Nonlinear Analysis: Modelling and Control, 2008, Vol. 139\, 225-240

The Dynamics of Food Web Model with Defensive
Switching Property

R.K.Naji,|.H. Kasm

Department of Mathematics, College of Science
University of Baghdad, Iraq
rknaji@yahoo.com

Received: 08.07.2007 Revised: 15.12.2007 Published online: 02.06.2008

Abstract. In this paper, a food web model consisting of two-predatae-prey with
the defensive switching of predation avoidance is propaesetlanalyzed. It is assumed
that the prey growth logistically in the absence of predatand defends itself from
relatively abundant predator species by switching to aratiabitat with relatively rare
predator species. Sufficient conditions for the stabilftthe non-trivial equilibrium point
are obtained. The Lyapunov function is constructed to éistakhe global asymptotic
stability of the non-trivial equilibrium point when the émsity of defensive switching
equal one. Numerical simulations for different sets of peter values and for different
sets of initial conditions are carried out. It has been shtivahthe system has a globally
asymptotically stable non-trivial point when the two preata have the same mortality
rates.

Keywords: food web, prey-predator, defensive switching propergbisty, Lyapunov
function.

1 Introduction

In predator-prey environment, there is variety of ways iriclitpotential prey attempts
to avoid predators; these anti-predator behaviors inchadétat selection, vigilance and
other types of behaviors [1-4]. The anti-predator behavidren a prey is shared by
two or more predator species, may be classified as specifiorespecific. It is known
as predator-specific defense when the prey defense isieéf@ctainst only one predator
species. However, if each of the different behaviors is Byatiective against all predator
species then it is perfectly non-specific defense [5].

Although many of the studies in literature have been focusethe observed pat-
terns in anti-predator behavior in terms of costs and benefitifferent levels of prey
investment, little attention had been given to the influesf¢bese anti-predator behaviors
on the population dynamics of predator prey system [6—10he &ffects of adaptive
switching on the Lotka-Volterra population dynamics hagetostudied later on by Krivan
[11-13], Krivan and Sikder [14] and Krivan and Eisner [15ha&s been observed that the
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optimal behavior of animals leads to persistence of pregaty systems and reduction of
oscillations in population densities. The effect of invagispecies in food chains has been
discussed in Kooi et al. [16] and Kooi and Kooijman [17]. Ratte Aggelis et al. [18]
studied the effect of the facultative predation strateggioe-prey one-facultative predator
dynamic model. It is assumed that both prey and predatorlptpas grow together
in a chemostat that fed with medium containing the necessatryents for saprophytic
growth of both populations. However, Vayenas et al. [19] wé&i©duced and studied a
novel regulatory mechanism, called catabolic repressiatrol-like mode (CRCL), in the
classical one-predator-two-prey dynamic model. The tvey populations (desirable and
alternative) grow in the same chemostat together with fhreidator, while the desirable
prey population represses the attack of the predator ortdraeative prey through CRCL.
Bifurcation analysis was used to study the effect of switghas regulated by CRCL, on
the dynamics and survival of both prey and predator popaniati

The phenomena of change of habitats from one to other dueeipoqurards itself
against the abundant predator, is called defensive swijcHiater on, Saleem et al. [5]
analyzed a mathematical model consisting of two-predatedihg on a single prey has
defensive switching property for predation avoidance. yrassumed that the prey is
growing exponentially in the absence of predators. It iseoled that, the system is
asymptotically settles to a Volterra‘s oscillation in tiede dimensional space when the
intensity of defensive switching equals one and the twoae@d have the same mortality
rates. In this paper the food web model given by Saleem ebhis[modified to be
more realistic so that the prey is growing logistically iretabsence of predators. The
effect of prey’s defensive switching on the dynamical betwaof the food web model is
investigated theoretically as well as numerically.

2 Themathematical mode

Consider the food web model consisting of two-predator pres- in which the prey
species growth logistically in the absence of predatorslevthe predators decay expo-
nentially in the absence of prey species. The simplest sdiffefential equations, which
describes the dynamics of such food web, can be written intiterra framework as
follows:

dX

ﬁ = —Cle + AlXZ, X(O) Z O7

dY

==Y +AYZ, Y(0) 20, Q)
az Z

whereX (T, Y(T') andZ(T') denote, respectively, the population densities of two &ind
of predator’s species and a prey species at timespectively. a1, as, as, K, A1, As
are positive constants and they standing for mortalitysrafefirst and Second predator
respectively; the intrinsic growth rate of the prey specibe carrying capacity; and the
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respective predation rates of the first and second predaspectively. Obviously, in
system (1) the predator species, which has greater value; of;, i« = 1,2 will face
extinction, and hence system (1); reduce to a simple pregady Volterra's system.

The effect of prey defensive switching on the dynamical bedraf system (1) can
be considered through replacing the constant predatayg fgtand A by the following
nonlinear functions oX andY respectively [20].

_aY™ a A — bx™ b @
7XTL_I’_YTL - (X/Y)n+1’ 27XTL_I’_Y7L - 1+(Y/X)n’

wherea andb are positive constants that stand for the predation coeffisiof the first
and second predator respectively,> 0 is the intensity of prey defensive switching.
Clearly, equation (2) has a characteristic property of § pefensive switching mecha-
nism. Indeed, the predatory rate decreases when the poputdtthat species becomes
large compared with the population of another predatorispe©bviously this property
is much amplified for large value of, see Fig 1. Clearly when the population of predator
becomes large the prey defends itself against it and svéttthanother predator species
habitat with a relatively smaller population in order to mv®éoo much predation of
individuals.

Ay

a

-— n=10

-—— n=1

a2

(b)

Fig. 1. The predator rate functiofi; (X,Y") (a) A; as a function ofX/Y’; (b) A1 as a
function of Y with fixed value ofX = 1.0.

Consequently, the two-predators, one-prey system, intwthie prey species exhibits
defensive switching, can be written in the form:

dX zYym

d—T:X|:—Oé1+ClaW:|, AXV(O)>O7

dY zZX"

Yy 22 |y

s [aﬁ@bm”n] 0) >0, 3)
az Z aXY" +bY X"

Y _glag(1- L) L&Ay

dT [O‘?'( K) Xn+yn } 0)>0,
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wheree; (i = 1,2,3), K, ¢; (j = 1,2), a andb are positive constants, in which the
parameters;, co are the conversion rates of a pr&yto predatorsX andY respectively.

Now in order to avoid the analysis difficulty of system (3) da¢he existence of the
non-linear terms given in (2) and the eight control paransetbe following dimension-
less variables and parameters are used.

cia cira cia
xr=—X, y=—Y, z=—2 t =o1T,
aq aq aq
cob Qs o b Qs
w1 = ) Wy = —, w3 = ) Wy = —, Wy = —.
cia a1 craK a a1

Accordingly, the dimensionless system is

d r n

d_f - Z_i 1+ x’VLZ—?IJ—y'rL:| :xfl(xayvz) = Fl(x7y’z>’

d r n

d_:ll{ = y-_w2 + ;Zlimyn:| - ny(l‘,y,Z) = FQ(x7yaZ)5 (4)
dz [ ry" + wayx”

— =z|ws(l —wsz) - —————| = 2f3(x,y,2) = F3(z,y, 2).

dt 5( 3 ) c1($”+yn) f3( Y ) 3( Y )

Note that, the interaction functiorf§, i = 1,2, 3 of system (4) ar&? on the domain
Int.RY = {(z,y,2z): 2 > 0, y > 0, z > 0}. Thus, the solution to the initial value
problem under consideration exists uniquely at least farespositive time. Further, the
interaction functions;, i = 1,2, 3 of system (4), are assumed to have a finite values at
the point(0, 0, 0) that is:

li F; IR =F; , U, =0, ':]_’27.
(I:y,z)lin(o,(),o) (,9.2) (0,0,0)=0, i 3

Hence, these functions are continuous on the extended domai
R? ={(z,y,2): >0,y >0, 2 >0}

In fact, they are Lipschizion o? . Accordingly the solution of the system (4) with non-
negative initial condition exists and is unique. Therefdhne interior of R% is invariant
for model (4). Further, the boundedness of the solution sfesy (4) is given in the
following theorem.

Theorem 1. All the solutions of systef@), which initiate inR3 , are uniformly bounded.
Proof. From the third equation of system (4), we observe that

dz zy"z + wayx"z 9

% = ’LU5Z(1 — ’LUJZ) — W § Wz — W3Wr2™.
Thus by using the theory of differential inequality (seelH21]), we get
ws

2 < —mM ——
() < waws — ke~ wst’
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wherek is the constant of integration. Letting— oo, we get

1
t) < —.
A<

Considew = & + 2L + 2, then from system (4) we get

dw (1 ) Wal4 T
— =ws(l —w3z2)z — B
dt ° ’ c1wy c1
Sww—ﬁ@wﬂr—ﬁfﬂ%z—N{ww-+£}
c1wq Cc1 ci1wy C1
= (w:;—l—N)z—N[z—i— Wiy +£] = (ws + N)z — Nw,
1w C1

whereN = min(1, ws).
Thus by using equation (5), we obtain
dw ws + N

— +Nw< .
dt+ W= ws

Again, by applying the theory of differential inequalityevebtain

wt) = La(t) + - yt) 4+ 2(r) < BN

_ ,—Nt
C1 C1wq N’LU5 (1 ¢ )

Therefore, for alk sufficiently large, we obtain

w5+N

t) <
w(>_ Nuws

Hence the proof of theorem is complete.

(5)

O

Note that, the ecological system is said to be dissipatiteefsolution of system,
which initiate inR'i, are uniformly bounded as— oo. Thus system (4) is dissipative.

3 Thestability analysis

The food web system (4) has at most three nonnegative equititpoints, namely, =
(0,0,0), E1 = (0,0,1/ws), By = (z*,y*,z*) with z* > 0, y* > 0andz* > 0. The
boundary point#, andE; are always exist, however the positive equilibrium poilits
exists if and only if there is a positive solution to the feling set of algebraic equations.

wo(z" +y™) = wrza”,

caws(l —wsz) (" + y") = xy"™ + wayz™.
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Clearly, equation (6a) and equation (6b) gives

w 1/n
y = (_) 2. (60)
w2
Substituting equation (6d) in (6a) yields
=14 2 (6€)
w1

Using equation (6d) and (6€) in equation (6¢) we get

1/n
z* :clw5(1—w3—w2w3)(1+ﬂ)/(ﬂ +w4(ﬂ) ) (67
w1 w2 w2 w2

Obviously, the poinf; is positive if and only if the following condition holds

wq
 — 7
W S T (7)
Now, in order to study the stability at the above equilibrippints, the Variation matrix
G of system (4) at poinfz, y, z) is computed.

bi1 b2 b3
G(z,y,z) = |bar baa bas|,
bs1 b3z bs3

where
b B f nznynz b B nl.nJrlynle b B Zyn
n=J1= y V12 = y 013 = ——,
A? A2 A

b — nw " tyntlz b — nw "y z b wr ™y
20 = "5 20 = f2 — Tz b=
b nl.nynz B nw4xn—1yn+1z B y”z
3 01A2 01A2 ClA7
b — —nz" Yyl nwg™y"z waz™z
32 = -

01A2 01A2 ClA ’

b3z = f3 — wawsz,

wheref; (i = 1,2, 3) is given by equation (4).
Let G;, (i = 0,1,2) denotes the variational matrix at the pointsty, E; and E,
respectively. Then

-1 0 0 -1 0 0 a11 a12 Q13
Go=|0 —w2 O, Gi=|0 —wy 0 |, Ga= |aa a2 axs|,
0 0 Ws 0 0 —Ws5 a3y Q32 ass
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where
L) n wyx*
a =, a = R a =,
P wtw T (wnfwn) V(U (wifwe)” T wr - w
nwy (wy /wy) /" —nwi wi (wy /wa) /™ a*
g = ————F——, ap=—"1——, Qp=——"——"
1+ (wy/w2) 1+ (wy/ws) 1+ (wy/we)
-1
= 1— 1/n
asy P P [wa(1 = n) + wi + nwaws (wy /wa2)"™],
—wa —1/n
g — — 2 1—
aso crwn (w1 + w2) [wiws(1 — n) + wawy + nw: (wy /ws) 1,

w
w1

Accordingly, the following observations are made:

e The eigenvalues affg areppr = —1 < 0, po2 = —wz < 0 @andugs = ws > 0.
Thus the pointE is unstable saddle point with locally stable manifold in the y
plane and with locally unstable manifold in thelirection.

e The eigenvalues aff; arep; = —1 < 0, p12 = —wy < 0 anduz = —ws < 0.
ThereforeE; is locally asymptotically stable point.

e However, the local stability analysis of the positive eiiibm point E, is investi-
gated in the following theorem.

Theorem 2. Suppose that the positive equilibriuBy of system(4) exists. Then it is
locally asymptotically stable if the following set of su#fit conditions holds:

1/n
0<n< W+ W - or 0<n< (w1+w2)w4(w11/w2) , (8)
U}Q(l — U)4(UJ1/U)2) /n) w2 (w4(w1/w2) /n— 1)
B 2 < 2
we=1 or 0<n< —“’5“’3(“’1 W) o < < Laslun Fwa)” (9)
wi(1l — wa) wiwa (wg — 1)

Proof. Itis easy to verify that, the characteristic equation ofithgational matrixG, of
Esis:

u3 + b1u2 + bap + b3 =0, (10)
where

b1 = —(a11 + a2z + ass),
ba = a11a33 + aza33 — ai1zas1 — azass,

bs = a13a31a22 + A23a32011 — 612023031 — A13021032.
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Therefore, according to Routh-Hurwitz criteria all thet®of equation (10) have negative
real parts and thak; is local asymptotically stable if and only 8 > 0, b5 > 0 and
b1by — bg > 0. Now, straightforward computation shows that:

nwiws + nw%wg + waws (w1 + w2)2
b1 = > O7
w1 (’Ll)l —+ ’w2>

nwiwax* nwywa (wy Jws) /" x*
by = ——————az — asz.
w1 + w2 w1 + we

Clearly, the sign obs is completely depends on the signmf andass. Thus, substituting
the values ofi3; andass in b3 and then rearranging the resulting terms yield:

nwiwex* wiy \ 1/n
. )"
3= er(un T wa)? {(wl +w2)+nw2<w4 ™ )]

2 1/n % 1/n 1/n
nwywj (wy /ws)/ " (wn -+ ws)ws + ntn (ﬂ) ) —w;;(ﬂ) .
crwy (wy + ws)? wa wa

Thus, condition (8) represents the sufficient conditiorbfor- 0.
Now, expand, b, and calculaté,b, — b3, we get

b1by — bs = — asz(a11 + az2)[ai1 + a2 + ass)

+ [(a11 + as3)ais + a12az23]asy + [(az22 + asz)ass + aizaz1]ass.
According to the values of the coefficients, (i, = 1,2, 3) we obtain

bibs — bz = By + By + Bs,

where
B — nwawsws (1 + wq) . ) 0
=l el ) s )] >0
az1r*
B2 = o4 gy rova(L = wa) + wyws(w +12)7]
a32w2(w1/w2)1/"az* 9 2
B3 = — nwi(wg — 1) + wyws(wy +w .
3 (w1 + ws)? [ 1 (w2 ) 3ws (w1 2)]

Note that, since (8) represents the sufficient conditionafgr < 0 andass < 0 also.
Thus, condition (9) is the sufficient condition forb, — b3 > 0. Hence, according to
Routh-Hurwitz criteria, the above set of conditions reprds the sufficient conditions for
the local stability ofF; and then the proof is complete. O

Clearly, the local stability conditions given by Theorem@rbt seem to be simple
for general values ai. Therefore, in the following we shall discuss those condaifor
a special value of. It is clear from the form ofi3; andas, that:
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e Forn < 1, it is easy to verify that condition (8) is automaticallyiséed. Hence
the local stability conditions of the positive equilibriyroint E» will be reducing to
satisfying condition (9) only.

e Forn = 1, rewriting the value ob,b, — b3 after substituting the values af1, asz
andzx* yields the following result:
biby — b3 = By + By + B3
wowsws (1 + w1) 9
= 1
w%(wl ) [w1w2( + w1) + wsws (wy + wa) ]
Ws (w1 —wz(wr + w2))
wy (w1 + wa)?

[w1w2(1 — wg) + wyws(wy + w2)2}
wiws (w1 —ws(wy + wg))

wi (wy + wg)?

[w%(wg — 1) + wsws (w1 + w2)2]

So,
bibs — b3z = %?Zi—m[wlwg(l + wy) + waws (w1 + wo)?]
wzws[z);lfzg;};Jrum)] (1—w2)+w2;10§ [wl—wg(wl—i—wg)]
el S
biby — b3 = %B(Zi—m [w1w2(1 + wy) + waws (w1 + w2)2]
wqfiwzu LMU-:-IUJQ B wg] (1 B w2)
+ U}Z:fg (w1 + w2) {71111“—;—11112 - w3]
2
; w?}iwiz LMU-EUJQ B wg] (1 B w2)
+ wg#gwg(uﬂ + wy) [m - w3} )
b1bs — b3 = w [wlwg(l + wy) + waws(wy + w2)2]

2
wi(wy + we)
W2Ws w1
w1 + w2 w1 + w2

w3w? w w3
+ =2 5(w1+w2){71w3]<1+—2>.
w1 wy + w2 w1

- UJS] (1—wy)?

233



R. K. Naji, I. H. Kasim

Now, according to existence condition (7) of the positiveliilgrium point F», we get
bibe — b3 > 0is true always. Therefore, when the intensity of prey dafenswitching
equal one« = 1), it has been proved that system (4) generally has a locajljnatoti-
cally stable coexisting equilibrium poittt,. Moreover, the global asymptotic stability of
E is given in the following theorem.

Theorem 3. If n = 1, then the positive equilibrium poit; is a globally asymptotically
stable with respect to all solutions initiate in tiet. R3 .

Proof. Consider the following positive definite function

L(z,y,z) = / dquﬂ/

whereq, 3 and~ are positive constants to be determined. Differentiafingith respect
to timet along the solution of system (4), we get

dv+7/“’;z duw, (11)

2%

dL . Yz w1T2
ot =alz -z >[1+m—+y} +By—vy ){ 2+m+y}
+9(z — 2%) [w5(1 —w3z) — (;J(rxwf>;)y]
— —r* Yz _ y* * o w1rz _ wlm z
ol )[x+y x*+y*} o )[:Hy oy ]
. . (1+wy)ry (1 +wgz"y
eate 2 —muste )~ (T - q@*+m>)}
_ OZ(I l'*)|:(z B Z*)y o (QC 7$*)y*2* (yfy ) :|
Tty (x +y)(z* +y*) (x+y)(fc*+y*)
Confwz =2 w(y —yt)zty” wy(z — a*)y*z*
+h y>[ P ) (rc+y)(x*+y*)}
N I € 0 A €
2t o)~
Therefore,

L [y e [ Bwrs e
e | LR [ | (S
y(1 +w4)m*] (y —y")(z—2%)
c1(r* +y*) z+y
* % * % m—x*)(y—y*)
+ [Buny*z" + ar’z ]—(:c+y)(x* o)
(I +wyyy | (@ —a") (2 — 27)
o - B [

— ywsws(z — z*)2 + | fwrx —
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Choose the positive constants as follows:

oo (1+ws)y C p= (1+wq)x -1
ci(r* +y*) crwy (z* +y*)

Then, we obtain

dL  Myy**z* e Mjx*2z* oo

E__Tg(m_x ) —TQ(?J—Z/ )

N 2Myx*y*z* N .
— wyws(z — ')’ + (e 2"y — ).
2

Hence

dL _ Mlz* * * * *\12 *\2

=W =) =) - ez - )

whereM; = 1+ wy andMs = c¢1(z + y)(z* + y*)%. Clearly4: < 0and4t = 0if and
onlyif x = z*, y = y* andz = z*. So,L is a Lyapunov function with respect #,, and
henceF; is a globally asymptotically stable.

4 Numerical simulation

In order to better understand the dynamics of the proposedkingiven in equation
(4), in three-dimensional system we turn to numerical satiohs. Extensive numerical
simulations were carried out for different sets of paramesdues and for different sets
of initial conditions. We first consider the following vatkief parameters:

w1 = 1.0, w3 = 0.2, Wy = 0.57 W5 = 2.0, C1 = 1.0, n=1. (12)

For the above set of parameter values with = 0.1,1,2; it is found that the
model system (4) admits a globally asymptotically stablepoFurther, the computer
simulation, as given in Fig. 2, of system (4) at the above data insures this analytical
behavior.

Clearly, Fig. 2(a) shows that, system (4) ios = 0.1 with other parameter values
fixed as in equation (12) converges to the equilibrium p@int4,11.44,1.1) in the
Int.R% from two different sets of initial data, Fig. 2(b) shows thfatr w, = 1 with
other parameter values fixed as in equation (12), the systeimag a globally asympto-
tically stable point(1.6,1.6,2). However, it is converging to another equilibrium point
(1.6,0.8, 3) for wy = 2 keeping other parameter as in equation (12).

Now, consider the following set of parameter values:

w; = 1.0, w3=0.2, wyg=0.5 ws=20 ¢ =10, n=0.5. (13)

According to the analytical behavior the system (4) with = 0.1,1,2 has a locally
asymptotically stable point. Numerical simulations ofteys (4) forws = 0.1, 1, 2 keep-
ing other parameter fixed as in equation (13) have been dowigir3(a)—(c) respectively.
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Stable point

Stable point
(16,16,2)

(114,11.44,11)

Initial value
(2,9,3) Inital value
(5,.2.5)

Initial value
(52,5

Initial value
2,.9.3)

Stable point
(16,08,3)

Iniial value
(29,3

Iniial value
(52,5

(©

Fig. 2. Trajectories of system (4), for the data given by ¢éiqQna12) starting from two
different initial data: (a) stable poirffi.14, 11.44, 1.1) for w, = 0.1; (b) stable point
(1.6, 1.6, 2) for w2 = 1; (c) stable poin(1.6, 0.8, 3) for wy = 2.

25 4
2 3

2 Stable point

N 159 stable point N (16,16,2)

(28,286,11)

1 1
05 0
0 Inital value 2
(75,.9,.75) 16 Initial value )
LM (75,.9,.75)
002 ™ 05 05
y X y X
(@) (b)
4
3 Stable point
(192,.47,3)
N2
1 Initial value
(75,9,.75)

Fig. 3. Trajectories of system (4), for the data given by ¢équa(13) starting from
initial data: (a) stable poir(0.28, 28.6, 1.1) for wy = 0.1; (b) stable point1.6, 1.6, 2)
for we = 1; (c) stable poin{1.92,0.47, 3) for we = 2.
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Obviously, the three computer simulations in Fig. 3(a)H@sent a stable case.
Finally, for the following set of parameter values, the sidfint conditions for the locally
asymptotically stable of’y, which are given by Theorem 2, are not satisfied.

w; =1.0, ws=0.2, wyg=05, ws=20, ¢=10, n=10 (14)

with we = 0.1, 1.0, 2 respectively.
Note that the numerical simulation given by Fig. 4(a)—(of,the system (4) of the

above set of data withv, = 0.1, 1, 2 respectively, also shows the coexistence of stable
equilibrium points.

Stable point
(16,16,2)

Stable point 1
(1.61,2.08,11)

Iniial value
(75,9,.75)

Initial value
(75, 9,.75)

1
05 05 05 05

(@) (b)

Stable point
(124,115,3)

Initial vali
(75,.9,.75)

Fig. 4. Trajectories of system (4), for the data given by égua(14) starting from
initial data: (a) stable poir(tl.61, 2.03, 1.1) for w2 = 0.1; (b) stable poinf1.6, 1.6, 2)
for we = 1; (c) stable poin{1.24, 1.15, 3) for ws = 2.

5 Discussion and conclusions

In the last two decades number of papers have been done offf¢bts ef switching
mechanism of prey and / or predator, due to variety of biaalgioncepts, on the behavior
of population dynamics [11-18]. The effect of optimal diébie in two-prey-one-
predator population dynamic model is investigated in Kmiyhl]. It is observed that a
system consisting of predators, which specialize on theerporfitable prey only may be
stable, while the same system with predators following tieof optimal diet choice may
not have a stable equilibrium. In addition, he showed théitmgd foraging might lead to
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permanence of the predator-prey system. The effects obwmimost-feeding patterns
on host-parasitoid population dynamic are studied in Kriy42]. He obtained that
while the destructive type of host-feeding does not qualidy influence host-parasitoid
population dynamics, non-destructive host-feeding hamgteffect on population dy-
namics since it leads either to a stable equilibrium or it the amplitude of maximal
fluctuations in population densities. The influence of iidlisal behavior on the Lotka-
\olterra predator-prey dynamics in two-patch environmsrdlso examined by Krivan
see [13]. Itis assumed that the individuals behave to masrttieir fithess measured
by the instantaneous per capita growth rate. Two cases \astigated in detail: In the
first case its assumed that only predators are free to mowebetpatches whereas in
the second both predators and prey move freely betweengsattths concluded that the
optimal behavior of animals leads to persistence of pregaty systems and reduction of
oscillations in population densities. Further invesiigias of optimal foraging behavior
of predators on two-prey-one-predator population dynamiclel were done in Krivan
and Sikder [14] and Krivan and Eisner [15]. These studiesvglidhat, in case of logistic
description of prey growth the optimal foraging behaviorppédators might promote
coexistence in predator-prey systems [14], while it is $stapersistence of prey-predator
systems and reduction of oscillations in population d@ssivhen the model assumes the
exponential growth of prey [15].

The effect of invading species in food chain models with kaglitype-11 functional
response have been studied by Kooi et al. [16] and Kooi andjikaa [17]. They have
found that when a fast grown top predator is introduced ina fohain, the resulting
system becomes more resistant to further invasion [16]. édew they concluded that,
since the growth rate decreases with the trophic level ghéble short food chains to be
resistant to invaders. Moreover, it is observed that thasion of a competitor of the prey
can stabilize an oscillatory nutrient-prey-predatonbiphic food chain [17].

The facultative predation strategy in one-prey-one-fative-predator dynamic mo-
del is investigated by Aggelis et al. in [18]. It is assumedtthoth prey and predator
populations grow together in a chemostat, which is fed witdimm containing the
necessary nutrients for saprophytic growth of both popardat The attack of the fa-
cultative predator on the prey population is regulated l®yghundance of the common
resource for saprophytic growth, via a catabolic repressi@chanism. The common
substrate for saprophytic growth of both populations a@edepressor on the attack
of predators on the prey population. It is observed that ttalmlic repression control
favors domination of the prey over the predator and, undeaicecircumstances (when
the predator has the competitive advantage at high substomicentration) coexistence
of both prey and predator populations. In a similar mannge¥as et al. [19] studied the
strategy of alternative prey (switching), regulated by talalic repression control-like
mode (CRCL), in a two-prey-one-predator chemostat motled observed that, when the
alternative prey has no competitive advantage for the consubstrate over the desirable
prey, its survival depends on the protection offered by tsirdble prey via CRCL, and
hence CRCL allows the coexistence of both desirable andhalige prey and predator
populations. However, when the alternative prey has thepetitive advantage over the
desirable prey, CRCL negatively affects both the state ofigal of the desirable prey
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and the coexistence state.

Keeping the above in view, a three species food web modelistorgs of two-
predator feeding on the logistic prey species is considerezhse of existence of de-
fensive switching behavior. Further, in order to betterensthnd the effect of the prey’s
defensive property, the food web model (1) in case of themoislefensive switching
behavior is also investigated. It has been observed th&grayd) has a non-hyperbolic
positive equilibrium point in interior of positive octanh@ hence all types of dynamics
such as stable point, periodic, quasiperiodic, and eveatithm the interior ofR3 are
possible. However, the analysis of section (3) shows tlnat,food web model with
defensive switching behavior generally has a stable thpeeiss coexisting equilibrium
state. Moreover, in the special case when the intensity fefdé/e switch equals one the
system has a globally asymptotically stable coexistingldum state. Accordingly, it
is concluded that adding the defensive switching behawvitihé food web system under
consideration have a stabilizing effect on the dynamichbler.

It may be pointed out here that the analysis of Saleem etJadhf@wvn that the food
web system, which is consisting of two-predator feeding m®x@ponential prey species
with defensive switching property, is asymptotically ksttto a Volterra's oscillation in
the three dimensional space when the intensity of deferssiitehing equals one and
the two predators have the same mortality rates. In contrlash we using logistic prey
species instead of an exponential prey species, the dysarfiilee interior equilibrium is
changed and we have obtained sufficient conditions underhathie food web system is
a globally asymptotically stable in the interior of pos#tioctant.
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