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Abstract. This paper addresses the control of thescroll Chua’s circuit. It will be
shown how chaotic systems with multiple unstable periodiite (UPOs) detected in the
Poincaré section can be stabilized as well as taking themsydynamics from one UPO
to another.
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1 Introduction

Controlling chaos has become a challenging topic in noatimynamics. It has been
studied in many scientific and engineering fields such asiphyshemistry, electrical
circuit, etc., and several extension and applications efattiginal OGY control method
[1] have been reported [2—6].

Chua’s circuit is known as an electrical circuit and havihg &bility of generating
chaos [7]. Recent research results include modifying itdinear characteristics by using
a generalized piecewise linear function (PWL) with mulipreakpoints to generate the
so-called multi-scroll chaotic attractor.

Suykens and Vandewalle [8] designed a simple recurrenthaatwork model that
can produce a chaotic attractor like the double-scrothattr of Chua’s circuit. Later on,
Suykens et al. [9] proposed a method for generating a morgledenfamily of multi-
scroll instead ofi-double scroll chaotic attractors. In [10], the author préed a PWL
function approach for creating multi-spiral chaotic attoas from both autonomous and
non autonomous differential equations. Yalcin et al. [Pl dlso proposed a simple circuit
model for generating.-scroll chaotic attractors. The main design idea of mostef t
aforementioned methodologies is the same — to add someamdibreakpoints into the
PWL function of the nonlinear resistor in Chua’s circuit,ather nonlinear circuits [13].

Most, if not all, of the aforementioned multi-scroll chaoéttractors were verified
only by numerical simulations. However, known to electoogmgineers, it is much more
difficult to physically realize these multi-scroll chaoéttractors by analogue circuits. But
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great efforts have been made by many. In this endeavourgfeteal. [14] experimentally
verified somen-double scroll chaotic attractors by using a state-col#tioCNN-based
circuit. Eguchi et al. [15] also constructed an FPGA chagiicuit for creatingn-scroll
chaotic attractors. Tang et al. [16] proposed a secureatigfimmunication system using
digitized n-scroll chaotic attractors. Yu et al. [17] produced a urdditonal coupled
synchronization scheme farscroll chaotic attractors from the modified Chua’s circuit

It can be foreseen that multi-scroll chaotic attractorshl/e many unusual practical
applications in such fields as digital and secure commupitsitsynchronous prediction,
random bit generation, information systems, and so on.

Controlling such systems was first reported first in [18] inakhunstable fixed points
were well stabilized.

It is therefore interesting to ask if the multi-scroll Chsiaircuit can be stabilized on
one of its multiple unstable periodic orbits (UPOs) as weltaking the system dynamics
from one UPO to another. Moreover, there may be errors ptésehe measurements
of the system states used in identifying the system. Theitotaf the coordinates of
the unstable periodic orbit we wish to control may thus diffem its true coordinates.
Similarly, in real systems there is often noise present.s Haper provides a positive
answer to these problems.

2 Chaoscontrol method

The chaos control algorithm that we introduce in the follogvuses, in a large sense,
the Poincaré section properties. Since chaos is the sogiggn of a number of periodic
motions, it is represented in the Poincaré section by a murnbfixed points, called
the system chaotic attractor. The chaos control algoriterelbped here relies on the
knowledge of the chaotic attractor and its response to gmealurbations of the system.
Itis based on the analysis of the Poincaré section to deteriow the system approaches
the desired orbit or fixed point. The analysis is carried ndhree steps [6]:

1. Among the unstable periodic orbits (UPO) of the attrgcttroose the one that
represents the desired performances.

2. Determine the influence of control parameter on the cht$#d. For this, we vary
the control parameter around the value for which we want tdrobthe system and
each time to generate the associated Poincaré section.

3. Determine the variation that should be applied to thercbparameter in order to
force the system to rejoin the desired UPO or fixed point.

After information about this Poincaré section has beeheyad, the system is kept
to remain on the desired orbit by perturbing the appropiatemeter. Similar to the
original OGY control method [1], we wish to make only smalhtwlling perturbations
to the system. We do not envision creating new orbits witfedi#it properties from the
already existing orbits.
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The basic idea of our control algorithm is as follows. Givepegiodic orbit repre-
sented by a fixed point at the Poincaré section, we wait ®stfstem trajectory to come
close to the control region of the desired UPO to bring theesygrajectory near the
control region. When the system state is in the control megice will try to use a small
parametric perturbation to control the unstable directiofthe chaotic state variables.

Let us consider a three dimensional continuous-time sysferanlinear autonomous
differential equations described by:

:C(t) = f(ﬂf(t),p), (1)

wherezx is the state vectorf is a smooth function of its variables, apds an externally
accessible control parameter.

We can reduce the three-dimensional phase space flow thétsrgem integrating
equation (1) to a two-dimensional map:

Th+1 = fM(:Ckvp)a (2)
by intercepting the flow with the Poincaré section.

Let x5 be one of the fixed points of the system (1) at the nominal patanvalue
po that we wish to stabilize. In other words, we attempt to bitimg deviationdz;, =
(xzr — xy) to lie on the linearized stable direction.

The control law (3) below is directly derived from the Poireaection;

5on = 252, ®)
6xf

wheredp;, = (pr — po) determine the parameter perturbations g%,?fdda:k determine the
influence of small parametric variation on fixed points véoia \We restrict parameter
perturbations to be small.

This perturbation control law acts instantaneously on tistesn. However, in real
cases, the future system state of a chaotic system depertials carrent parametric vari-
ation as well as the previous parametric variations, soye&s1 must take sometime to
react to the correction. It seems more sensitive, from aigedpoint of view, to introduce
some delay between the computation of the control law anéffieetive modification of
the control parameter. This is realized by adding to the agrtblaw a term depending
on the previous value of the control parameter weighted wittarametery, which is
determined by trial and error.

Thus, equation (3) becomes:

0
dpr = a—péa:k + YOpg—1. 4)
xf

In terms of the quality of control performance, once the malns activated, the controlled
system must be maintained at its new trajectory along itBi&e0.

We expect that, under forward applications of the contnwl(4), points in the local
neighbourhood of the fixed point will eventually fall intoethocal neighbourhood and
then be controlled.
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The activating region of control is limited to the followirsgt of points:
{6: 627+ 623 <1}. (5)

A general objective of control is to force a given chaotictegs into a desired
behaviour. This often means driving the trajectory from &i@otic attractors to an
equilibrium point or an unstable periodic orbit. Anothejeattive can be to change from
one UPO to another.

As example for a system possessing multiples UPOs, we cltbesescroll Chua’s
circuit.

3 n-scroll Chua'scircuit

In this section, a generalized Chua’s circuit is introduftedyenerating:-scroll chaotic
attractors.

The generalized Chua’s circuit, which exhibitswumber of scrolls, is given by the
equations:

T = O‘(yf f(x))a
Y= —y-+2z, (6)
z= _ﬁya
where
S—Z(m — 2ac), if = > 2ac,
f(z) = ¢ —bsin <72T—z+d>, if —2ac<x < 2ac, @)
S—Z(m + 2ac), if < —2ac.

System (6) can generatedouble scroll chaotic attractors for the following retatship:
n=c+1 (8)

and

)

Jelm if n isodd
~]o, if niseven

With equations (6) and (7), wheta = 10.814, 8 = 14, a = 1.3, b = 0.11,¢c = 7,
d = 0 and starting from the initial state:, yo, z0) = (0.1,0.1,0.1), a 8-scroll attractor
is generated as depicted in Fig. 1.

Poincaré section is chosen by plotting the current maxigaéret the pervious ma-
xima of thex state variable.

The firs state of the fixed point is determined by

zp1 = 4.507. (10)
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Fig. 1. The 8-scroll Chua’s attractor: (a) phase spacejr{i® tesponse.
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Fig. 2. Return map of the state variable.

Then, we generate a Poincaré section, at a value near thedlese, for example, we
choosen = 10.914. In this case,

a'py = 4.810. (11)
The control law is defined by:
Oa
day, = a—xf&ck + ydag—_1
10.914 — 10.814 (12)
= gy — Sove—
1810 = 4507 Tk T o) T 0

= 0.33(xy, — 4.507) + yoorg_1.
The question now is how to guarantee that the dynamical sy is asymptotically

stable toward the desired unstable periodic orbit, i.e résulting dynamics is asympto-
tically stable. This can be ensured by choosing suitableevaf the parametey in the
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above formula. After many numerical tests, this parametgstrne small and it is chosen
from the interval0.01, 0.5].
Then-scroll Chua’s circuit is under control of the form:

5ak = 033(£Ck - 4507) + 0.15@]6,1. (13)

The perturbation is activated only when the state variablesmdy are located in the
neighbourhood of the appropriates fixed poinisandy; respectively. The activation
region of the control is:

(:ckfxf)QJr(yk—yf)Q <1, (14)

wherey; = 0.278.
Computer results of applying control are shown in Fig. 3.
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Fig. 3. Stabilizing the first UPO of the 8-scroll Chua’s chaattractor: (a) phase space;
(b) time response.

To stabilize the chaos on its real unstable periodic orbit& can see that control
generate a pulse train; each pulse is activated automgscethat, at sufficient amplitude,
determined by the Poincaré section at each travelling thafixed point, eventually the
system orbits converges to the desired unstable periolitsoiVe also tested our chaos
control strategy with different initial conditions and ias found to be robust.

In the same way, and by exploring the Poincaré section agraifoundz yo = 14.93.

In the last case, fars3 = —5.80; control results are shown in Fig. 5.

We now present numerical results about the changing dyrsafmim one UPO to
another one. Starting from the same initial state, contritck on and stabilize the first
UPO (appropriate unstable fixed pointg;). It is switched off, the system returns to
a chaotic state. Once the control test (14) is verified aghis,time with the second
unstable fixed points ¢, as goal, the control leads the trajectory to the desired UPO.
remains switched on for a same time as in the preceding cdsesdme control action
can be carried out for the last unstable fixed paipf. Stabilization is reached quickly.
Control results are depicted in Fig. 6.
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Fig. 4. Stabilizing the second UPO: (a) phase space; (b)rsgonse.

20 T T T T T
x 0%

0 100 200 300 400 500 600 700 800 900

= . . . . . . . .
500 100 200 300 400 500 600 700 800 900

N O gttt
-50

11.3140 190 290 390 490 590 6(?0 7(?0 890 900

"1°'81“—0ﬂwwuumwmmw

! . . . . . . 10314 . . . . | f f A
-15 -10 -5 0 5 10 15 20 03 0 100 200 300 400 500 600 700 800 900
X time (s)

(@) (b)
Fig. 5. Stabilizing the last UPO: (a) phase space; (b) tirspaase.
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Fig. 6. The transition from one UPO to another one.
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To study the robustness of our chaos control method agaiist,we add a term
e£(t) to the right-hand side of the linearized equations (13), rel§¢t) is a random
variable anck is a small parameter specifying the intensity of the noidethé noise
is bounded, i.e | < damin, then the control will hardly be affected by noise as shown
in Fig. 7.
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Fig. 7. The effect of noise on the controlled 8-scroll Chutsactor.

4 Conclusion

This paper has developed a simple control method for staiglimultiples unstable
periodic orbits in the chaotie-scroll Chua’s circuit. From the control point of view,
the analysis has shown that this control method is easy tteimgnt, has a fair degree of
robustness and can stabilize several high order chaotierags The most difficult task is
to determine the unstable fixed point that corresponds totiginally targeted unstable
periodic orbit (UPO).

Satisfactory control performances are demonstrated fibr &tabilizing one UPO of
the n-scroll Chua’s circuit as well as taking the dynamics frone @PO to another. In
addition, numerical results showed the robustness of thalter against external noise.
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