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Abstract. In this paper a non-linear mathematical model is proposea fgualitative
representation of ecosystem dynamics in a eutrophied Wwatty. The model variables
are the concentration of nutrients, densities of algal fmn, zooplankton population,
detritus and the concentration of dissolved oxygen. Theahodnsists of five coupled
ordinary differential equations. By using the qualitatibheory of differential equations
the model steady-state dynamics are studied. Simulatialysia is also performed to see
the effect of rate of input of nutrients on different varieblparticipating in the proposed
model.
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1 Introduction

Eutrophication is a process in which a water body, such ake laecomes rich of
nutrients (nitrogen, phosphorus, etc.), from domestiéindige as well as water run off
from agricultural fields. These nutrients resulting in e&sed production of algae and
macrophytes. Due to excessive growth of macrophytes innaaie algae floating on the
water surface, the photosynthesis process of aquatic feamaedses leading to decreased
production of oxygen in the water body. This excessive ghaito decreases the oxygen
transfer from air to water by diffusion. When algae and zaaokton die and sink to the
bottom of the water body, their decay by bacteria reducesdaheentration of dissolved
oxygenin the bottom of water body further to levels which maybe sufficient to support
fish life, [1-10].

Several investigators have studied the effect of dischafrgatrients in water bodies
such as a lake causing eutrophication, [1, 4-6, 9, 11-2Ghovoand Tonkikh [10] have
presented a model for eutrophication in macrophyte lakesnamg that the nutrient is
supplied only by detritus, which is formed by death of algaé macrophytes. They have
not considered the input of nutrients either from domestairdhge or from water run
off from agricultural fields. Truscott and Brindley [21] mented a model for evolution
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of phytoplankton and zooplankton in an ocean. Franke etld]. proposed a physical-
biological coupled model for algal dynamics in lakes by é¢desng interactions of phy-
toplankton and zooplankton and their response to physimat@ement. Edwards and
Brindley [4] have studied zooplankton mortality and the ayrical behavior of plankton
population by considering nutrients, phytoplankton andptankton as variables. The
influence of eutrophication on air — water exchange, vdréigggen flux, etc. in the lake
Ontorio has been investigated by Dachs et al. [2]. The mi#difon in the water column and
sediment of a lake and adjoining river system has also beeiestby Paur and Auer [22].
Jayaweera and Asaeda [14] have studied biomanipulatiolnathosv eutrophic lakes by
using a mathematical model involving phytoplankton, zaogton, detritus, bacteria and
fish population but they have not considered the supply afents from outside. Some
other ecological modeling studies involving phytoplamktaooplankton and nutrients,
relevant to our work, have also been conducted by [23-2T}Hay have not considered
the concentration of dissolved oxygen in the modeling pssce

Keeping in view of the above, in this paper, we model and alye eutrophication
of a water body when nutrients are supplied to the water bamiy butside by water run
off from agricultural fields using ecological concepts.

2 Mathematical model

We consider here a lake which is being eutrophied due to oeeth of algae and other
biological species caused by discharge of nutrients fromektic drainage as well as
from water run off, etc. and also from nutrients formed froptridus. The bilinear
interactions of variables such as the cumulative conctotraf nutrients, densities of
algae (phytoplankton) and zooplankton populations, dgn$idetritus and concentration
of dissolved oxygen are considered. We consider that vamatrients are supplied to
the water body from domestic drainage as well as run off frgnicaltural fields. These
nutrients may also be supplied by death of algae and zoojgankVe assume that the
phytoplankton population is wholly dependent on nutrieard is being used as a food
by its predator zooplankton population. It is assumed furthat the level of dissolved
oxygen in the water body increases by diffusion, etc. witloastant rate as well as by
photosynthesis / respiration by algae.

Letn be the cumulative concentration of various nutrieatise the density of algae,
Z be the density of the zooplankton populatiérhe the density of detritus and be the
concentration of dissolved oxygen (DO). We assume thatuheutative rate of discharge
of nutrients into the aquatic system from outside in the wately isq, a constant which
is depleted with raten{yn) due to natural factors. It is further assumed that the cativel
growth rate of nutrients by detritus(s,4.5) and depletion of nutrients by algae is propor-
tional to both the density of algae as well as the conceotratf nutrient (i.ena). Thus,
the growth rate of algae is proportionaltea) as it is assumed to be wholly dependent
on the nutrients. The natural depletion rate of algae israsduto be proportional to its
densitya and its depletion rate due to crowding / food utilization isgortional toa?
in the water body. The depletion rate of algae by its predadoplankton is assumed
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to be proportional tgaZ) and hence the growth rate of zooplankton is also proportiona
0 (aZ). The natural depletion rate of zooplankton is assumed tortyeoptional to its
densityZ and its depletion rate due to crowding is proportionaktao Since some part
of natural depletions of algae and zooplankton is conventieddetritus, thus the growth
rate of detritus is assumed to be proportionaktand Z and its natural depletion rate
is assumed to be proportional £ We consider that the rate of growth of dissolved
oxygen by various sources ¢s assumed to be a constant and its natural depletion rate
is proportional to its concentratiafi. It is further assumed that the rate of growth of
dissolved oxygen by algae is proportionaktand the depletion of DO caused by its use
by detritus in converting itself into nutrients is proportal to its concentratiof.

In view of the above considerations, the system is govergetidfollowing differ-
ential equations:

d
e _ q + ™S — aon — Bina,
dt
d
d_j = 01/1na — ara — Proa® — PeaZ,
dz
at 020207 — e Z — BooZ?, @)
ds
— =maia+ masZ — 68,
dt
dcC
2 = e —asC = Aia— a1,
where

Here the positive coefficients]s are depletion rate coefficients;, 52, 61, 62,6 andd;
are proportionality constants which are positive. The tpasiconstantss;; and (a0
are coefficients corresponding to crowding (flaking off diecédnts, Rinaldi et al. [28])
of algae and zooplankton populations respectively. Furtheny, 7 andm, are the
fractional proportionality constants, thus we héve my, my, 72 < 1.

3 Analysisof equilibria

The model (1) has the following three equilibria.

Casel. Fi(gq/®p,0,0,0,q./as) always exists.

This equilibria of model (1) explains that if the density ¢gae as well as zooplankton
both are not participating in the system then the equilibriavel of nutrients will reach
to the valuey/«y and the equilibrium concentration of dissolved oxygen veifich to the
valueq./as3. Here we also note that since detritus is formed due to ddatlgae and
zooplankton, both are not participating in the system, bahe equilibrium density of
detritus will become).

513



A. K. Misra

Case2. Ey(n3,a3,0,55,C5) exists, provided the following conditions are satisfied:

01819 — oy > 0, 2
qc + )\110,; — 5153 > 0. (3)

The second equilibrigs of model (1) is obtained when algae is participating in the
system whereas zooplankton population is not participatinhe system. In this case the
equilibrium level of concentration of nutrients, densifyatgae, density of detritus and
concentration of dissolved oxygen will reach to the valugs:3, S5 andC; respectively.
These values are explicitly given by equations (8), (12)) éind (13) respectively.

Case3. Es(n*,a*,Z*,S*, C*) exists, provided the following conditions are satisfied:

a

01819 — oo + 5720(62% — momab1 Braz) > 0, (4)
02020 — g > 0, %)
qc+)\11a* 7515* > 0. (6)

The third equilibriak; of model (1) explains that if algal and zooplankton both dapu
tions are present in the water body then the equilibriumeslof different variables i.e
nutrients, algae, zooplankton, detritus and dissolvedyeryparticipating in the system
will be given byn*, a*, Z*, S* andC*. These equilibrium values are explicitly given by
equations (16), (14), (15), (17) and (18) respectively.

We shall show the existence of these equilibria as followse @quilibria of model
(1) are obtained by the following algebraic equations:

q+ 7S — agn — Pina = 0, (7
0181na — aya — Proa® — faaZ =0, (8
02520Z — a2 Z — PanZ? = 0, 9)
maia + masZ — 08 =0, (20)
qe — a3C + A1a — 615 = 0. (11)

The equilibriumFE; (¢/«y, 0,0, 0, g./a3) exists obviously.

Existence of E,. In the equilibriaEsz(n3,a3,0,55,C5), a3 is the positive root of the
following quadratic equation provided condition (2) isisti¢d.

B1B10a> + (Broao + frar — momibhfrar)a — (01819 — apar) = 0. (12)
Using this value of = a3 > 0 in equations (8) and (10), we get
.1 . . Mo
ny = e (a1 4+ froas) and S5 = 3 as,

which are positive. Again using the valuesadfand.S; in equation (11), we get

1
03 = a—3((Ic+)\11a§ —0153), (13)
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which is positive if the right hand side of (13) is positivéyes condition (3).

Existence of E5. For the equilibriaEs(n*, a*, Z*, S*,C*), a* is the positive root of the
following quadratic equation provided condition (4) isisti¢d.

2
B1 (510 + bl 2)

a
B20
0532 «
+ [ao (510 + 2—62) + 6 <a1 + 2 2)
B20 B20
0.5 (14)
T [0
— mot1 51 <7T1041 + M)]G
B20
0 2
B [9151(] — gy + Praparz  moTo 151042] _o.
B20 B20
Substitutinge = a* > 0 in equation (9), we get
1
Z* = —(6220" — a2), (15)
B20
which is positive if right hand side is positive, gives caiat (5).
Using this value ot* in equations (8) and (10), we get
* 1 9263) * ( 62042)]
n' = — + a4+ | ag — 16
0151 Kﬂm B20 ' B (16)
and
| 7729262@2) . 772043]
S* == a + —=)a* — , 17
4 Km ! B20 B20 ()
which are positive under condition (5).
Again usinge* andS* in equation (11), we get
1
Cc* = —(qc + A1a* — (515*), (18)
ag

which is positive if the right hand side is positive gives dition (6).

It may be pointed out that, corresponds to the situation, where zooplankton is not
present. Keeping in view that the algae is predated by zo#éfia, it is noted that growth
rate of algae in absence of zooplankton is greater than présence. Therefore using a
comparison theorem, Hale [29] it can be easily concludetittieapopulation of algae is
greater in absence of zooplankton than when zooplanktoegept. Thug’ > a*.

Remark. To see the effect of discharge of nutrients on eutrophina®well as on the
level of dissolved oxygen, we determine the rates of chaihge B, and S with respect
to ¢ and then corresponding change@fwith respect tq;.

515



A. K. Misra

From equations (14), (15) and (17) we find t#ﬁj@, dj; and% are all positive.
From equation (18), we note that

act [, b, mafan)]da"
dq_ 11 5 11 620 dq,

which is negative if

Ay (mm + M) <0. (19)

0 P20

Since most of algae float on the surface of water, therefaeygen formed by
algae during photosynthesis may go to the atmosphere and ltike chance to get
dissolve into the water, thuk;; is very small. Hence, the above condition (19) would
be satisfied easily. This shows that as the cumulative ratésoharge of nutrients in the
water body increases, the densities of algae, zooplanktidrdatritus increase but the
concentration of dissolved oxygen decreases.

4 Stability analysis

In our analysis, we assume that all the above equilibria.ektse local stability behavior
of these equilibria is studied in the following theorem.

Theorem 1. The equilibriumE; (i = 1,2) is unstable wheneveE,,, exists. The
equilibrium pointFEs is locally stable if

L < n min ﬁ 2020

ap + fra* T 2604 miad’ 1360203 |

The proof is given in Appendix II.

In the following we prove thak’s is nonlinearly stable. For this we need the follow-
ing lemma, following, Freedman and So [30], Shukla and DUBey1].

(20)

Lemma 1. The sef is a region of attraction for all solutions initiating in theositive
octant.

Om + A
Q:{(n,a,Z,S,C):Ogn—i—a—i—Z—i—SS Ogng}, (21)

1
(Sm, 0435777,
whereé,,, = mm{(l — 7T())5, g, (]. — ’/T1)Oél, (]. — ’/TQ)QQ}.

Proof. Adding the first four equations of model (1), we get

d

%(n +a+ Z + S) § q — apon — 041(]. - ’/'Tl)(l - 042(]. - ’/TQ)Z - 5(1 - ’/T())S.
Letd,, = min{ag, a1(1 —m), az(l —m2), 6(1 — mp)}, then from above equation we
note that

d
%(n+a+Z+S)§q75m(n+a+Z+S).
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By using comparison theorem, Hale [29] it can be easily agohed]
0<n+a+Z+8<q/0m.

From the last equation of model (1), we have

dcC
’r < ge + AM1a — asC.
Using the maximum value af, we get
ac A11q
— < q. — a=C.
T

Again using comparison theorem, we get

QC677L + )\llq

0<C<
o o a3l

Theorem 2. The equilibrium point=s is non-linearly stable irf2, if

2 *
Un n . 510 2520
< : , 22
ap 20, [7@0@ 720,02 (22)

It is noted here that if this condition is satisfied th@0) would always be satisfied. It is
further noted that this condition is feasible for very larggand smallr.

The proof is given in Appendix Il1.

The above theorems imply that under certain condition, yis&esn variables would
attain their equilibrium values and the densities of algaeplankton, detritus increase as
the cumulative rate of discharge of nutrients increaseshautoncentration of dissolved
oxygen decreases.

5 Numerical example

To check the feasibility of our analysis regarding the exise of 5 and corresponding
stability conditions, we conduct some numerical compatabiy choosing the following
values of the parameters in model (1).

qg =50, mw=0.1, 6 =10, «a=0.>5 (=10,
0 =10, a3 =0.5, p19g=20, [=1.0,

0 =10, «a2=0.5, (=20, w1 =09, w=0.9,
g. =10.0, a3 =2.0, A1 =0.25 & =10.0.

(23)

It is found that under the above set of parameters, condifionthe existence of interior
equilibrium Es(n*, a*, Z*, S*, C*) are satisfied and; is given by

n* = 3.093580, a* = 1.137432, Z* = 0.318716, S* = 0.655267, C* = 1.096836.
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The eigenvalues of the Jacobian matfix corresponding to this equilibriun; are
obtained as,

—2, —0.696836, —0.998378, —1.927256 + 1.9249647, —1.927256 — 1.924964s.

Thus, it has three real and two complex eigenvalues, whieledher negative or have
negative real parts. Hendg; is locally stable.

It is pointed out here that for the above set of parameteesctimditions for local
stability (20) and nonlinear stability (22) are also satidfi

Further for the above set of parameters, a computer gedeyedph ofn verse' is
shown in Fig. 1, which indicates the global stability(ef, C*) in n-C plane.

xx\\\\\\\!}
T T Y
T4~ v S N L
B T
et e e e N N Y Y
e e e e -
1.2 —ammmsmaa i O e
2 g e
LN,
o A ?\\x\m&h
S R
ALLT A NSNS
0.5 Al R R
’ AR pn it
ARG TANANAN
L pARR A
s 25227 AR
e ffff; TARRAE
28 28 3.2 34

Fig. 1. Global stability inn-C' plane.

In Figs. 2-5, we see the effect gfona, Z, S andC, by keeping other parameters
constants (as given in (23). We observe here that as the famput of nutrientsq
increases, the density of algae, zooplankton and detritreases whereas the concen-
tration of dissolved oxygelw decreases. In these figures we are also seeing that if

Fig. 2. Variation ofa w.r.t. ¢ for differentgq. Fig. 3. Variation ofZ w.r.t. ¢ for differentgq.
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Fig. 4. Variation ofS w.r.t. ¢ for differentq. Fig. 5. Variation ofC w.r.t. ¢ for differentq.

the rate of introduction of nutrientg = 0, then the density of algae, zooplankton and
detritus are tends to zero, whereas the concentration sblged oxygen reaches to its
maximum level. This result is clear because of the fact thmhutrients then formed from
detritus will not be sufficient for the growth of algal poptiten, zooplankton population
and detritus.

6 Conclusion

In this paper, a non-linear mathematical model is proposebamalyzed to study the
eutrophication of a lake due to overgrowth of algae, zodgtamand other biological
species caused by excessive supply of nutrients from wateff from agricultural
fields and other sources. The modeling analysis shows théiteasupply of nutrients
in the water body increases, the densities of algae and biblegical species increases
initiating the eutrophication process. It has also beenvshitnat the density of detritus
increases correspondingly leading to a decrease in theentmation of dissolved oxygen
(as oxygen, formed due to photosynthesis by floating algaes tp the atmosphere and
does not affect the concentration of dissolved oxygen).iByigtion analysis it has been
shown that if the rate of input of nutrients from outside ighhthen the concentration of
dissolved oxygen may become negligible in a water body.

Appendix |: Stability of E; (i = 1,2)

The general variational matrix for the model (1) is givenalofvs:

—(ao + pra) —Bin 0 w96 0
0161a  (0181n — a1 — 2B10a — B2 Z) —B2a 0 0
M = 0 9262Z (9262& — Qg — 2&20Z) 0 0
0 T100 pies) -6 0
0 )\11 0 —(51 —Qs3

519



A. K. Misra

We shall use eigenvalues theory to study the local staltiétyavior of equilibriab; (i =
1,2). Let M; be the matrix obtained from/ after substituting foz; (i = 1, 2).

For the stability ofE; (¢/ 0,0, 0,0, ¢./as3), we note that one of the eigenvalues of
My is B181i=20e1 which is clearly positive whenevé, exists (condition (2)).

HencekF; is unstable whenevdr, exists.

For the stability ofE; (n3, a3, 0, S5, C5), we note that one of the eigenvalues\df
is 0282a%5 — a2, Which is positive whenevers exists (asi5 > a* and condition (5)).

This shows thaF; is unstable whenevdrs exists.

As we cannot say much about the behavioFigfirom the corresponding variational
matrix M3, we study the behavior of this equilibrium by using Liapuisonethod.

Appendix |1: Proof of Theorem 1
Linearizing system (1) by using the transformations

n=n"+n, a=a" +a, Z=7Z"+z S=5"+s, C=C"+c

and the positive definite function
1 2 2 2 2 2
V = 5(711 + miaj + moz” + mgs” + mac ), (A1)

wheremy, ms, ms, my4 are some positive constants to be chosen appropriately.
We obtain,4¥ along the solution as follows:

dV 2 Tb*ﬂl() 2 TL*BQ() 2 2 2
@& Y2 _ _ — mads? — .
i (o + fra™)ng ) aj 5.6, 2% —ms30s” — maac (A2)

+ n1s(med) + a1s(mamiar) + zs(mamaaa) + are(marir) + sc(—mydy),

wherem; = -2~ andms, =

_n*
6ra* 01022"*

the following conditions are satisfied

Here we note that}” will be negative definite if

2
50

ms > m, (A.3)
ms < %‘?Zfﬁ’ (A.4)
ms < ﬂg%;z;i%, (A.5)
my < %;%‘:3 (A.6)
my < 7@%. (A.7)

520



Mathematical Modeling and Analysis of Eutrophication ofté&/eBodies Caused by Nutrients

From conditions (A.3)—(A.7), we can choose a positiveand hencen, if the following
condition is satisfied:

2
0 < n* min Bro 200
: :
ap + fra* 2604 a2’ w3003

Appendix I11: Proof of Theorem 2

To prove this theorem, we consider the following positivéirdes function

V%(nn*)2+m1<aa*a*ln%> m2<ZZ*Z*1n;>
“ (A.8)

1 1
+ 5m3(s — 5%+ 5m4(c — )2,

wheremy, ma, ms3, my are positive constants, to be chosen appropriately.
Choosingn, = ;}—1 andms, = -2, 2V reduces in the following form:

02632 "dt
dV *\ 2
o =— fra(n —n")
1 *\2 * * 1 *\2
= gpu(n —n")" 4 pra(n —n")(S = 57) = gpaa(S — 577,
1 *\2 * * 1 *\ 2
= gp2(a—a")" +paa—a)(S = 5%) = 5pa(S = 57)%,
(A.9)
1 9 1 9
- 5]733(2 —Z") +p3a(Z - Z7)(S - 8%) - 5]?44(5' - S5%)%,
1 1
— 5pa(a— a*)? + pas(a — a*)(C = C*) - 3Pss(C = Cc*)?,
1 1
— gpaa(S - S*)? + pas(S — §*)(C - C*) — 3Ps5(C = C*)?,
where
P11 = 200, P — 1hho p _ 200 p = s P55 = My
11 0, 22 91 ) 33 9192 ) 44 2 30, 55 4X3,
P14 = Td, P4 = M3TIQ, DPas = M1, P34 = M3Ta0e, Dis = —Myl1.

Sufficient conditions fof.- to be negative definite if2 arep?; < pipj;. This gives the
following conditions:

7T(2)52 < mg()é()(s, (A].O)
1 *
maria? < 5” e’i 105, (A.11)
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2 2 n* B

mamyas < d, A.12
37202 9192 ( )
mar2, < 2 f 10 s, (A.13)
1
1
m45f < §m350¢3. (A.14)

From conditions (A.10)—(A.12), we can choose a positiveand hencen, if the follow-
ing condition is satisfied:

2 n* min[ Bro 2B }

— <
ap  260; a2’ w3003
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