

5 Joint probability of correlated defaults

In this section, we investigate expression of the probigh#ti{ < T orr, < T} under
the assumptions presented in Section 3.

Proposition 2. Assume that the value oth firm’'s asset{V;(¢), ¢ > 0} and the value
of i-th default threshold D;(t), t > 0}, ¢ = 1,2 follow dynamicg3). The cumulative
distribution function of correlated default subject totial conditionsV;(0) > D;(0),
i=1,2is

P{ﬁgTorngT}

-1 _ i —% a1di+azda+azT = . nmty i . ’n_ﬂ'@ (9)
=1 ¢ e Zsm — sin { — gn(0)dé,

n=1 0

where

o

2
gn(0) = /reiﬁfc(e)rlﬂ (@)dr,
o T
0

rro [e') ( ) T +2m
() -5 L
>\ T mz:() IT(2Z +m +1)

is the modified Bessel function of the first kind of or§@rand argumentz2, I'(-) is the

’ﬂ

126



On the Probabilities of Correlated Defaults: a First PasSame Approach

Euler's gamma function,

1—p2? .
arctan ( — 7p), if p<0,
_ P
o= =
7r+arctan< 7), if p>0,
P
b 1— p2 . b 1—p2?
arctan [ 201V -~ P , if ((2VITP )
_ 7b10'2 + prO'l 7b10'2 —+ prO'l
% = boo1y/1 — p? boo1y/1 — p?
T + arctan (u), if (u) <0,
—bio2 + pbaoy —bio2 + pbaoy
2 D,V
. (D1 — vy —0hy + P11 ODAOV,1)02
1=
(1—p?)oios
2 D,V
(,UD,Q —Wv,2—0h ot P35 UD,QUV,Q)pU1
(1 - pQ)O'%UQ ’
(MD,Q —pv2 — U%,Q + pgéVUD,QUV,Q)Ul
az = 1— 2)o2
(- )3
2 D,V
(,UD,l —Wv,1—0p1 TP UD,1UV,1)p02
(1 - p2)a§al ’
2 2 2 2
ato aso
as = 12 L+ parazoron + 22 — a1 (upa — pvii — 0h 1 + 1y 0p10V1)
—az (,UD,Q —Wv,2 — U%,g + pgéVUD,QUV,Q);
b b
c(9) = 0—11 sin(f — «) — U—Z cos(f — ),
b
d1 :a101+pa202, dg :G,QO'Q\/].7P27 ro = 2

o9 sinfg
See the proof in Appendix.
Remark 3. 1. Assume that»(0) = D2(0). ThenP{ry <Torm < T} =1.

2. It is natural that in the case of infinite maturity T, due toreasing uncertainty, the
joint probability of default approaches 1, i.dimy oo P{m1 <Torme <T} =1.

3. Assume thafe is an integef. ThenP{r < Torr < T} = 1.

Corollary 1. The probability of both companies surviving is as follows:

P{T1 > T andTQ > Tg} = 1—P{T1 < Tl}_P{TQ < T2}+P{T1 <Tiorm < Tg}.

4Such case is possible, for instance, if the coefficient ofliedpcorrelationp is negative, takingy close to
0 and lettingb; or o2 to be sufficiently large.
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Finally, knowing the default probability of each single qoamy and the joint default
probability of both firms, it is possible to calculate thealdf correlation. The implemen-
tation of formula (9) is computationally complicated besaypresented result requires
double integration of nonlinear combination of modified Sdgunction of the first kind.
Also, the estimation of “implied” correlation needs to camggionally estimate the vola-
tilities and the correlations of Brownian motiog¥;(¢), ¢ > 0} and{D,(¢t), ¢ > 0},

1 = 1,2. On the other hand, it is clear that the given solution is ryotreetric with
respect to different defaults. So, the problem of seleatibdefaults arise, and it is not
clear in what order select different defadlts

Remark 4. Assume thal; < Ts. Then
P{Tl <Tiorm < TQ} = P{Tl <Tiorm < T1}+P{T1 <TiandT; <71 < TQ}

Remark 5. All the propositions in this paper are made for calculatiatsinitial time
t = 0. The same formulas hold in the case of any 0. In such case, the constaht
must be changed by the variallle- ¢ for anyt > 0 and the default time afth company,
i=1,2,7; =inf{t > 0: V;(¢t) = D;(t)} byr; = inf{s > t: Vi(s) = D;(s)}.

6 Conclusion

The main result of this paper is the generalization of Zhapjsroach. The contribution of
this paper is to derive analytical expression for the jonotyabiloity of correlated defaults
in the first passage time approach of credit risk which is seae to quickly assess the
credit risk of corporate bonds portfolio. The main assupmiin this paper are that both
firm’s asset value and the default threshold follow georadrownian motions, i.e. by
assuming stochastic behavior of default boundary, we adssider other exogenously
defined type of financial risk, notably, liquidity and markéanges risk and in such way
expand credit risk modelling. On the other hand, one of thgelst disadvantages of
presented formulas of these formulas is the limited datdéfining implied correlations,
i.e., that its application requires a lot of aggregatedrimfation concerning secondary
market of corporate bonds and the internal information afiom’s asset. In addition,
the provided expression of joint probability of correlatigfaults is not symmetric with
respect to different company’s default.

The further step of this research could be the generalizatfagiven formula of
joint probability of n > 2 correlated defaults. On the other hand, the generalization
probability of corporate bonds portfolio default in jumfffdsion case remains.

Appendix

Proof of Propositioril. Using results of Zhou [1], where the default boundary fokow
exponential function, i.eD;(t) = D;(0)e#P-it the probability of single company default

5In practice, it is possible to follow so called principle afrservatism.
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is given by
bi [vi— PD.i )
P{r, <T} =0 - - A VT
{ } ( O'V7i\/T OV
,Qw b: Wvi— D
+e Vi (I)( — ¢ + ! d ﬁ)
O'V7i\/T OV

Assume that default boundary, (in special case, the valigtobond) follows geomet-
ric Brownian motion. Then after some simple calculationshage the expression of
stopping time, i.e. the time when default of théh firm,i = 1,2 occurs:

inf{t > 0: Vi(t) = D;()}
__— (10)
— inf {tZOS V;(0)6(#v,z‘*uD,iJraD,q,*Pm oD, 1crva—)tJrci1 Wi (t ):Di(())}'

Let us define implied stochastic processes forany0 by formulaY; (t) = Di(o)%,
Y;(0) = V;(0), i = 1,2. Then we obtain implied geometric Brownian motions, for any
t > 0 described by equation

AYi(t) = Y;(t) (i — pp,i)dt + o dWi(t)), i=1,2

with coefficients, defined in formula (6), and respectiveadiifthresholdsD;(0), and
unchanged initial condition&’;(0) = V;(0) > D;(0), i = 1, 2.
Let us rewrite the term in right-hand side in expression(10)

2
V;(O)G(Mv,i*#D,HrUff_—),i*pf{VJD,iUv,i*%’-)t+0iWi(t) _ V;(o)emzq,(t)7 i=1,2.

whereZ;(t) = vt + Wi(t), t > 0, andy; = #=EB+L — & = 1 2. Hence, using

the reflection principle for geometric Brownian motlonsr(foore detalls see [13]) the
probability ofi-th firm default is given by

P{r; <T} = P{inf{t > 0: Y;(t) = D;(0)} < T}

= P{inf{t >0: Z;(t) = ﬁ} < T} =1 P{m% > ﬁ}
0; o

bz‘ V; 725’7;“7, b V;
— o — VT ) +e e 0 += f)
< oVT o ) ( oiVT

wherem? = info<i<r Zi(t), i = 1,2. O

Proof of Propositior2. Using the definition of default time of théth firm we have
P{r < T orm <T}. Technically, we calculate the probability

P{n>Tandr, >T}=1—P{rnn <Torm <T}.
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After some simple calculations we have the expression qfpstg time, i.e. the time
when default of thé-th firm occurs:

(sv.itod —oP;V op.: _,ﬁ)t
inf{t > 0: Vi(t) = Di(t)} = inf {t > 0: Vy(0)eHvitobimpiit opiovi=
+ O'ZWZ(t) = Di(())e’uD'it}, i = 1,2

Let us define implied stochastic processes forahry0 by formula

Vit)

etrit Y (0) = V;(0), i=1,2.

Then we obtain implied geometric Brownian motions, desatitm formulas (5) and (6)
for anyt > 0 with correlation

p = Corr[log Y1(t),log Ya(t)] = Corr[W1(t), Wa(t)].

The respective default thresholds &g 0)e”2-i* and the initial conditions left unchanged:
Y:(0) = V;(0) > D;(0), i = 1,2. Letus define

X;(t) = —log (e—“Dvit%), i=1,2

that follows two-dimensional correlated arithmetic Broammmotion,
dX,(¢) _ A d—© dWi (t)
dXo(t) Ao dWs(t) )’
where\; = pup; — i + %3, 1 =1,2and® is a2 x 2 covariance matrix such that

(_) . @/ _ < 0’% P0102)

pPO102 O'g
with the transformed initial conditionX’;(0) = 0 andb; = log gii((%))’ i = 1,2. Let
f(b1,b2, 1,2, p, T) be the transition probability density of the particle in thegion
{(z1,22) : 1 < by andzs < by} before the maturity’. The finding of the probability
P{n < Torr, < T}isequivalentto finding the first passage timegft) to a boundary
b;, i = 1,2. Let us define the probability that the particle does nothiehe fixed barrier
9(by, bz) in the time period0, T, i.e.,

F(b1,b2,T)
= P{Xl(T) < by anng(T) < by | X1(5> < b anng(s) < bg, 0<s< T}
by b2
= P{Tl > T andry > T} = / / f(bl,b2,$1,£€2,ﬂ,T)dl‘1dl‘2.
—00 —00
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The problem of computing probability density is classicédl.can be usually tackled
using the separation of variables technique or more sagdiiet! methods such as contour
integration and Laplace transform for the closely relatezbfem of the solution of the
heat equation on a wedge. Zhou [1], He, Keirstead and Relibpland Patras [7]
followed the first approach. Patras analyzed the correldédalilt problem using planar
Brownian motion constructions and its local isometry. Batsed this method in more
general case, i.e. when induced by local (where local meédthsrespect to time and
space simultaneously) isometry from planar Brownian nmosimchastic process behaves
therefore locally as the usual planar Brownian motion ardghbspace is only locally
Euclidean. The transition probability density is the simntof Kolmogorov forward
equation

of _oid*f o*f o3 0°f

- a9y %) b b 11
o ~ 2 022 P 00102, T 2 023 TP Sm T2 (11)

subject to the boundary conditions:

f(blabQ;*maxQ;pajw:f(blaanxlafoovva):Oa
f(b1,b2, 21, 22,p,0) = 6(x1)d(22),

by bo

/ /f(bl,b2733173027p7T)d$1d$2 <1, T>0,

f(blaanblax%va) = f(blab%xlvvava) = 07

whered(z) is a Dirac’s Delta function and the equatifitby, ba, 1, 2,0) = 6(x1)d(z2)
means the initial conditioX;(0) = 0, ¢ = 1,2. The solution of Kolmogorov forward
equation subject to boundary conditions (for more detais [5, 14] and [1]) for any
fixedt > 0 is given by

f(b1,b2, 71,22, p,T)

2 P24 O 12
= —— € o Zsin (n_7r9) sin (mﬂ%)lm (@), (12)
0'10'2\/1—/)204T el « « « T
where

T =b —01(\/1 —p2rcos9+p7“sin9),

To = by — oarsind.

The probability that the particle does not reach the ba@{@s, b2) during the period
[0,T7] is given by

by b2

bl,bQ, //fbl,bg,l'l,l'g,p, )dlEldl'Q

—00 —00
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o OO

= / ro1oay/ 1 — p? f(a,00,7,0, p, T)d0dr

00
i 6\ [ A
2
—or in (m) /sin (E)dH/re 27 Jun
« o
n= 0 0

Hence, the probability of either company defaulting is des:

|
SE
Q)
(]
w0

5

P{T1 <Tormn ST} =1 —F(bl,bQ,T)

_1__6 2TZSI ( )/sin( ) / —r nT(rm)dr .

0

2 a1di+asda+asT - mf@o nmw
_1—ﬁe 2T611 2021 a3 Zsm T gn(0)de.
0

n=1
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