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Abstract. In this paper, a food web model consisting of two-predator one-prey with
the defensive switching of predation avoidance is proposedand analyzed. It is assumed
that the prey growth logistically in the absence of predators and defends itself from
relatively abundant predator species by switching to another habitat with relatively rare
predator species. Sufficient conditions for the stability of the non-trivial equilibrium point
are obtained. The Lyapunov function is constructed to establish the global asymptotic
stability of the non-trivial equilibrium point when the intensity of defensive switching
equal one. Numerical simulations for different sets of parameter values and for different
sets of initial conditions are carried out. It has been shownthat the system has a globally
asymptotically stable non-trivial point when the two predators have the same mortality
rates.

Keywords: food web, prey-predator, defensive switching property, stability, Lyapunov
function.

1 Introduction

In predator-prey environment, there is variety of ways in which potential prey attempts
to avoid predators; these anti-predator behaviors includehabitat selection, vigilance and
other types of behaviors [1–4]. The anti-predator behavior, when a prey is shared by
two or more predator species, may be classified as specific or non-specific. It is known
as predator-specific defense when the prey defense is effective against only one predator
species. However, if each of the different behaviors is equally effective against all predator
species then it is perfectly non-specific defense [5].

Although many of the studies in literature have been focusedon the observed pat-
terns in anti-predator behavior in terms of costs and benefits of different levels of prey
investment, little attention had been given to the influenceof these anti-predator behaviors
on the population dynamics of predator prey system [6–10]. The effects of adaptive
switching on the Lotka-Volterra population dynamics have been studied later on by Krivan
[11–13], Krivan and Sikder [14] and Krivan and Eisner [15]. It has been observed that the
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optimal behavior of animals leads to persistence of predator-prey systems and reduction of
oscillations in population densities. The effect of invading species in food chains has been
discussed in Kooi et al. [16] and Kooi and Kooijman [17]. Recently, Aggelis et al. [18]
studied the effect of the facultative predation strategy onone-prey one-facultative predator
dynamic model. It is assumed that both prey and predator populations grow together
in a chemostat that fed with medium containing the necessarynutrients for saprophytic
growth of both populations. However, Vayenas et al. [19] wasintroduced and studied a
novel regulatory mechanism, called catabolic repression control-like mode (CRCL), in the
classical one-predator-two-prey dynamic model. The two prey populations (desirable and
alternative) grow in the same chemostat together with theirpredator, while the desirable
prey population represses the attack of the predator on the alternative prey through CRCL.
Bifurcation analysis was used to study the effect of switching, as regulated by CRCL, on
the dynamics and survival of both prey and predator populations.

The phenomena of change of habitats from one to other due to prey guards itself
against the abundant predator, is called defensive switching. Later on, Saleem et al. [5]
analyzed a mathematical model consisting of two-predator feeding on a single prey has
defensive switching property for predation avoidance. They assumed that the prey is
growing exponentially in the absence of predators. It is observed that, the system is
asymptotically settles to a Volterra‘s oscillation in the three dimensional space when the
intensity of defensive switching equals one and the two predators have the same mortality
rates. In this paper the food web model given by Saleem et al. [5] is modified to be
more realistic so that the prey is growing logistically in the absence of predators. The
effect of prey’s defensive switching on the dynamical behavior of the food web model is
investigated theoretically as well as numerically.

2 The mathematical model

Consider the food web model consisting of two-predator one-prey in which the prey
species growth logistically in the absence of predators, while the predators decay expo-
nentially in the absence of prey species. The simplest set ofdifferential equations, which
describes the dynamics of such food web, can be written in theVolterra framework as
follows:

dX

dT
= −α1X + A1XZ, X(0) ≥ 0,

dY

dT
= −α2Y + A2Y Z, Y (0) ≥ 0,

dZ

dT
= α3Z

(

1 −
Z

K

)

− A1XZ − A2Y Z, Z(0) ≥ 0,

(1)

whereX(T ), Y (T ) andZ(T ) denote, respectively, the population densities of two kinds
of predator’s species and a prey species at timeT respectively. α1, α2, α3, K, A1, A2

are positive constants and they standing for mortality rates of first and Second predator
respectively; the intrinsic growth rate of the prey species; the carrying capacity; and the
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respective predation rates of the first and second predator respectively. Obviously, in
system (1) the predator species, which has greater value of,αi/Ai, i = 1, 2 will face
extinction, and hence system (1); reduce to a simple predator-prey Volterra’s system.

The effect of prey defensive switching on the dynamical behavior of system (1) can
be considered through replacing the constant predatory ratesA1 andA2 by the following
nonlinear functions ofX andY respectively [20].

A1 =
aY n

Xn + Y n
=

a

(X/Y )n + 1
, A2 =

bXn

Xn + Y n
=

b

1 + (Y/X)n
, (2)

wherea andb are positive constants that stand for the predation coefficients of the first
and second predator respectively,n ≥ 0 is the intensity of prey defensive switching.
Clearly, equation (2) has a characteristic property of a prey defensive switching mecha-
nism. Indeed, the predatory rate decreases when the population of that species becomes
large compared with the population of another predator species. Obviously this property
is much amplified for large value ofn, see Fig 1. Clearly when the population of predator
becomes large the prey defends itself against it and switches to another predator species
habitat with a relatively smaller population in order to avoid too much predation of
individuals.

(a) (b)

Fig. 1. The predator rate functionA1(X, Y ) (a)A1 as a function ofX/Y ; (b) A1 as a
function ofY with fixed value ofX = 1.0.

Consequently, the two-predators, one-prey system, in which the prey species exhibits
defensive switching, can be written in the form:

dX

dT
= X

[

− α1 + c1a
ZY n

Xn + Y n

]

, X(0) > 0,

dY

dT
= Y

[

− α2 + c2b
ZXn

Xn + Y n

]

, Y (0) > 0,

dZ

dT
= Z

[

α3

(

1 −
Z

K

)

+
aXY n + bY Xn

Xn + Y n

]

, Z(0) > 0,

(3)
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whereαi (i = 1, 2, 3), K, cj (j = 1, 2), a andb are positive constants, in which the
parametersc1, c2 are the conversion rates of a preyZ to predatorsX andY respectively.

Now in order to avoid the analysis difficulty of system (3) dueto the existence of the
non-linear terms given in (2) and the eight control parameters, the following dimension-
less variables and parameters are used.

x =
c1a

α1
X, y =

c1a

α1
Y, z =

c1a

α1
Z, t = α1T,

w1 =
c2b

c1a
, w2 =

α2

α1
, w3 =

α1

c1aK
, w4 =

b

a
, w5 =

α3

α1
.

Accordingly, the dimensionless system is

dx

dt
= x

[

− 1 +
zyn

xn + yn

]

= xf1(x, y, z) = F1(x, y, z),

dy

dt
= y

[

− w2 +
w1zxn

xn + yn

]

= yf2(x, y, z) = F2(x, y, z),

dz

dt
= z

[

w5(1 − w3z) −
xyn + w4yxn

c1(xn + yn)

]

= zf3(x, y, z) = F3(x, y, z).

(4)

Note that, the interaction functionsFi, i = 1, 2, 3 of system (4) areC2 on the domain
Int.R3

+ = {(x, y, z) : x > 0, y > 0, z > 0}. Thus, the solution to the initial value
problem under consideration exists uniquely at least for some positive time. Further, the
interaction functionsFi, i = 1, 2, 3 of system (4), are assumed to have a finite values at
the point(0, 0, 0) that is:

lim
(x,y,z)→(0,0,0)

Fi(x, y, z) = Fi(0, 0, 0) = 0, i = 1, 2, 3.

Hence, these functions are continuous on the extended domain

R3
+ = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}.

In fact, they are Lipschizion onR3
+. Accordingly the solution of the system (4) with non-

negative initial condition exists and is unique. Therefore, the interior ofR3
+ is invariant

for model (4). Further, the boundedness of the solution of system (4) is given in the
following theorem.

Theorem 1. All the solutions of system(4), which initiate inR3
+, are uniformly bounded.

Proof. From the third equation of system (4), we observe that

dz

dt
= w5z(1 − w3z) −

xynz + w4yxnz

c1(xn + yn)
≤ w5z − w3w5z

2.

Thus by using the theory of differential inequality (see Hall [21]), we get

z(t) ≤
w5

w3w5 − ke−w5t
,
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wherek is the constant of integration. Lettingt → ∞, we get

z(t) ≤
1

w3
. (5)

Considerω = x
c1

+ w4y
c1w1

+ z, then from system (4) we get

dω

dt
= w5(1 − w3z)z −

w2w4

c1w1
y −

x

c1

≤ w5z −
w2w4

c1w1
y −

x

c1
≤ w5z − N

[

w4y

c1w1
+

x

c1

]

,

= (w5 + N)z − N

[

z +
w4y

c1w1
+

x

c1

]

= (w5 + N)z − Nω,

whereN = min(1, w2).
Thus by using equation (5), we obtain

dω

dt
+ Nω ≤

w5 + N

w3
.

Again, by applying the theory of differential inequality, we obtain

ω(t) =
1

c1
x(t) +

w4

c1w1
y(t) + z(t) ≤

w5 + N

Nw3

(

1 − e−Nt
)

.

Therefore, for allt sufficiently large, we obtain

ω(t) ≤
w5 + N

Nw3
.

Hence the proof of theorem is complete.

Note that, the ecological system is said to be dissipative ifthe solution of system,
which initiate inR3

+, are uniformly bounded ast → ∞. Thus system (4) is dissipative.

3 The stability analysis

The food web system (4) has at most three nonnegative equilibrium points, namelyE0 =
(0, 0, 0), E1 = (0, 0, 1/w3), E2 = (x∗, y∗, z∗) with x∗ > 0, y∗ > 0 andz∗ > 0. The
boundary pointsE0 andE1 are always exist, however the positive equilibrium pointsE2

exists if and only if there is a positive solution to the following set of algebraic equations.

xn + yn = zyn, (6a)

w2(x
n + yn) = w1zxn, (6b)

c1w5(1 − w3z)(xn + yn) = xyn + w4yxn. (6c)
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Clearly, equation (6a) and equation (6b) gives

y∗ =

(

w1

w2

)1/n

x∗. (6d)

Substituting equation (6d) in (6a) yields

z∗ = 1 +
w2

w1
. (6e)

Using equation (6d) and (6e) in equation (6c) we get

x∗ = c1w5

(

1 − w3 −
w2w3

w1

)(

1 +
w1

w2

)/(

w1

w2
+ w4

(w1

w2

)1/n
)

. (6f)

Obviously, the pointE2 is positive if and only if the following condition holds

w3 <
w1

w1 + w2
(7)

Now, in order to study the stability at the above equilibriumpoints, the Variation matrix
G of system (4) at point(x, y, z) is computed.

G(x, y, z) =





b11 b12 b13

b21 b22 b23

b31 b32 b33



 ,

where

b11 = f1 −
nxnynz

A2
, b12 =

nxn+1yn−1z

A2
, b13 =

xyn

A
,

b21 =
nw1x

n−1yn+1z

A2
, b22 = f2 −

nw1x
nynz

A2
, b23 =

w1x
ny

A
,

b31 =
nxnynz

c1A2
−

nw4x
n−1yn+1z

c1A2
−

ynz

c1A
,

b32 =
−nxn+1yn−1z

c1A2
+

nw4x
nynz

c1A2
−

w4x
nz

c1A
,

b33 = f3 − w3w5z,

wherefi (i = 1, 2, 3) is given by equation (4).
Let Gi, (i = 0, 1, 2) denotes the variational matrixG at the pointsE0, E1 andE2

respectively. Then

G0 =





−1 0 0
0 −w2 0
0 0 w5



 , G1 =





−1 0 0
0 −w2 0
0 0 −w5



 , G2 =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 ,
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where

a11 =
−nw2

w1 + w2
, a12 =

n

(w1/w2)1/n
(

1 + (w1/w2)
) , a13 =

w1x
∗

w1 + w2
,

a21 =
nw1(w1/w2)

1/n

1 + (w1/w2)
, a22 =

−nw1

1 + (w1/w2)
, a23 =

w1(w1/w2)
1/nx∗

1 + (w1/w2)
,

a31 =
−1

c1(w1 + w2)

[

w2(1 − n) + w1 + nw2w4(w1/w2)
1/n

]

,

a32 =
−w2

c1w1(w1 + w2)

[

w1w4(1 − n) + w2w4 + nw1(w1/w2)
−1/n

]

,

a33 = −w3w5

(

1 +
w2

w1

)

.

Accordingly, the following observations are made:

• The eigenvalues ofG0 areµ01 = −1 < 0, µ02 = −w2 < 0 andµ03 = w5 > 0.
Thus the pointE0 is unstable saddle point with locally stable manifold in thex − y
plane and with locally unstable manifold in thez direction.

• The eigenvalues ofG1 areµ11 = −1 < 0, µ12 = −w2 < 0 andµ13 = −w5 < 0.
ThereforeE1 is locally asymptotically stable point.

• However, the local stability analysis of the positive equilibrium pointE2 is investi-
gated in the following theorem.

Theorem 2. Suppose that the positive equilibriumE2 of system(4) exists. Then it is
locally asymptotically stable if the following set of sufficient conditions holds:

0 < n <
w1 + w2

w2

(

1 − w4(w1/w2)1/n
) or 0 < n <

(w1 + w2)w4(w1/w2)
1/n

w2

(

w4(w1/w2)1/n − 1
) , (8)

w2 = 1 or 0 < n <
w3w5(w1 + w2)

2

w2
1(1 − w2)

or 0 < n <
w3w5(w1 + w2)

2

w1w2(w2 − 1)
. (9)

Proof. It is easy to verify that, the characteristic equation of thevariational matrixG2 of
E2 is:

µ3 + b1µ
2 + b2µ + b3 = 0, (10)

where

b1 = −(a11 + a22 + a33),

b2 = a11a33 + a22a33 − a13a31 − a23a32,

b3 = a13a31a22 + a23a32a11 − a12a23a31 − a13a21a32.
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Therefore, according to Routh-Hurwitz criteria all the roots of equation (10) have negative
real parts and thatE2 is local asymptotically stable if and only ifb1 > 0, b3 > 0 and
b1b2 − b3 > 0. Now, straightforward computation shows that:

b1 =
nw1w2 + nw2

1w2 + w3w5(w1 + w2)
2

w1(w1 + w2)
> 0,

b3 = −
nw1w2x

∗

w1 + w2
a31 −

nw1w2(w1/w2)
1/nx∗

w1 + w2
a32.

Clearly, the sign ofb3 is completely depends on the sign ofa31 anda32. Thus, substituting
the values ofa31 anda32 in b3 and then rearranging the resulting terms yield:

b3 =
nw1w2x

∗

c1(w1 + w2)2

[

(w1 + w2) + nw2

(

w4

(w1

w2

)1/n

− 1

)]

+
nw1w

2
2(w1/w2)

1/nx∗

c1w1(w1 + w2)2

[

(w1 + w2)w4 + nw1

(w1

w2

)1/n
(

1 − w4

(w1

w2

)1/n
)]

.

Thus, condition (8) represents the sufficient condition forb3 > 0.
Now, expandb1b2 and calculateb1b2 − b3, we get

b1b2 − b3 = − a33(a11 + a22)[a11 + a22 + a33]

+ [(a11 + a33)a13 + a12a23]a31 + [(a22 + a33)a23 + a13a21]a32.

According to the values of the coefficientsaij , (i, j = 1, 2, 3) we obtain

b1b2 − b3 = B1 + B2 + B3,

where

B1 =
nw2w3w5(1 + w1)

w2
1(w1 + w2)

[

nw1w2(1 + w1) + w3w5(w1 + w2)
2
]

> 0,

B2 = −
a31x

∗

(w1 + w2)2
[

nw1w2(1 − w2) + w3w5(w1 + w2)
2
]

,

B3 = −
a32w2(w1/w2)

1/nx∗

(w1 + w2)2
[

nw2
1(w2 − 1) + w3w5(w1 + w2)

2
]

.

Note that, since (8) represents the sufficient condition fora31 < 0 anda32 < 0 also.
Thus, condition (9) is the sufficient condition forb1b2 − b3 > 0. Hence, according to
Routh-Hurwitz criteria, the above set of conditions represents the sufficient conditions for
the local stability ofE2 and then the proof is complete.

Clearly, the local stability conditions given by Theorem 2 do not seem to be simple
for general values ofn. Therefore, in the following we shall discuss those conditions for
a special value ofn. It is clear from the form ofa31 anda32 that:
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• For n < 1, it is easy to verify that condition (8) is automatically satisfied. Hence
the local stability conditions of the positive equilibriumpointE2 will be reducing to
satisfying condition (9) only.

• For n = 1, rewriting the value ofb1b2 − b3 after substituting the values ofa31, a32

andx∗ yields the following result:

b1b2 − b3 = B1 + B2 + B3

=
w2w3w5(1 + w1)

w2
1(w1 + w2)

[

w1w2(1 + w1) + w3w5(w1 + w2)
2
]

+
w5

(

w1 − w3(w1 + w2)
)

w1(w1 + w2)2
[

w1w2(1 − w2) + w3w5(w1 + w2)
2
]

+
w2

2w5

(

w1 − w3(w1 + w2)
)

w2
1(w1 + w2)2

[

w2
1(w2 − 1) + w3w5(w1 + w2)

2
]

.

So,

b1b2 − b3 =
w2w3w5(1 + w1)

w2
1(w1 + w2)

[w1w2(1 + w1) + w3w5(w1 + w2)
2]

+
w2w5[w1−w3(w1+w2)]

(w1+w2)2
(1−w2)+

w3w
2
5

w1
[w1−w3(w1+w2)]

+
w2

2w5[w1−w3(w1+w2)]

(w1+w2)2
(w2−1)+

w2
2w3w

2
5

w2
1

[w1−w3(w1+w2)],

b1b2 − b3 =
w2w3w5(1 + w1)

w2
1(w1 + w2)

[

w1w2(1 + w1) + w3w5(w1 + w2)
2
]

+
w2w5

w1 + w2

[

w1

w1 + w2
− w3

]

(1 − w2)

+
w3w

2
5

w1
(w1 + w2)

[

w1

w1 + w2
− w3

]

−
w2

2w5

w1 + w2

[

w1

w1 + w2
− w3

]

(1 − w2)

+
w2

2w3w
2
5

w2
1

(w1 + w2)

[

w1

w1 + w2
− w3

]

,

b1b2 − b3 =
w2w3w5(1 + w1)

w2
1(w1 + w2)

[

w1w2(1 + w1) + w3w5(w1 + w2)
2
]

+
w2w5

w1 + w2

[

w1

w1 + w2
− w3

]

(1 − w2)
2

+
w3w

2
5

w1
(w1 + w2)

[

w1

w1 + w2
− w3

](

1 +
w2

2

w1

)

.
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Now, according to existence condition (7) of the positive equilibrium point E2, we get
b1b2 − b3 > 0 is true always. Therefore, when the intensity of prey defensive switching
equal one (n = 1), it has been proved that system (4) generally has a locally asymptoti-
cally stable coexisting equilibrium pointE2. Moreover, the global asymptotic stability of
E2 is given in the following theorem.

Theorem 3. If n = 1, then the positive equilibrium pointE2 is a globally asymptotically
stable with respect to all solutions initiate in theInt.R3

+.

Proof. Consider the following positive definite function

L(x, y, z) = α

x
∫

x∗

u − x∗

u
du + β

y
∫

y∗

v − y∗

v
dv + γ

z
∫

z∗

w − z∗

w
dw, (11)

whereα, β andγ are positive constants to be determined. DifferentiatingL with respect
to timet along the solution of system (4), we get

dL

dt
= α(x − x∗)

[

− 1 +
yz

x + y

]

+ β(y − y∗)

[

− w2 +
w1xz

x + y

]

+ γ(z − z∗)

[

w5(1 − w3z) −
(1 + w4)xy

c1(x + y)

]

= α(x − x∗)

[

yz

x + y
−

y∗z∗

x∗ + y∗

]

+ β(y − y∗)

[

w1xz

x + y
−

w1x
∗z∗

x∗ + y∗

]

+ γ(z − z∗)

[

− w3w5(z − z∗) −

(

(1 + w4)xy

c1(x + y)
−

(1 + w4)x
∗y∗

c1(x∗ + y∗)

)]

= α(x − x∗)

[

(z − z∗)y

x + y
−

(x − x∗)y∗z∗

(x + y)(x∗ + y∗)
+

(y − y∗)x∗z∗

(x + y)(x∗ + y∗)

]

+ β(y − y∗)

[

w1(z − z∗)x

x + y
−

w1(y − y∗)x∗y∗

(x + y)(x∗ + y∗)
+

w1(x − x∗)y∗z∗

(x + y)(x∗ + y∗)

]

+ γ(z−z∗)

[

−w3w5(z−z∗)−
(1+w4)(y−y∗)xx∗

c1(x+y)(x∗+y∗)
−

(1+w4)(x−x∗)yy∗

(x+y)(x∗+y∗)

]

.

Therefore,

dL

dt
= −

[

αy∗z∗

(x + y)(x∗ + y∗)

]

(x − x∗)2 −

[

βw1x
∗z∗

(x + y)(x∗ + y∗)

]

(y − y∗)2

− γw3w5(z − z∗)2 +

[

βw1x −
γ(1 + w4)xx∗

c1(x∗ + y∗)

]

(y − y∗)(z − z∗)

x + y

+ [βw1y
∗z∗ + αx∗z∗]

(x − x∗)(y − y∗)

(x + y)(x∗ + y∗)

+

[

αy −
γ(1 + w4)yy∗

c1(x∗ + y∗)

]

(x − x∗)(z − z∗)

x + y
.
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Choose the positive constants as follows:

α =
(1 + w4)y

∗

c1(x∗ + y∗)
, β =

(1 + w4)x
∗

c1w1(x∗ + y∗)
, γ = 1.

Then, we obtain

dL

dt
= −

M1y
∗2z∗

M2
(x − x∗)2 −

M1x
∗2z∗

M2
(y − y∗)2

− w3w5(z − z∗)2 +
2M1x

∗y∗z∗

M2
(x − x∗)(y − y∗).

Hence

dL

dt
= −

M1z
∗

M2
[y∗(x − x∗) − x∗(y − y∗)]2 − w3w5(z − z∗)2,

whereM1 = 1 + w4 andM2 = c1(x + y)(x∗ + y∗)2. Clearly dL
dt < 0 and dL

dt = 0 if and
only if x = x∗, y = y∗ andz = z∗. So,L is a Lyapunov function with respect toE2, and
henceE2 is a globally asymptotically stable.

4 Numerical simulation

In order to better understand the dynamics of the proposed model, given in equation
(4), in three-dimensional system we turn to numerical simulations. Extensive numerical
simulations were carried out for different sets of parameter values and for different sets
of initial conditions. We first consider the following values of parameters:

w1 = 1.0, w3 = 0.2, w4 = 0.5, w5 = 2.0, c1 = 1.0, n = 1. (12)

For the above set of parameter values withw2 = 0.1, 1, 2; it is found that the
model system (4) admits a globally asymptotically stable point. Further, the computer
simulation, as given in Fig. 2, of system (4) at the above set of data insures this analytical
behavior.

Clearly, Fig. 2(a) shows that, system (4) forw2 = 0.1 with other parameter values
fixed as in equation (12) converges to the equilibrium point(1.14, 11.44, 1.1) in the
Int.R3

+ from two different sets of initial data, Fig. 2(b) shows that, for w2 = 1 with
other parameter values fixed as in equation (12), the system (4) has a globally asympto-
tically stable point(1.6, 1.6, 2). However, it is converging to another equilibrium point
(1.6, 0.8, 3) for w2 = 2 keeping other parameter as in equation (12).

Now, consider the following set of parameter values:

w1 = 1.0, w3 = 0.2, w4 = 0.5, w5 = 2.0, c1 = 1.0, n = 0.5. (13)

According to the analytical behavior the system (4) withw2 = 0.1, 1, 2 has a locally
asymptotically stable point. Numerical simulations of system (4) forw2 = 0.1, 1, 2 keep-
ing other parameter fixed as in equation (13) have been down inFig. 3(a)–(c) respectively.
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Fig. 2. Trajectories of system (4), for the data given by equation (12) starting from two
different initial data: (a) stable point(1.14, 11.44, 1.1) for w2 = 0.1; (b) stable point

(1.6, 1.6, 2) for w2 = 1; (c) stable point(1.6, 0.8, 3) for w2 = 2.
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Fig. 3. Trajectories of system (4), for the data given by equation (13) starting from
initial data: (a) stable point(0.28, 28.6, 1.1) for w2 = 0.1; (b) stable point(1.6, 1.6, 2)

for w2 = 1; (c) stable point(1.92, 0.47, 3) for w2 = 2.
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Obviously, the three computer simulations in Fig. 3(a)–(c)present a stable case.
Finally, for the following set of parameter values, the sufficient conditions for the locally
asymptotically stable ofE2, which are given by Theorem 2, are not satisfied.

w1 = 1.0, w3 = 0.2, w4 = 0.5, w5 = 2.0, c1 = 1.0, n = 10 (14)

with w2 = 0.1, 1.0, 2 respectively.
Note that the numerical simulation given by Fig. 4(a)–(c), for the system (4) of the

above set of data withw2 = 0.1, 1, 2 respectively, also shows the coexistence of stable
equilibrium points.
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Fig. 4. Trajectories of system (4), for the data given by equation (14) starting from
initial data: (a) stable point(1.61, 2.03, 1.1) for w2 = 0.1; (b) stable point(1.6, 1.6, 2)

for w2 = 1; (c) stable point(1.24, 1.15, 3) for w2 = 2.

5 Discussion and conclusions

In the last two decades number of papers have been done on the effects of switching
mechanism of prey and / or predator, due to variety of biological concepts, on the behavior
of population dynamics [11–18]. The effect of optimal diet choice in two-prey-one-
predator population dynamic model is investigated in Krivan [11]. It is observed that a
system consisting of predators, which specialize on the more profitable prey only may be
stable, while the same system with predators following the rule of optimal diet choice may
not have a stable equilibrium. In addition, he showed that optimal foraging might lead to
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permanence of the predator-prey system. The effects of various host-feeding patterns
on host-parasitoid population dynamic are studied in Krivan [12]. He obtained that
while the destructive type of host-feeding does not qualitatively influence host-parasitoid
population dynamics, non-destructive host-feeding has strong effect on population dy-
namics since it leads either to a stable equilibrium or it reduces the amplitude of maximal
fluctuations in population densities. The influence of individual behavior on the Lotka-
Volterra predator-prey dynamics in two-patch environmentis also examined by Krivan
see [13]. It is assumed that the individuals behave to maximize their fitness measured
by the instantaneous per capita growth rate. Two cases are investigated in detail: In the
first case its assumed that only predators are free to move between patches whereas in
the second both predators and prey move freely between patches. It is concluded that the
optimal behavior of animals leads to persistence of predator-prey systems and reduction of
oscillations in population densities. Further investigations of optimal foraging behavior
of predators on two-prey-one-predator population dynamicmodel were done in Krivan
and Sikder [14] and Krivan and Eisner [15]. These studies showed that, in case of logistic
description of prey growth the optimal foraging behavior ofpredators might promote
coexistence in predator-prey systems [14], while it is leads to persistence of prey-predator
systems and reduction of oscillations in population densities when the model assumes the
exponential growth of prey [15].

The effect of invading species in food chain models with Holling type-II functional
response have been studied by Kooi et al. [16] and Kooi and Kooijman [17]. They have
found that when a fast grown top predator is introduced in a food chain, the resulting
system becomes more resistant to further invasion [16]. However, they concluded that,
since the growth rate decreases with the trophic level, thisenable short food chains to be
resistant to invaders. Moreover, it is observed that the invasion of a competitor of the prey
can stabilize an oscillatory nutrient-prey-predator bi-trophic food chain [17].

The facultative predation strategy in one-prey-one-facultative-predator dynamic mo-
del is investigated by Aggelis et al. in [18]. It is assumed that both prey and predator
populations grow together in a chemostat, which is fed with medium containing the
necessary nutrients for saprophytic growth of both populations. The attack of the fa-
cultative predator on the prey population is regulated by the abundance of the common
resource for saprophytic growth, via a catabolic repression mechanism. The common
substrate for saprophytic growth of both populations actedas repressor on the attack
of predators on the prey population. It is observed that the catabolic repression control
favors domination of the prey over the predator and, under certain circumstances (when
the predator has the competitive advantage at high substrate concentration) coexistence
of both prey and predator populations. In a similar manner Vayenas et al. [19] studied the
strategy of alternative prey (switching), regulated by a catabolic repression control-like
mode (CRCL), in a two-prey-one-predator chemostat model. It is observed that, when the
alternative prey has no competitive advantage for the common substrate over the desirable
prey, its survival depends on the protection offered by the desirable prey via CRCL, and
hence CRCL allows the coexistence of both desirable and alternative prey and predator
populations. However, when the alternative prey has the competitive advantage over the
desirable prey, CRCL negatively affects both the state of survival of the desirable prey
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and the coexistence state.
Keeping the above in view, a three species food web model consisting of two-

predator feeding on the logistic prey species is consideredin case of existence of de-
fensive switching behavior. Further, in order to better understand the effect of the prey’s
defensive property, the food web model (1) in case of there isno defensive switching
behavior is also investigated. It has been observed that system (1) has a non-hyperbolic
positive equilibrium point in interior of positive octant and hence all types of dynamics
such as stable point, periodic, quasiperiodic, and even chaotic in the interior ofR3

+ are
possible. However, the analysis of section (3) shows that, the food web model with
defensive switching behavior generally has a stable three species coexisting equilibrium
state. Moreover, in the special case when the intensity of defensive switch equals one the
system has a globally asymptotically stable coexisting equilibrium state. Accordingly, it
is concluded that adding the defensive switching behavior to the food web system under
consideration have a stabilizing effect on the dynamical behavior.

It may be pointed out here that the analysis of Saleem et al. [5] shown that the food
web system, which is consisting of two-predator feeding on an exponential prey species
with defensive switching property, is asymptotically settles to a Volterra‘s oscillation in
the three dimensional space when the intensity of defensiveswitching equals one and
the two predators have the same mortality rates. In contrastwhen we using logistic prey
species instead of an exponential prey species, the dynamics of the interior equilibrium is
changed and we have obtained sufficient conditions under which the food web system is
a globally asymptotically stable in the interior of positive octant.
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