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Abstract. In this paper, the viscous dissipation effects on magnetohydrodynamic
natural convection flow over a sphere in the presence of heat generation have been
described. The governing boundary layer equations are firsttransformed into a non-
dimensional form and the resulting nonlinear system of partial differential equations
are then solved numerically using finite-difference methodtogether with Keller-box
scheme. The numerical results of the surface shear stress interms of skin friction
coefficient and the rate of heat transfer in terms of local Nusselt number, velocity as
well as temperature profiles are shown graphically and tabular form for a selection
of parameters set consisting of heat generation parameterQ, magnetic parameterM ,
viscous dissipation parameterN and the Prandlt numberPr.

Keywords: viscous dissipation, magnetohydrodynamics, heat generation, natural
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Nomenclature

a radius of the sphere P fluid pressure
Cp specific heat at constant pressure Q heat generation parameter
CfX local skin friction coefficient qw surface heat flux
f dimensionless stream function T temperature of the fluid
g acceleration due to gravity Tw temperature at the surface
Gr local Grashof number T∞ temperature of the ambient fluid
M magnetic parameter U velocity component in theX-direction
N viscous dissipation parameter V velocity component in theY -direction
NuX local Nusselt number coefficient X measured from the leading edge
Pr Prandtl number Y distance normal to the surface
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Greek symbols

β coefficient of thermal expansion ξ the dimensionless coordinate
β0 magnetic field strength η the pseudo-similarity variable
ν kinematic viscosity ψ stream functions
µ viscosity of the fluid σ0 the electrical conduction
θ dimensionless temperature κ thermal conductivity of the fluid
ρ density of the fluid

Subscripts

w wall conditions ∞ ambient temperature

1 Introduction

The study of the flow of electrically conducting fluid in the presence of magnetic field is
important from the technical point of view and such types of problems have received
much attention by many researchers. The specific problem selected for study is the
flow and heat transfer in an electrically conducting fluid adjacent to the surface. The
surface is maintained at a uniform temperatureTw, which may either exceed the ambient
temperatureT∞ or may be less thenT∞. WhenTw > T∞, an upward flow is established
along the surface due to free convection, where as forTw < T∞, there is a down flow.
The interaction of the magnetic field and the moving electriccharge carried by the flowing
fluid induces a force, which tends to oppose the fluid motion. The velocity is very small
so that the magnetic force, which is proportional to the magnitude of the longitudinal
velocity and acts in the opposite direction is also very small. Additionally, a magnetic
field of strengthβ0 acts normal to the surface. Consequently, the influence of the magnetic
field on the boundary layer is exerted only through induced forces within the boundary
layer itself, with no additional effects arising from the free stream pressure gradient. The
stress work effects in laminar flat plate natural convectionflow have been studied by
Ackroyd [1]. However, the influence and importance of viscous stress work effects in
laminar flows have been examined by Gebhart [2] and Gebhart and Mollendorf [3]. In
both of the investigations, special flows over semi-infiniteflat surfaces parallel to the
direction of body force were considered. Gebhart [2] considered flows generated by the
plate surface temperatures, which vary as powers ofξ (the distance along the plate surface
from the leading edge). Gebhart and Mollendorf [3] considered flows generated by plate
surface temperatures, which vary exponentially inξ. The effect of laminar free convection
from a sphere with blowing and suction has been investigatedby Huang and Chen [4]. The
problem of magneto hydrodynamic free convection in a strongcross-field was studied by
Kuiken [5]. Also the effect of magnetic field on the free convection heat transfer has been
studied by Sparrow and Cess [6]. MHD free convection flow of visco-elastic fluid past
an infinite porous plate was investigated by Chowdhury and Islam [7]. The problem of
magnetohydrodynamic free convection flow and mass transferthrough a porous medium
bounded by an infinite vertical porous plate with constant heat flux have been investigated
by Raptis and Kafousias [8]. Also the effect of free convection flow with variable viscosity

448



Viscous Dissipation Effects on MHD Natural Convection Flow

and thermal diffusivity along a vertical plate in the presence of magnetic field has been
discussed by Elbashbeshy [9]. Hossain [10] introduced the viscous and Joule heating
effects on MHD-free convection flow with variable plate temperature. The heat transfer
characteristics in the laminar boundary layer of a viscous fluid over a stretching sheet with
viscous dissipation or frictional heating and internal heat generation have been investi-
gated by Vajravelu and Hadjinolauo [11]. In this study they considered that the volumetric
rate of heat generation,qm [w · m−3], should beqm = Q0(T − T∞), for T ≥ T∞
and equal to zero forT < T∞, (Q0 is the heat generation/absorption constant). The
above relation is valid as an approximation of the state of some exothermic process and
havingT∞ when they usedqm = Q0(T − T∞). The conjugate effects of conduction and
natural convection heat transfer along a thin vertical plate with non-uniform internal heat
generation has been studied by Mendez et al. [12]. Also the problem of natural convection
flow along a vertical wavy surface with uniform surface temperature in presence of heat
generation or absorption was considered by Molla et al. [13]. Magnetohydrodynamic
natural convection flows on a sphere in presence of heat generation has been investigated
by Molla et al. [14]. The problems of free convection boundary layer flow over or on
bodies of various shapes, where discussed by many mathematicians, versed engineers
and researchers. The free convection boundary layer flow on an isothermal sphere and
on an isothermal horizontal circular cylinder in a micropolar fluid were considered by
Nazar et al. [15]. The effect of pressure stress work and viscous dissipation in some
natural convection flows have been shown by Joshi and Gebhart[16]. To the best of our
knowledge, viscous dissipation effects on magnetohydrodynamics free convection flow
from an isothermal sphere in presence of heat generation hasnot yet been studied and the
present work demonstrate the issue.

Natural convection boundary layer flow over a sphere of a viscous incompressible
electrically conducting fluid in the presence of magnetic field and heat generation with the
effects of viscous dissipation has been investigated. The governing boundary layer equa-
tions are reduced to locally non-similar partial differential forms by adopting appropriate
transformations. The transformed boundary layer equations are then solved numerically
using implicit finite difference method together with the Keller box scheme. Here we
have focused our attention on the evaluation of the surface shear stress in terms of skin
friction coefficient, the rate of heat transfer in terms of local Nusselt number, velocity as
well as temperature profiles for a selection of parameters set consisting of heat generation
parameterQ, viscous dissipation parameterN , the magnetic parameterM and the Prandtl
numberPr. Numerical results have been shown graphically as well as intabular form.

2 Formulation of the problems

Natural convection boundary layer flow over a sphere of an electrically conducting and
steady two-dimensional viscous incompressible fluid in thepresence of strong magnetic
field and heat generation is considered. It is assumed that the surface temperature of the
sphere isTw. WhereTw > T∞, hereT∞ being the ambient temperature of the fluid.
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Under the usual Boussinesq and boundary layer approximation, the basic equations are

∂

∂X
(rU) +

∂

∂X
(rV ) = 0, (1)

U
∂U

∂X
+ V

∂U

∂Y
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∂2U

∂Y 2
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2
0

ρ
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∂2T

∂Y 2
+
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ρCp

(

∂U
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)2

+
Q0

ρCp
(T − T∞). (3)

The boundary conditions for the equations (2) to (3) are

U = V = 0, T = Tw on Y = 0,
(4)

U → 0, T → T∞ at Y → ∞,

where

r(X) = a sin
X

a
, (5)

r = r(X), r is the radial distance from the symmetrical axis to the surface of the
sphere,g is the acceleration due to gravity,β is the coefficient of thermal expansion,
ν is the kinematics viscosity,T is the local temperature,Cp is the specific heat at constant
pressure. The amount of heat generated or absorbed per unit volume isQ0(T −T∞), Q0

being a constant, which may take either positive or negative. The source term represents
the heat generation whenQ0 > 0 and the heat absorption whenQ0 < 0, ρ is the density,
σ0 is the electrical conduction andPr is the Prandtl number.

Fig. 1. Physical model and coordinate system.

To transform the above equations into non-dimensional, thefollowing dimensionless
variables are introduced:

ξ =
X

a
, η = Gr1/4

Y

a
, u =

a

ν
Gr−1/2U, v =

a

ν
Gr−1/4V, θ =

T − T∞
Tw − T∞

, (6)
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whereGr = gβ(Tw − T∞)a3/ν2 is the Grashof number andθ is the non-dimensional
temperature, then equation (5) becomes

r = a sin ξ. (7)

Using the above values, the equations (1) to (3) take the following form:

∂

∂ξ
(ru) +

∂

∂η
(rv) = 0, (8)

u
∂u
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+ v

∂u

∂η
=
∂2u

∂η2
+ θ sin ξ −Mu, (9)

u
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1
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+N

(
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)2

+Qθ, (10)

where,M = σ0β
2a2/ρνGr1/2 is the magnetic parameter andQ = Q0a

2/νρCpGr
1/2

is the heat generation parameter,N = Gr/a2Cp(Tw − Y∞), is the viscous dissipation
parameter. The boundary conditions (4) take the form

u = v = 0, θ = 1 at η = 0,
(11)

u→ 0, θ → 0 as η → ∞.

To solve equations (9) and (10) subject to the boundary conditions (11), we assume the
following variablesu andv is given by

u =
1
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and v = −

1
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, (12)

whereψ(ξ, η) = ξr(ξ)f(ξ, η), ψ(ξ, η) is a non-dimensional stream function,
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Using the above transformed values in equations (9) and (10)and simplifying, we have
the following:
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The corresponding boundary conditions are

f =
∂f

∂η
= 0, θ = 1 at η = 0,

(16)
∂f

∂η
→ 0, θ → 0 as η → ∞.

For the lower stagnation point of the sphere i.e.ξ ≈ 0, equation (14) and (15) reduce to
the following ordinary differential equations:

d3f

dη3
+ 2f

d2f

dη2
−

(

df

dη

)2

+ θ −M
df

dη
= 0, (17)

1

Pr

∂2θ

∂η2
+ 2f

∂θ

∂η
+Qθ = 0 (18)

with the boundary conditions

f =
∂f

∂η
= 0, θ = 1 at η = 0,

(19)
∂f

∂η
→ 0, θ → 0 as η → ∞.

In practical application, the physical quantities of principal interest are skin-friction coef-
ficient and the rate of heat transfer which can be written in non-dimensional form as

CfX =
Gr−3/4a2

µν
τw and NuX =

aGr−1/4

κ(Tw − T∞)
, (20)

whereτw = µ( ∂U
∂Y )Y =0 andqw = −κ( ∂T

∂Y )Y =0, κ being the thermal conductivity of the
fluid. Using the new variables (6), we have

CfX = ξ

(

∂2f

∂η2

)

η=0

, (21)

NuX = −

(

∂θ

∂η

)

η=0

. (22)

3 Method of solution

Solutions of the local non-similar partial differential equations (14) to (15) subjected to
the boundary conditions (16) are obtained by using the implicit finite difference method,
which has been described in details by Cebeci and Bradshaw [17] and used by Hossain et
al. [18].
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4 Results and discussion

The effects of viscous dissipation on magnetohydrodynamicnatural convection flow over
a sphere in the presence of heat generation have been investigated. The results are
obtained in terms of the local skin-friction and the local rate of heat transfer, for different
values of the aforementioned physical parameters and theseare shown in tabular form in
Table 1, Table 2 and graphically in Figs. 6, 7. The velocity and temperature distributions
obtained by the finite difference method for various values of the governing parameters,
are displayed in Figs. 2–5. The aim of these figures are to display how the profiles vary
in ξ, the scaled stream wise coordinate.

From Fig. 2(a), it is observed that velocity increases as thevalues of viscous dissipa-
tion parameterN increase. Near the surface of the sphere velocity increasessignificantly
along η and becomes maximum and then decreases slowly and finally approaches to
zero, the asymptotic value. The maximum values of the velocity are0.48550, 0.51328,
0.53567, 0.55394 and0.56863 for N = 0.10, 0.30, 0.50, 0.70 and1.00 respectively
which occur atη = 1.23788 for first, second and third maximum values, atη = 1.30254
for fourth and fifth maximum values. Here it is observed that the velocity increase by
17.12255 % asN increases from0.10 to 1.00. From Fig. 2(b), it is seen that when the
values of viscous dissipation parameterN increase, the temperature also increases.

(a) (b)

Fig. 2. (a) Velocity and (b) temperature profiles for different values of viscous dissipa-
tion parameterN with others fixed parameters.

Figs. 3(a) and 3(b) display results for the velocity and temperature profiles, based
on equations (14) and (15) with the boundary conditions (16), for different values of
magnetic parameterM (M = 0.10, 0.30, 0.50, 0.70, 1.00) plotted againstη atξ = π/6
having Prandtl numberPr = 0.72, Q = 1.0 andN = 0.4. It is observed that, as the
magnetic parameterM increases, the velocity profile decreases between0 ≤ η ≤ 4.1 and
then increases with very small difference and finally approaches to zero alongη direction.
The temperature profile increases with increasing magneticparameterM . The maximum
values of the velocity are recorded as0.48763, 0.43810, 0.40870, 0.38191 and0.35758
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for M = 0.10, 0.30, 0.50, 0.70 and1.00, respectively which occur atη = 1.30254
for 1st, 2nd, 3rd and 4th maximum values, atη = 1.23788 for 5th maximum value. It
is found that the velocity decreases by 26.67% as the magnetic parameterM increases
from 0.1 to 1.0.

From Fig. 4(a), velocity distribution increases as the values of heat generation para-
meterQ increase. The maximum values of the velocity are0.47757, 0.52865 and0.55807
for Q = 0.20, 0.50 and0.60 respectively which occur atη = 1.17520 for first maximum
value, atη = 1.123788 for second and third maximum values. Here it is observed that
the velocity increase by16.85616 % asQ increases from0.10 to 0.60. From Fig.4(b),
it is seen that when the values of heat generation parameterQ increase, the temperature
distributions also increase.

(a) (b)

Fig. 3. (a) Velocity and (b) temperature profiles for different values of magnetic para-
meterM with others fixed parameters.

(a) (b)

Fig. 4. (a) Velocity and (b) temperature profiles for different values of heat generation
parameterQ with others fixed parameters.
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Figs. 5(a) and 5(b) indicate the effects of the Prandtl number Pr with M = 1.00,
Q = 0.50 andN = 0.40 on the velocity profiles and the temperature profiles. From
Fig. 5(a) it is observed that the increasing values of Prandtl numberPr leads to the de-
crease in the velocity profiles. The maximum values of the velocity are0.49156, 0.46167,
0.43584 and0.39056 for Pr = 0.50, 0.72, 1.00 and1.74 respectively which occur at
η = 1.36929 for first maximum value andη = 1.30254 for second, third maximum values
andη = 1.17520 for last maximum value. Here it is depicted that the velocitydecreases
by 20.547 % asPr increases from0.50 to 1.74. Again from Fig. 5(b) it is observed that
the temperature profiles decreases with the increasing values of Prandtl numberPr.

(a) (b)

Fig. 5. (a) Velocity and (b) temperature profiles for different values of Prandtl number
Pr with others fixed parameters.

It can easily be seen that the effect of the magnetic parameter M leads to a decrease
in the local skin friction coefficientCfX and the local Nusselt numberNuX in Fig. 6(a)
and 6(b). This phenomenon can easily be understood from the fact that the magnetic
parameterM increases the Lorentz force, which opposes the flow, therefore decreases the
velocity gradient and hence the local skin friction coefficientCfX decreases. Owing to
increasing values ofM in the presence of heat generation, the fluid temperature with in
the boundary layer increases and the associate thermal boundary layer becomes thicker.
For increasing fluid temperature, the temperature difference between fluid and surface
decreases and the corresponding rate of heat transfer decreases. Also it is observed
thatx = 0.50615, the skin friction coefficientCfX and the local Nusselt numberNuX

decrease by14.2335 % and9.1810 %, respectively, asM increases from0.40 to 1.00.
The variation of the reduced local skin friction coefficientand the local rate of heat

transfer for different values of the heat generation parameterQ (Q = 0.20, 0.40, 0.60)
are illustrated in Figs. 7(a) and 7(b) whileM = 1.00,N = 0.60 and Prandtl numberPr =
0.72. From the figures it can be seen that the increase of the heat generation parameter
Q leads to an increase in the local skin-friction coefficientCfX and a decrease in the
local Nusselt numberNuX . These are expected, since the heat generation mechanism
creates a layer of hot fluid near the surface, and finally the resultant temperature of the
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fluid exceeds the surface temperature. For this reason the rate of heat transfer from the
surface decreases. Owing to the enhanced temperature, the viscosity of the fluid increases
and the corresponding local skin-friction coefficient increases. Moreover, it is seen that
at ξ = 0.50615 the skin friction coefficientCfX increases by14.2927 % and the local
Nusselt numberNuX decreases by53.2775 % respectively, asQ increases from0.20 to
0.60.

(a) (b)

Fig. 6. (a) Skin friction coefficient and (b) local heat transfer coefficient for different
values of magnetic parameterM with others fixed parameters.

(a) (b)

Fig. 7. (a) Skin friction coefficient and (b) local heat transfer coefficient for different
values of heat generation parameterQ with others fixed parameters.

In Table 1 are given the tabular values of the local skin friction coefficientCfX

and local Nusselt numberNuX for different values of viscous dissipation parameterN
while Pr = 0.72, M = 1.00 andQ = 0.50. Here we found that the values of local
skin friction coefficientCfX increase at different position ofξ for viscous dissipation
parameterN = 0.10, 0.50, 0.70, 1.00. The the local skin friction coefficientCfX is
increase by8.5699 % as the viscous dissipation parameterN changes from0.10 to 1.00
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andξ = 1.04720 = π/3. Furthermore, it is seen that the numerical values of the local
Nusselt numberNuX increase for increasing values of viscous dissipation parameterN .
The rate of local Nusselt numberNuX is increased by69.08 % at positionξ = 1.0472 =
π/3 as the viscous dissipation parameterN changes from0.10 to 1.00.

Numerical values of local heat transfer rate,NuX are calculated from equation (22)
for the surface of the sphere from lower stagnation point to upper stagnation point. In
order to verify the accuracy of the present work, the values of local Nusselt numberNuX

for N = M = Q = 0.0 having Prandtl numberPr = 0.7, 7.0 at different position ofξ
(in degree) are compared with those reported by Nazar et al. [15] and Molla et al. [14] as
presented in Table 2. The results are found to be in excellentagreement.

Table 1. Skin friction coefficient and rate of heat transfer againstξ for different values
of viscous dissipation parameterN with other controlling parametersPr = 0.72,

Q = 0.50 andM = 1.00

N = 0.10 N = 0.50 N = 0.70 N = 1.00

ξ CfX NuX CfX NuX CfX NuX CfX NuX

0 0.00000 0.84401 0.00000 1.12528 0.00000 1.24688 0.00000 1.35948
π/18 0.16143 0.62483 0.17022 0.85247 0.17328 0.95091 0.17583 1.04193
π/9 0.31993 0.61026 0.33730 0.83433 0.34335 0.93127 0.34839 1.02090
π/6 0.47266 0.59539 0.49819 0.81517 0.50708 0.91027 0.51449 0.99819
2π/9 0.61686 0.57701 0.64992 0.79122 0.66143 0.88390 0.67101 0.96959
5π/18 0.74982 0.55426 0.78959 0.76142 0.80343 0.85106 0.81496 0.93391
π/3 0.86897 0.52667 0.91444 0.72523 0.93026 0.81114 0.94344 0.89051

7π/18 0.97186 0.49388 1.02182 0.68218 1.03921 0.76364 1.05369 0.83887
4π/9 1.05612 0.45551 1.10922 0.63180 1.12769 0.70806 1.14308 0.77844
π/2 1.11947 0.41114 1.17419 0.57358 1.19322 0.64382 1.20908 0.70860

Table 2. Comparisons of the present numerical results ofNuX for the values of Prandtl
numberPr = 0.7 and7.0 without the effects of viscous dissipation, heat generation

and magnetic field with those of obtained by Nazar et al. [15] and Molla et al. [14]

Pr = 0.7 Pr = 7.0

ξ Nazar et al. Molla et al. Present Naza et al. Molla et al. Present
in degree [15] [14] [15] [14]

0 0.4576 0.4576 0.4529 0.9595 0.9582 0.9437
10 0.4565 0.4564 0.4516 0.9572 0.9558 0.9416
20 0.4533 0.4532 0.4485 0.9506 0.9492 0.9354
30 0.4480 0.4479 0.4444 0.9397 0.9383 0.9248
40 0.4405 0.4404 0.4367 0.9239 0.9231 0.9100
50 0.4308 0.4307 0.4282 0.9045 0.9034 0.8909
60 0.4189 0.4188 0.4134 0.8801 0.8791 0.8673
70 0.4046 0.4045 0.4012 0.8510 0.8501 0.8390
80 0.3879 0.3877 0.3836 0.8168 0.8161 0.8059
90 0.3684 0.3683 0.3641 0.7774 0.7768 0.7675
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5 Conclusions

The effects of viscous dissipation on natural convection flow over a sphere in the presence
of magnetic field and heat generation with electrically conducting fluid have been inves-
tigated theoretically. The governing boundary layer equations of motion are transformed
into a non-dimensional form and the resulting non-linear systems of partial differen-
tial equations are reduced to local non-similarity boundary layer equations, which are
solved numerically by using implicit finite difference method together with the Keller-
box scheme. From the present investigation the following conclusions may be drawn:

• With effect of magnetic parameterM in presence of heat generation, the local skin-
friction coefficientCfX and the local rate of heat transferNuX decrease.

• An increase in values ofM leads to decrease the velocity distribution but slightly
increase the temperature distribution.

• For increasing values of heat generation parameterQ, the skin-friction coefficient
increases but the Nusselt number decreases significantly within the boundary layer.

• With the effect of heat generation both the velocity and temperature distributions
increase significantly the thickness of the thermal boundary layer.

• As viscous dissipation parameterN increases, both the velocity and the temperature
distributions increase significantly.

• An increasing value of Prandtl numberPr leads to decrease in the velocity and the
temperature distributions.
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