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Abstract. Natural convection effects of the numerical solution for unsteady, laminar, free
convection flow over an incompressible viscous fluid past a non-isothermal vertical cone
with surface temperatureT ′

w(x) = T ′

∞ + axn varying as power function of distance
from the apex (x = 0) is presented here. The dimensionless governing equations
of the flow that are unsteady, coupled and non-linear partialdifferential equations are
solved by an efficient, accurate and unconditionally stablefinite difference scheme of
Crank-Nicolson type. The velocity and temperature fields have been studied for various
parameters Prandtl number, semi vertical angle0◦ < φ < 90◦ andn. The local as well
as average skin-friction and Nusselt number are also presented and analyzed graphically.
The present results are compared with available results in literature and are found to be
in good agreement.

Keywords: cone, finite-difference method, heat transfer, natural convection, unsteady.

Nomenclature

a constant Nu non-dimensional average Nusselt
f ′′ local skin-friction in [5,15] number
GrL Grashof number n exponent in power law variation
Gr∗L modified Grashof number (GrL cosφ) in surface temperature
g acceleration due to gravity Pr Prandtl number
L reference length R dimensionless local radius of the
Nux local Nusselt number cone
NuL average Nusselt number r local radius of the cone
NuX non-dimensional local Nusselt T ′ temperature

number T dimensionless temperature
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t′ time X dimensionless spatial co-ordinate
t dimensionless time x spatial co-ordinate along cone generator
U dimensionless velocity inX-direction Y dimensionless spatial co-ordinate along
u velocity component inx-direction the normal to the cone generator
V dimensionless velocity inY -direction y spatial co-ordinate along
v velocity component iny-direction the normal to the cone generator

Greek symbols

α thermal diffusivity µ dynamic viscosity
β volumetric thermal expansion ν kinematic viscosity
∆t dimensionless time-step τx local skin-friction
∆X dimensionless finite difference grid τX dimensionless local skin-friction

size inX-direction τL average skin-friction
∆Y dimensionless finite difference grid τ dimensionless average skin-friction

size inY -direction −θ′(0) local Nusselt number in [5,15]
φ semi vertical angle of the cone

Subscripts

w condition on the wall ∞ free stream condition

1 Introduction

Natural convection flows under influence of gravitational force have been investigated
most extensively because they occur frequently in nature aswell as in science and en-
gineering applications. When a heated surface is in contactwith the fluid, the result of
temperature difference causes buoyancy force, which induces the natural convection. The
atmospheric circulation with all its hurricanes, blizzards and monsoons are essentially
driven by natural convection. Mainly, these types of heat transfer problems deal with the
design of spacecrafts, nuclear reactor, solar power collectors, power transformers, steam
generators etc.

Since 1953, several authors have developed similarity solutions for axi-symmetrical
problems for natural convection laminar flow over a verticalcone in steady state. Merk
and Prins [1, 2] developed the general relation for similar solutions on iso-thermal axi-
symmetric forms and they showed that the vertical cone has such a solution in steady state.
Braun et al. [3] obtained similar solutions for isothermal axi-symmetric bodies (i.e., cone,
parabolic-nosed, flat-nosed bodies) with closed lower ends, and integral methods are used
for obtaining heat transfer results for a wide range of Prandtl numbers. These authors
also presented the results obtained by numerically integrating the differential equations
with including Prandtl number of0.72 and concluded; the body shape influences the heat
transfer strongly for lower Prandtl numbers. Further, Hering and Grosh [4] showed the
similarity solutions exist for steady free convection flow over a vertical cone with variable
surface temperature and it varies as power function of distance from apex along the cone
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ray. Numerical solutions of the transformed boundary layerequations are obtained for
both isothermal and linear surface temperature with Prandtl number0.7. They noticed
from the velocity and temperature profiles that the dimensionless tangential-flow function
for the iso-thermal cone attains 22 % greater than that for the cone with linear surface
temperature distribution. Hering [5] extended the problemof Hering and Grosh [4]
for low Prandtl number fluids, and obtained numerical solutions for liquid metals and
concluded that the thermal boundary layer thickness is morefor low Prandtl number
fluids. Sparrow et al. [6] observed that the boundary layer thickness in the case of iso-
thermal vertical plate for air (Pr = 0.733) is comparatively14.5 times less than that for
liquid sodium (Pr = 0.003). Roy [7] extended the work of Hering and Grosh [4] for
high Prandtl number fluids, and derived expressions for local skin-friction and Nusselt
numbers. Also, Alamgir [8] has investigated the overall heat transfer in laminar natural
convection from vertical cones using the integral method. Pop and Takhar [9] have studied
the compressibility effects in laminar free convection from a vertical cone. Kumari and
Pop et al. [10] who investigated the steady mixed convectionflow over a vertical cone for
two values of thePr, namelyPr = 0.733 (air) andPr = 6.7 (water) However, these
authors have considered only the case of assisting flow. Recently, Pop and Grosan et
al. [11] analyzed the steady laminar mixed convection boundary-layer flow over a vertical
isothermal cone for fluids of anyPr for the both cases of buoyancy assisting and buoyancy
opposing flow conditions. The resulting non-similarity boundary-layer equations are
solved numerically using the Keller-box scheme for fluids ofany Pr from very small
to extremely large values (0.001 ≤ Pr ≤ 10000).

Further, Gorla and Startman [12] considered the analysis oftransverse curvature
effect on axi-symmetric free convection boundary layer flowof water at4◦ C past a
slender vertical cone and observed the heat transfer rate increases with the increasing
transverse curvature. Also, Kuiken [13] have considered the case of a slender cone
where the transverse curvature effect is considered. The transformed boundary-layer
equations are non-similar, and these equations were solvedin terms of series expansion
of the transverse curvature variable. Watanabe [14] solveda non-similar free convection
boundary layer flow with constant wall temperature and uniform suction/injection over
a cone and presented numerical results for various suction/injection and vertical angle
parameters. Recently, Hossain and Paul [15] studied the non-similarity solutions for
the laminar free convection from a vertical permeable cone with non-uniform surface
temperature. Using a finite difference method, a series solution method and asymptotic
solution method, the solutions have been obtained for the non-similarity boundary layer
equations. Takhar and Chamkha et al. [16] investigated the effect of thermo physical
quantities on the free convection flow of gases over iso-thermal vertical cone in steady
state, in which thermal conductivity, dynamic viscosity and specific heat at constant
pressure were to be assumed a power law variation with absolute temperature. They
concluded the heat transfer increases with suction and decreases with injection. Further,
solutions of the transient free convection flow problems over a vertical/started vertical
plate and inclined plate/vertical cylinder have been obtained by Takhar and Ganesan
et al. [17], Muthucumaraswamy and Ganesan [18], Ekambavanan and Ganesan [19],
Ganesan and Rani [20] using finite difference method.
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The investigation, namely unsteady laminar natural convection flow past a non-
isothermal vertical cone has not received any attention in literature. Hence, the present
work-studies and deals with the laminar free convection flowover a non-isothermal verti-
cal cone. The governing boundary layer equations are solvedby an implicit finite differen-
ce scheme of Crank-Nicolson type withPr, φ andn as controlling parameters. In order to
check the accuracy of our numerical results, the present results are computed atX = 1.0

by considering modified Grashof numberGr∗L = GrL cosφ =
gβ cos φ(T ′

w
−T ′

∞
)L3

ν2 and
results are compared with the available results of Hering and Grosh [4], Hering [5] and
Hossain [15].

2 Mathematical analysis

An axi-symmetric unsteady laminar free convection of a viscous incompressible flow
past a vertical cone with variable temperatureT ′

w(x) = T ′

∞
+ axn on the surface is

considered. It is assumed that the viscous dissipation effects are negligible. It is also
assumed that the cone surface and the surrounding fluid whichis at rest are at the same
temperatureT ′

∞
. Then at timet′ > 0, the temperature of the cone surface is suddenly

raised toT ′

w(x) = T ′

∞
+ axn and it is maintained. The co-ordinate system is chosen

(as shown in Fig. 1) such that measures the distance along surface of the cone from

Fig. 1. Physical model and co-ordinate system.

the apex (x = 0) andy measures the distance normally outward. Hereφ is the semi
vertical angle of the cone andr is the local radius of the cone. The fluid properties are
assumed constant except for density variations, which induce buoyancy force term in the
momentum equation. The governing boundary layer equationsof continuity, momentum
and energy under Boussinesq approximation are as follows:

Equation of continuity:

∂(ur)

∂x
+

∂(vr)

∂y
= 0, (1)
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equation of momentum:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= gβ cosφ

(

T ′
− T ′

∞

)

+ ν
∂2u

∂y2
, (2)

equation of energy:

∂T ′

∂t′
+ u

∂T ′

∂x
+ v

∂T ′

∂y
= α

∂2T ′

∂y2
. (3)

The initial and boundary conditions are

t′ ≤ 0: u = 0, v = 0, T ′ = T ′

∞
for all x, y,

t′ > 0: u = 0, v = 0, T ′(x) = T ′

∞
+ axn at y = 0,

(4)
u = 0, T ′ = T ′

∞
at x = 0,

u → 0, T ′
→ T ′

∞
as y → ∞.

Local skin-friction and local Nusselt number are given respectively by

τx = µ

(

∂u

∂y

)

y=0

, (5)

Nux =
−x

(

∂T ′

∂y

)

y=0

T ′

w − T ′

∞

. (6)

Average skin-friction is given by

τL =
2µ

L2

L
∫

0

x

(

∂u

∂y

)

y=0

dx. (7)

Average heat transfer co-efficient over cone surface is

h =
−2k

L2

L
∫

0

x

(

∂T ′

∂y

)

y=0

T ′

w − T ′

∞

dx, (8)

then average Nusselt number is

NuL =
hL

k
=

−2

L

L
∫

0

x

(

∂T ′

∂y

)

y=0

T ′

w − T ′

∞

dx. (9)

Using the following non-dimensional quantities:

X =
x

L
, Y =

y

L
(GrL)

1

4 , R =
r

L
, where r = x sin φ,

V =
vL

ν
(GrL)−

1

4 , U =
uL

ν
(GrL)−

1

2 , t =
νt′

L2
(GrL)

1

2 ,

T =
T ′ − T ′

∞

T ′

w(L) − T ′

∞

, GrL =
gβ

(

T ′

w(L) − T ′

∞

)

L3

ν2
, P r =

ν

α
.

(10)
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Equations (1), (2) and (3) are reduced to the following non-dimensional form:

∂(UR)

∂X
+

∂(V R)

∂Y
= 0

(

or
∂(U)

∂X
+

∂(V )

∂Y
+

U

X
= 0

)

, (11)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= T cosφ +

∂2U

∂Y 2
, (12)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr

∂2T

∂Y 2
. (13)

The corresponding initial and boundary conditions in non-dimensional quantities are given
by

t ≤ 0: U = 0, V = 0, T = 0 for all X, Y,

t > 0: U = 0, V = 0, T = Xn at Y = 0,
(14)

U = 0, T = 0 at X = 0,

U → 0, T → 0 as Y → ∞.

Local skin-friction and local Nusselt number in non-dimensional quantities are

τX = Gr
3

4

L

(

∂U

∂Y

)

Y =0

, (15)

NuX =
X

TY =0

(

−∂T

∂Y

)

Y =0

Gr
1

4

L . (16)

Average skin-friction and average Nusselt number in non-dimensional quantities are

τ = 2Gr
3

4

L

1
∫

0

x

(

∂U

∂Y

)

y=0

dX, (17)

Nu = 2Gr
1

4

L

1
∫

0

X

TY =0

(

−∂T

∂Y

)

Y =0

dX. (18)

3 Solution procedure

The unsteady non-linear coupled partial differential equations (11), (12) and (13) with the
initial and boundary conditions (14) are solved by employing a finite difference scheme
of Crank-Nicholson type which is discussed by many authors Muthucumaraswamy and
Ganesan [18], Ganesan and Rani [20], Ekambavanan and Ganesan [19], Takhar and
Ganesan et al. [17]. The finite difference equations corresponding to the equations are
given by

Uk+1
i,j − Uk+1

i−1,j + Uk
i,j − Uk

i−1,j + Uk+1
i,j−1 − Uk+1

i−1,j−1 + Uk
i,j−1 − Uk

i−1,j−1

4∆X

+
V k+1

i,j − V k+1
i,j−1 + V k

i,j − V k
i,j−1

2∆Y
+

Uk+1
i,j + Uk+1

i,j−1 + Uk
i,j + Uk

i,j−1

4i∆X
= 0,

(19)
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Uk+1
i,j − Uk

i,j

∆t
+ Uk

i,j

Uk+1
i,j − Uk+1

i−1,j + Uk
i,j − Uk

i−1,j

2∆X

+ V k
i,j

Uk+1
i,j+1 − Uk+1

i,j−1 + Uk
i,j+1 − Uk

i,j−1

4∆Y

=
T k+1

i,j +T k
i,j

2
cosφ+

Uk+1
i,j−1−2Uk+1

i,j +Uk+1
i,j+1+Uk

i,j−1 − 2Uk
i,j+Uk

i,j+1

2(∆Y )2
,

(20)

T k+1
i,j − T k

i,j

∆t
+ Uk

i,j

T k+1
i,j − T k+1

i−1,j + T k
i,j − T k

i−1,j

2∆X

+ V k
i,j

T k+1
i,j+1 − T k+1

i,j−1 + T k
i,j+1 − T k

i,j−1

4∆Y

=
1

Pr

T k+1
i,j−1 − 2T k+1

i,j + T k+1
i,j+1 + T k

i,j−1 − 2T k
i,j + T k

i,j+1

2(∆Y )2
.

(21)

Here the region of integration is considered as a rectangle with Xmax = 1 and
Ymax = 20 whereYmax corresponds toY = ∞ which lies very well outside both
the momentum and thermal boundary layers. The maximum ofY was chosen as20,
after some preliminary investigation so that the last two boundary conditions of (14) are
satisfied within the tolerance limit10−5. The mesh sizes have been fixed as∆X = 0.05,
∆Y = 0.05 with time step∆t = 0.01. The computations are carried out first by reducing
the spatial mesh sizes by 50 % in one direction, and later in both directions by 50 %.
The results are compared. It is observed that, in all cases, the results differ only in the
fifth decimal place. Hence, the choice of the mesh sizes seemsto be appropriate. The
co-efficient ofUk

i,j and V k
i,j appearing in the finite-difference equations are treated as

constants at any one-time step. Herei designates the grid point along theX-direction,j
along theY -direction andk along the timet. The values ofU, V andT are known at all
grid points whent = 0 from the initial conditions.

The computations ofU, V andT at a time level(k + 1), using the values at previous
time levelk are carried out as follows. The finite-difference equation (21) at every internal
nodal point on a particulari-level constitutes a tri-diagonal system of equations and is
solved by Thomas algorithm as discussed in Carnahan et al. [21]. Thus, the values of
T known at every nodal point at a particulari at (k + 1)th time level. Similarly, the
values ofU are calculated from equation (20), and finally the values ofV are calculated
explicitly by using equation (19) at every nodal point on a particular i-level at(k + 1)th

time level. In a similar manner, computations are carried out by moving alongi-direction.
After computing values corresponding to eachi at a time level, the values at the next
time level are determined in a similar manner. Computationsare repeated until steady
state is reached. The steady state solution is assumed to have been reached when the
absolute difference between the values of the velocityU , as well as temperatureT at two
consecutive time steps are less than10−5 at all grid points.
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The scheme is unconditionally stable. The local truncationerror isO(∆t2+∆Y 2+
∆X) and it tends to zero as∆t, ∆Y and ∆X tend to zero. Hence, the scheme is
compatible. Stability and compatibility ensure the convergence.

4 Results and discussion

In order to prove the accuracy of our numerical results, the present results in steady state

at X = 1.0, Pr = 0.7, η = Y and consideringGr∗L = GrL cosφ =
gβ cos φ(T ′

w
−T ′

∞
)L3

ν2

are compared with available similarity solutions in the literature. In Figs. 2(a) and 2(b),
the velocity and temperature profiles of isothermal and non-isothermal vertical cone are
compared with similarity solutions of Hering and Grosh [4] in steady state and found to
be in excellent agreement. In addition, local skin-friction τX and local Nusselt number
NuX values for different Prandtl number and exponentn are compared with the results
of Hering [5] in Tables 1 and 2, respectively. It is observed that the results are in good
agreement with each other for small values ofn. There is small deviation with these
results for large values ofn and the deviation increases withn. Also, present values of
local skin-frictionτX and local Nusselt numberNuX values for different Prandtl number
and exponent value when are compared with the recent results, non-similarity solution of
Hossain [15] in Table 3. Finally, Pop and Takhar [9] results are for incompressible fluid
same as those of Hering and Grosh [4] results. Hence, presentresults well agree with the
results of Pop and Thakar [9] for incompressible fluid.

In Figs. 3–5, transient velocity and temperature profiles are shown atX = 1.0, with
various parametersPr, n andφ. The values oft with star symbols (∗) denote the time
taken to reach steady state. In Fig. 3(a), transient velocity profiles are shown for different
angles withPr = 0.71 andn = 0.2. Whenφ increases, near the cone apex, it leads to
a decrease in the impulsive force along the cone surface. Hence, the difference between
temporal maximum velocity values and steady state values decreases with increasing the
values ofφ. The tangential component of buoyancy force reduces as the semi vertical
angle increases. This causes the velocity to reduce as angleφ increases. The momentum
boundary layer becomes thick, and the time taken to reach steady state increases for
increasingφ.

In Fig. 3(b), transient temperature profiles are shown for different angles withPr =
0.71 andn = 0.2. It is observed the temperature and boundary layer thickness increase
with increasingφ. The difference between temporal maximum temperature values and
steady state values decrease with increasingφ.

In Figs. 4(a) and 4(b), transient velocity and temperature profiles are plotted for
various values ofPr with φ = 15◦ andn = 0.2. Viscous force increases and thermal dif-
fusivity reduces with increasingPr, causes a reduction in the velocity and temperature as
expected. It is observed from the figures that the differencebetween temporal maximum
values and steady state values are reduced whenPr increases. It is also noticed the time
taken to reach steady state increases and thermal boundary layer thickness reduces with
increasingPr. It is also clear from the Fig. 4(a), the momentum boundary layer thickness
increases with the increase ofPr from unity.
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Table 1. Comparison of steady state local skin-friction results atX = 1.0 with those of
Hering [5]

Hering [5] Present values Hering [5] Present values
f ′′(0) f ′′(0)

√

Pr τx/(Gr∗L)3/4 f ′′(0) f ′′(0)
√

Pr τx/(Gr∗L)3/4

n Pr = 0.03 Pr = 0.1

0 7.185 1.2444 1.2406 3.466 1.0960 1.0932
0.2 6.928 1.1999 1.1973 3.353 1.0603 1.0589
1 6.174 1.0693 1.0703 3.019 0.9545 0.9567
2 5.582 0.9668 0.9709 2.749 0.8693 0.8736
4 4.892 0.8473 0.8568 2.425 0.7668 0.7757
8 4.197 0.7269 0.7864 2.091 0.6612 0.6778

n Pr = 0.7 Pr = 1.0

0 0.9796 0.8195 0.8163 0.7694 0.7694 0.7660
0.2 0.9513 0.7959 0.7937 0.7475 0.7475 0.7451
1 0.8663 0.7248 0.7255 0.6815 0.6815 0.6819
2 0.7962 0.6661 0.6684 0.6270 0.6270 0.6289
4 0.7096 0.5937 0.5993 0.5596 0.5596 0.5645
8 0.6172 0.5164 0.5277 0.4872 0.4872 0.4977

Table 2. Comparison of steady state local Nusselt number values atX = 1.0 with those
of Hering [5]

Hering [5] Present values Hering [5] Present values
−θ′(0) −θ′(0)

√

Pr NuX/(Gr∗L)1/4
−θ′(0) −θ′(0)

√

Pr NuX/(Gr∗L)1/4

n Pr = 0.03 Pr = 0.1

0 0.7185 0.12440 0.1258 0.6683 0.2113 0.2121
0.2 0.7726 0.13380 0.1352 0.7159 0.2263 0.2271
1 0.9415 0.16307 0.1623 0.8663 0.2739 0.2733
2 1.0890 0.18860 0.1879 0.9919 0.3136 0.3120
4 1.2870 0.22290 0.2174 1.1650 0.3684 0.3620
8 1.5330 0.26550 0.2522 1.3810 0.4367 0.4185

n Pr = 0.7 Pr = 1.0

0 0.5392 0.4511 0.4554 0.5104 0.5104 0.5157
0.2 0.5730 0.4794 0.4833 0.5148 0.5148 0.5465
1 0.6777 0.5670 0.5684 0.6389 0.6389 0.6406
2 0.7693 0.6436 0.6412 0.7240 0.7240 0.7213
4 0.8945 0.7484 0.7374 0.8406 0.8406 0.8285
8 1.0530 0.8810 0.8489 0.9889 0.9889 0.9535
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Table 3. Comparison of steady state local skin-friction andlocal Nusselt number values
atX = 1.0 with those of Hossain [15] whenn = 0.5 and suction is zero.

Local skin-function Local Nusselt number
n = 0.5 Hossain values Present valuesHossain values Present values

Pr f ′′(0) τX/(Gr∗L)3/4
−θ′(0) NuX/(Gr∗L)1/4

0.01 1.23231 1.224 0.08828 0.0914
0.05 1.09069 1.0922 0.183 0.1829
0.1 1.01332 1.015 0.24584 0.2466

In Figs. 5(a) and 5(b), transient velocity and temperature profiles are shown for
various values ofn with Pr = 0.71 andφ = 15◦. Impulsive forces are reduced along the
surface of the cone near the vertex for increasing values ofn. Due to this, the difference
between temporal maximum values and steady state values reduce. It is also observed
that asn increases, velocity and temperature reduce and the time taken to reach steady
state value increases.

Once velocity and temperature profiles are studied, it is interesting to study the
local as well as the average skin-friction, and the rate of heat transfer in steady and
transient state. The derivatives involved in equations (15)–(18) are obtained using five-
point approximation formulae and then the integrals are evaluated using Newton-Cotes
closed integration formula. The local skin-frictionτX and local Nusselt numberNuX for
different values ofφ, at various positions on the surface of the cone (X = 0.25 and1.0)
in the transient period are shown in Fig. 6(a) and 6(b) respectively. It is observed from
the figures local skin-frictionτX and local Nusselt numberNuX values decrease with
increasing angleφ. It is observed this effect is less near the cone apex.

The local skin-frictionτX and local Nusselt numberNuX values for different values
of Pr, at various positions on the surface of the cone (X = 0.25 and1.0) in the transient
period are shown in Fig. 7(a) and 7(b) respectively. It is observed from the figures local
skin-friction τX and local Nusselt numberNuX decreases with increasingPr and also
clear from the figures decreasing rate ofτX andNuX increases when the distance increase
from the cone vertex along the surface of the cone.

The variation of the local skin-frictionτX and the local Nusselt numberNuX in the
transient period at various positions on the surface of the cone (X = 0.25 and1.0) and
for different values ofn, are shown in Figs. 8(a) and 8(b). It is observed from Fig. 8(a)
that the local skin-friction decreases with increasingn and the effect ofn over the local
skin-friction τX is more near the apex of the cone and reduces gradually with increasing
the distance along the surface of the cone from the apex. FromFig. 8(b), it is noticed
that near the apex, local Nusselt numberNuX reduces with increasingn, but that trend is
slowly changed and reversed as distance increases along thesurface from apex.

The influence of average skin-frictionτ is more in transient period for smaller values
of φ or lower values ofPr or smaller values ofn which is shown in Figs. 9(a), 9(b),
displays influence of average Nusselt numberNu in transient period for various values of
Pr, φ andn. It is clearNu is more for smaller values ofφ and large values ofPr. Also,
observed that there is no significant influence ofn over the average Nusselt number.
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4 4

(a) (b)

Fig. 2. Comparison of steady state temperature profiles (a) and velocity profiles (b) at
X = 1.0.

(a) (b)

Fig. 3. Transient velocity profiles (a) and transient temperature profiles (b) atX = 1.0
for different values ofφ.
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(a) (b)

Fig. 4. Transient velocity profiles (a) and transient temperature profiles (b) atX = 1.0
for different values ofPr.

(a) (b)

Fig. 5. Transient velocity profiles (a) and transient temperature profiles (b) atX = 1.0
for different values ofn.
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(a) (b)

Fig. 6. Local skin friction (a) and local Nusselt number (b) at X = 0.25 and1.0 for
different values ofφ in transient period.

(a) (b)

Fig. 7. Local skin friction (a) and local Nusselt number (b) at X = 0.25 and1.0 for
different values ofPr in transient period.
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(a) (b)

Fig. 8. Local skin friction (a) and local Nusselt number (b) at X = 0.25 and1.0 for
different values ofn in transient period.

(a) (b)

Fig. 9. Average skin friction (a) and average Nusselt number(b) for different values of
Pr,n, andφ in transient period.
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5 Conclusions

This paper deals with the flow over an unsteady non-isothermal vertical cone. The dimen-
sionless governing boundary layer equations are solved by an implicit finite-difference
method of Crank-Nicolson type. Present results are compared with available results in
literature and are found to be in good agreement. The following conclusions are made:

1. The velocity reduces when the parametersφ, Pr, n are increased.

2. Temperature increases with increasingφ and decreasingPr, n values.

3. Momentum boundary layers become thick whenφ andPr are increased.

4. Thermal boundary layer becomes thin whenφ is reduced andPr is increased.

5. The time taken to reach steady state increases with increasingφ, Pr andn.

6. The difference between temporal maximum velocity value and steady state value
becomes more whenφ, Pr, andn are decreased.

7. Decreasingφ or increasingPr, n reduces the difference between temporal maximum
temperature values and steady state values.

8. The influence ofn over the local skin frictionτX is large near the apex of the cone
and that reduces slowly with increasing distance from it but, for the values ofφ, Pr

the local skin frictionτX is less near the apex of the cone and that become more with
increasing distance from it.

9. The effect of the local Nusselt numberNuX is less near the cone apex for the values
of φ, Pr. In transient period, the local Nusselt numberNuX reduces with increasing
n near the apex but that trend is changed and reversed as the distance increases from
it.

10. Average skin frictionτ is increases when the values ofφ, Pr, n are reduced and ave-
rage Nusselt numberNu is reduces when the values ofPr decreased orφ increased.
The effect ofn on average Nusselt numberNu is almost negligible.
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