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Abstract. This paper addresses the control of then-scroll Chua’s circuit. It will be
shown how chaotic systems with multiple unstable periodic orbits (UPOs) detected in the
Poincaré section can be stabilized as well as taking the system dynamics from one UPO
to another.
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1 Introduction

Controlling chaos has become a challenging topic in nonlinear dynamics. It has been
studied in many scientific and engineering fields such as physics, chemistry, electrical
circuit, etc., and several extension and applications of the original OGY control method
[1] have been reported [2–6].

Chua’s circuit is known as an electrical circuit and having the ability of generating
chaos [7]. Recent research results include modifying its nonlinear characteristics by using
a generalized piecewise linear function (PWL) with multiple breakpoints to generate the
so-called multi-scroll chaotic attractor.

Suykens and Vandewalle [8] designed a simple recurrent neural network model that
can produce a chaotic attractor like the double-scroll attractor of Chua’s circuit. Later on,
Suykens et al. [9] proposed a method for generating a more complete family of multi-
scroll instead ofn-double scroll chaotic attractors. In [10], the author presented a PWL
function approach for creating multi-spiral chaotic attractors from both autonomous and
non autonomous differential equations. Yalcin et al. [11,12] also proposed a simple circuit
model for generatingn-scroll chaotic attractors. The main design idea of most of the
aforementioned methodologies is the same – to add some additional breakpoints into the
PWL function of the nonlinear resistor in Chua’s circuit, orother nonlinear circuits [13].

Most, if not all, of the aforementioned multi-scroll chaotic attractors were verified
only by numerical simulations. However, known to electronic engineers, it is much more
difficult to physically realize these multi-scroll chaoticattractors by analogue circuits. But
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great efforts have been made by many. In this endeavour, Arena et al. [14] experimentally
verified somen-double scroll chaotic attractors by using a state-controlled CNN-based
circuit. Eguchi et al. [15] also constructed an FPGA chaoticcircuit for creatingn-scroll
chaotic attractors. Tang et al. [16] proposed a secure digital communication system using
digitized n-scroll chaotic attractors. Yu et al. [17] produced a unidirectional coupled
synchronization scheme forn-scroll chaotic attractors from the modified Chua’s circuit.

It can be foreseen that multi-scroll chaotic attractors will have many unusual practical
applications in such fields as digital and secure communications, synchronous prediction,
random bit generation, information systems, and so on.

Controlling such systems was first reported first in [18] in which unstable fixed points
were well stabilized.

It is therefore interesting to ask if the multi-scroll Chua’s circuit can be stabilized on
one of its multiple unstable periodic orbits (UPOs) as well as taking the system dynamics
from one UPO to another. Moreover, there may be errors present in the measurements
of the system states used in identifying the system. The location of the coordinates of
the unstable periodic orbit we wish to control may thus differ from its true coordinates.
Similarly, in real systems there is often noise present. This paper provides a positive
answer to these problems.

2 Chaos control method

The chaos control algorithm that we introduce in the following uses, in a large sense,
the Poincaré section properties. Since chaos is the superposition of a number of periodic
motions, it is represented in the Poincaré section by a number of fixed points, called
the system chaotic attractor. The chaos control algorithm developed here relies on the
knowledge of the chaotic attractor and its response to smallperturbations of the system.
It is based on the analysis of the Poincaré section to determine how the system approaches
the desired orbit or fixed point. The analysis is carried out in three steps [6]:

1. Among the unstable periodic orbits (UPO) of the attractor, choose the one that
represents the desired performances.

2. Determine the influence of control parameter on the chosenUPO. For this, we vary
the control parameter around the value for which we want to control the system and
each time to generate the associated Poincaré section.

3. Determine the variation that should be applied to the control parameter in order to
force the system to rejoin the desired UPO or fixed point.

After information about this Poincaré section has been gathered, the system is kept
to remain on the desired orbit by perturbing the appropriateparameter. Similar to the
original OGY control method [1], we wish to make only small controlling perturbations
to the system. We do not envision creating new orbits with different properties from the
already existing orbits.
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The basic idea of our control algorithm is as follows. Given aperiodic orbit repre-
sented by a fixed point at the Poincaré section, we wait for the system trajectory to come
close to the control region of the desired UPO to bring the system trajectory near the
control region. When the system state is in the control region, we will try to use a small
parametric perturbation to control the unstable directions of the chaotic state variables.

Let us consider a three dimensional continuous-time systemof nonlinear autonomous
differential equations described by:

ẋ(t) = f
(

x(t), p
)

, (1)

wherex is the state vector,f is a smooth function of its variables, andp is an externally
accessible control parameter.

We can reduce the three-dimensional phase space flow that results from integrating
equation (1) to a two-dimensional map:

xk+1 = fM (xk, p), (2)

by intercepting the flow with the Poincaré section.
Let xf be one of the fixed points of the system (1) at the nominal parameter value

p0 that we wish to stabilize. In other words, we attempt to bringthe deviationδxk =
(xk − xf ) to lie on the linearized stable direction.

The control law (3) below is directly derived from the Poincaré section:

δpk =
∂p

∂xf

δxk, (3)

whereδpk = (pk − p0) determine the parameter perturbations and∂p
∂xf

δxk determine the
influence of small parametric variation on fixed points variation. We restrict parameter
perturbations to be small.

This perturbation control law acts instantaneously on the system. However, in real
cases, the future system state of a chaotic system depends onthe current parametric vari-
ation as well as the previous parametric variations, so the system must take sometime to
react to the correction. It seems more sensitive, from a practical point of view, to introduce
some delay between the computation of the control law and theeffective modification of
the control parameter. This is realized by adding to the computed law a term depending
on the previous value of the control parameter weighted witha parameterγ, which is
determined by trial and error.

Thus, equation (3) becomes:

δpk =
∂p

∂xf

δxk + γδpk−1. (4)

In terms of the quality of control performance, once the control is activated, the controlled
system must be maintained at its new trajectory along its evolution.

We expect that, under forward applications of the control law (4), points in the local
neighbourhood of the fixed point will eventually fall into the local neighbourhood and
then be controlled.
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The activating region of control is limited to the followingset of points:
{

δ : δx2
1 + δx2

2 < 1
}

. (5)

A general objective of control is to force a given chaotic system into a desired
behaviour. This often means driving the trajectory from thechaotic attractors to an
equilibrium point or an unstable periodic orbit. Another objective can be to change from
one UPO to another.

As example for a system possessing multiples UPOs, we choosethen-scroll Chua’s
circuit.

3 n-scroll Chua’s circuit

In this section, a generalized Chua’s circuit is introducedfor generatingn-scroll chaotic
attractors.

The generalized Chua’s circuit, which exhibitsn number of scrolls, is given by the
equations:

ẋ = α
(

y − f(x)
)

,

ẏ = x − y + z,

ż = −βy,

(6)

where

f(x) =



























bπ

2a
(x − 2ac), if x ≥ 2ac,

−b sin

(

πx

2a
+ d

)

, if − 2ac < x < 2ac,

bπ

2a
(x + 2ac), if x ≤ −2ac.

(7)

System (6) can generaten-double scroll chaotic attractors for the following relationship:

n = c + 1 (8)

and

d =

{

π, if n is odd,

0, if n is even. (9)

With equations (6) and (7), whenα = 10.814, β = 14, a = 1.3, b = 0.11, c = 7,
d = 0 and starting from the initial state(x0, y0, z0) = (0.1, 0.1, 0.1), a 8-scroll attractor
is generated as depicted in Fig. 1.

Poincaré section is chosen by plotting the current maxima against the pervious ma-
xima of thex state variable.

The firs state of the fixed point is determined by

xf1 = 4.507. (10)
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Fig. 1. The 8-scroll Chua’s attractor: (a) phase space; (b) time response.
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Fig. 2. Return map of thex state variable.

Then, we generate a Poincaré section, at a value near the desired one, for example, we
chooseα = 10.914. In this case,

x′

f1 = 4.810. (11)

The control law is defined by:

δαk =
∂α

∂xf

δxk + γδαk−1

=
10.914− 10.814

4.810 − 4.507
(xk − xf1) + γδαk−1

= 0.33(xk − 4.507) + γδαk−1.

(12)

The question now is how to guarantee that the dynamical system (6) is asymptotically
stable toward the desired unstable periodic orbit, i.e., the resulting dynamics is asympto-
tically stable. This can be ensured by choosing suitable value of the parameterγ in the
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above formula. After many numerical tests, this parameter must be small and it is chosen
from the interval[0.01, 0.5].

Then-scroll Chua’s circuit is under control of the form:

δαk = 0.33(xk − 4.507) + 0.1δαk−1. (13)

The perturbation is activated only when the state variablesx andy are located in the
neighbourhood of the appropriates fixed pointsxf andyf respectively. The activation
region of the control is:

(xk − xf )2 + (yk − yf )2 < 1, (14)

whereyf = 0.278.
Computer results of applying control are shown in Fig. 3.
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Fig. 3. Stabilizing the first UPO of the 8-scroll Chua’s chaotic attractor: (a) phase space;
(b) time response.

To stabilize the chaos on its real unstable periodic orbits,one can see that control
generate a pulse train; each pulse is activated automatically so that, at sufficient amplitude,
determined by the Poincaré section at each travelling fromthe fixed point, eventually the
system orbits converges to the desired unstable periodic orbits. We also tested our chaos
control strategy with different initial conditions and it was found to be robust.

In the same way, and by exploring the Poincaré section again, we foundxf2 = 14.93.
In the last case, forxf3 = −5.80; control results are shown in Fig. 5.
We now present numerical results about the changing dynamics from one UPO to

another one. Starting from the same initial state, control switch on and stabilize the first
UPO (appropriate unstable fixed pointsxf1). It is switched off, the system returns to
a chaotic state. Once the control test (14) is verified again,this time with the second
unstable fixed pointsxf2 as goal, the control leads the trajectory to the desired UPO.It
remains switched on for a same time as in the preceding case. The same control action
can be carried out for the last unstable fixed pointxf3. Stabilization is reached quickly.
Control results are depicted in Fig. 6.
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Fig. 4. Stabilizing the second UPO: (a) phase space; (b) timeresponse.

−15 −10 −5 0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

X

Y

0 100 200 300 400 500 600 700 800 900
−20

0

20
X

0 100 200 300 400 500 600 700 800 900
−1

0

1

Y

0 100 200 300 400 500 600 700 800 900
−50

0

50

Z

0 100 200 300 400 500 600 700 800 900
10.314

10.814

11.314

time (s)

α

(a) (b)

Fig. 5. Stabilizing the last UPO: (a) phase space; (b) time response.
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Fig. 6. The transition from one UPO to another one.
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To study the robustness of our chaos control method against noise, we add a term
εξ(t) to the right-hand side of the linearized equations (13), where ξ(t) is a random
variable andε is a small parameter specifying the intensity of the noise. If the noise
is bounded, i.e.,|εξ| < δαmin, then the control will hardly be affected by noise as shown
in Fig. 7.
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Fig. 7. The effect of noise on the controlled 8-scroll Chua’sattractor.

4 Conclusion

This paper has developed a simple control method for stabilizing multiples unstable
periodic orbits in the chaoticn-scroll Chua’s circuit. From the control point of view,
the analysis has shown that this control method is easy to implement, has a fair degree of
robustness and can stabilize several high order chaotic systems. The most difficult task is
to determine the unstable fixed point that corresponds to theoriginally targeted unstable
periodic orbit (UPO).

Satisfactory control performances are demonstrated for both stabilizing one UPO of
then-scroll Chua’s circuit as well as taking the dynamics from one UPO to another. In
addition, numerical results showed the robustness of the controller against external noise.
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