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Abstract. A numerical study is conducted to understand the effect of surface tension
on buoyancy driven convection in a vertical cylindrical annular cavity filled with a low
Prandtl number fluid. The inner and outer cylinders are maintained at different uniform
temperatures and the horizontal top and bottom walls are thermally insulated. The
upper free surface is assumed to remain flat and non-deformable. A finite difference
scheme consisting of the Alternating Direction Implicit method and the Successive Line
Over Relaxation method is used to solve the vorticity streamfunction formulation of
the problem. Detailed numerical results of heat transfer rate, temperature and velocity
fields have been presented for a wide range of physical parameters of the problem. The
flow pattern and temperature distribution in the annular cavity are presented by means
of contour plots of streamlines and isotherms. The rate of heat transfer is estimated
by evaluating the average Nusselt number. Further, the present numerical results are
compared with the existing results and are found to be in goodagreement.

Keywords: cylindrical annulus, finite difference, stream function, vorticity, surface
tension, radii ratio, upwind difference.

1 Introduction

It is well known that, when a free liquid surface is present, variations in the liquid surface
tension at the free surface due to temperature gradients, can induce motion within the
fluid called thermocapillary flows or Marangoni convection.Flows, induced by surface
tension gradients, occur, in the processing of materials where small amounts of material
are melted, and allowed to re-solidify. In these processes,large temperature differences
are created in small amounts of liquid, which may have a free surface. The surface tension
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gradients, resulting from the large temperature differences in the liquid, can produce
fluid velocities as large as one-meter per second. The resulting flow, affects the solute
distributions, and crystal structure in the re-solidified material. Since thermocapillary
convection is a cause of defects in the crystal growth process, an understanding of the
heat transfer, and fluid motion, in the process, is needed, inorder to grow defect-free
crystals.

The study of fluid motion, and the associated transport processes, generated, either
by buoyancy or by surface tension in cavities, have been independently examined by
many investigators. Carpenter and Homsy [1] investigated steady thermocapillary flow
in a two dimensional square cavity for differentially heated side walls using the finite
difference method and concluded that thermocapillary flowsare extremely sensitive to
Prandtl number. The numerical simulation of thermocapillary convection, in differentially
heated rectangular enclosures, have been reported by Strani et al. [2], Zebib et al. [3],
Srinivasan and Basu [4], Bergman [5] and Rivas [6]. Vrentas et al. [7] have studied
surface tension driven convection in a cylindrical geometry using linear stability analysis
and perturbation techniques. They showed that, the structure of surface tension driven
flow, and heat transfer rate, is significantly modified at super critical Marangoni numbers.
An experimental study of oscillatory thermocapillary convection in cylindrical containers
was performed by Kamotani et al. [8]. From the results, they observed that, beyond a
certain temperature difference between the container walland the heating wire, oscillatory
thermocapillary flow patterns appear. Later Kanouff and Greif [9] studied thermocapillary
flow in a differentially heated two dimensional square cavity using the control volume
technique. They found that, for low Marangoni numbers, the flow was steady, stable, and
symmetric about the centre vertical plane, and for Marangoni numbers above1200, the
flow was found to be, given an initial disturbance, oscillatory.

The combined effect of surface tension and buoyancy, on a fluid layer being heated
from below, was first studied by Nield [10]. He showed, by linear stability analysis, that
the destabilizing effects of surface tension gradient and buoyancy, reinforce each other,
and the coupling between these two effects is very tight. Vrentas et al. [11] have studied
surface tension and buoyancy driven convection in a boundedcylindrical geometry, for a
wide range of aspect ratios, to determine the critical Marangoni and Rayleigh numbers.
Numerical results are presented, by Chen et al. [12], for steady natural convection in a
two dimensional rectangular enclosure with the top wall modelled as an impermeable
rigid or free-moving boundary. Their results reveal that, the free surface flow has larger
circulation strength, and higher heat transfer rate, relative to the rigid surface case. The
influence of Marangoni and buoyancy forces, during solid-liquid phase change in two
dimensional melting of a solid slab has been reported by Bergman and Webb [13].

Most of the earlier studies on combined surface tension and buoyancy driven convec-
tion are concentrated either on the rectangular cavity or cylindrical geometry. Attention
has not been given, to the study of combined buoyancy and surface tension driven con-
vection, in a vertical cylindrical annulus, in spite of its important applications in material
processing. The objective of the present numerical study is, to investigate the flow pat-
tern, and heat transfer, of nonlinear convection, driven, by the combined mechanism of
buoyancy and surface tension forces, in a cylindrical annulus, filled with a low Prandtl
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number fluid.

2 Mathematical formulation

Consider a cylindrical annulus, as shown in Fig. 1, formed bytwo co-axial cylinders of
inner and outer radiiri andro respectively. The top free surface and bottom wall are
thermally insulated, and the side walls are maintained at constant but different temper-
atures. The cavity is filled with a low Prandtl number fluid, which is assumed to have
constant physical properties, and obeys a Boussinesq approximation, according to which,
its density is taken as constant, except, in the buoyancy term of the axial momentum
equation. Further, we assume that the flow is axi-symmetric,and the surface tension on
the upper boundary, is assumed to vary linearly with temperature:σ = σ0[1− γ(θ− θ0)],
whereγ = (−1/σ0)∂σ/∂θ and the subscript0 refers to a reference state.

Fig. 1. Physical configuration and co-ordinate system.

The nondimensional equations governing the conservation of mass, momentum and
energy for an unsteady laminar flow, after neglecting viscous and ohmic dissipation, in
cylindrical coordinates(r, x) are
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The vorticityζ is of the form
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Since, the flow properties depend only on two spatial coordinates, a vorticity-stream
function approach, has been chosen. It is well known that thevorticity stream function
formulation ensures conservation of volume. The non-dimensional variables are
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where(u,w) are the dimensional velocity components in(r, x) directions respectively,ζ∗

andψ are the dimensional vorticity and stream function,θ is the dimensional temperature,
ν is the kinematic viscosity,ρ is the fluid density,α is the thermal diffusivity andβ is the
coefficient of volumetric expansion. The non-dimensional parameters appearing in the

above equations are:Ra = gβD3(θh−θc)
να

, the Rayleigh number,Pr = ν
α

, the Prandtl
number,A = L

D
, the aspect ratio andλ = ro

ri
, the radii ratio.

The coupled nonlinear equations (1)–(4), namely energy, vorticity, stream function
equations and velocity-stream function relation, are solved numerically subject to the
following non-dimensional initial and boundary conditions:

τ = 0: U = W = 0, Ψ = ζ = T = 0; 0 ≤ R ≤ 1, 0 ≤ X ≤ 1,
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The boundary conditions onΨ are obtained from those on the velocity componentsU
andW , such as no through-flow and no-slip conditions. Normally,Ψ on boundary is
an arbitrary constant which can be set to zero. The dynamicalcondition on the upper
free surface represents the balance between shear stress and surface tension gradient
and is responsible for the establishment of thermocapillary flow in the cavity. The non-
dimensional parameterMa = − ∂σ

∂T

(θh−θc)
µα

is the Marangoni number. With these bound-
ary conditions the system will tend to a steady state having constant properties.

The overall heat transfer rate across the enclosure is expressed by the average Nusselt
number at the hot inner cylindrical wall and is defined as
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where,Nu is the local Nusselt number for the hot inner wall which is defined byNu =
− ∂T

∂R

∣

∣

R=0
.

3 Numerical procedure and validation

A numerical technique, based on the two-step ADI (Alternating Direction Implicit) me-
thod, has been used to solve the vorticity transport and energy equations. In order to
improve stability of the numerical scheme, and to speed up convergence, the non-linear
convective terms in the ADI method are approximated by second upwind differences.
The diffusion terms are approximated using central differences. From the known values
of U ,W , T , ζ andΨ at timeτ = 0 , we determineT andζ at timeτ = △τ using
ADI method. The stream function is then computed using newlycomputed vorticities
ζ. The Successive Line Over Relaxation (SLOR) procedure is used to solve the system
of equations arising from the stream function equations. This method is preferred in the
present study since it converges in fewer iterations than the usual point iteration methods.
The discretized algebraic equations form a tridiagonal matrix which can be solved by the
Thomas algorithm. Then the values ofU andW at the timeτ = △τ are computed using
central difference approximation to equation (4). For solution of the vorticity equation,
vorticity at the boundary,ζw, is obtained by expanding the stream function in Taylor
series [14, Roache]. The form used in this study forζw is

ζw =
8Ψw+1 − Ψw+2

2(∆η)2
,

wherew denotes the boundary node and∆η is the spatial interval in the direction normal
to the boundary. However, at the top free surface, the vorticity boundary condition is

ζb = AMa
∂T

∂R
. Several grid sizes were used to examine grid dependency. The uniform

meshes employed in the present study were:41 × 41, 61 × 61, and81 × 81. Because
of minor differences between the61 × 61 and81 × 81 grids, and for the consumption of
computer time, a61 × 61 grid forA = 1 was used for further calculations. Similar grid
dependency studies were carried out forA = 2, and an optimum grid size was obtained.
The above computational cycle was then repeated for each of the next time levels and the
steady state solution is obtained when the following convergence criterion
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is attained. Hereǫ is a pre-specified constant usually set at10−5.
In the present formulation, the equations are made nondimensional such that the

present formulation in cylindrical coordinates can be reduced to rectangular coordinates.
Hence equations (1) - (4) of present formulation can be readily converted to those of
a rectangular cavity just by puttingD = 0 with R andA computed using the width
of the rectangle. Hence, to test the applicability and accuracy of the present numerical
method, the present numerical results was validated by performing simulations for natural

545



M. Sankar, M. Venkatachalappa

convection in a square cavity (D = 0) and in a cylindrical cavity (D 6= 0) without surface
tension forces. Results are compared with various existingsolutions and are shown in
Fig. 2. From the figure, it can be observed that the present results for both the cavities are
found to be in good agreement with the existing results.

(a) (b)

Fig. 2. Comparison of present results with (a) rectangular and (b) cylindrical cavities.

4 Results and discussion

The numerical study was conducted to determine the effect ofsurface tension on buoyancy
driven convection in a vertical cylindrical annular cavityfilled with a low Prandtl number
fluid (Pr = 0.054). Computations were carried out for a wide range of Rayleighnumbers
(104 ≤ Ra ≤ 106) and Marangoni numbers (0 ≤ Ma ≤ 105) for an enclosure of aspect
ratiosA = 1 and2. The flow pattern and temperature distribution in the annular cavity
are presented by means of contour plots of streamlines and isotherms. The rate of heat
transfer was estimated by evaluating the average Nusselt number.

Fig. 3 illustrates the streamline and isothermal pattern for Rayleigh numberRa =
104 with and without surface tension effect. In the absence of shear at the free surface
(Ma = 0), the flow exhibits a simple recirculating pattern. The fluidrises along the hot
wall, where it is heated, encounters the top adiabatic wall,travels towards the cold wall
and recirculates. Also, the centre of rotation is in the middle of the annular cavity. The
isotherms show less temperature stratification inside the annular cavity due to the low
value ofRa. For low Marangoni number (Ma = 102), the flow pattern and temperature
distribution remains the same. This shows the effect of surface tension is unnoticeable for
small values ofMa. However, whenMa = 104, the surface tension effect leads to the
development of a pair of counter rotating cells at the top andbottom of the cavity. The
top cell is driven by thermocapillary forces, while the bottom cell is due to buoyancy.
Also, the maximum stream function value of the main cell is less. This is because
thermocapillary energy is utilized to generate a counter rotating cell. The temperature
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distribution is also strongly affected. There is a pulling of isotherms towards the hot wall.
By further increasing the Marangoni number (Ma = 105), surface tension induced shear
increases the free surface velocities, and the surface tension driven cell becomes stronger
than the buoyancy driven cell. This can be seen from the maximum stream function
value. This effect is also reflected in the temperature distributions. The isotherms are
more compact near the upper left corner. Also the isotherms are pulled in more in the
middle of the cavity.

(a) (b) (c)

Fig. 3. Streamlines and isotherms forRa = 10
4, A = 1 andλ = 2: (a) Ma = 0,

(b) Ma = 10
4, (c) Ma = 10

5.

The streamlines and isotherms for moderate Rayleigh number(Ra = 105) are shown
in Fig. 4. A simple recirculating flow pattern and temperature stratification in the vertical
direction was observed forMa = 104. When the Marangoni number is increased to
Ma = 105, two counter rotating cells developed, one being at the top of the annular
enclosure due to surface tension. The buoyancy driven cell at the bottom of the annular
cavity is bigger in size compared to the surface tension driven cell.

As the Rayleigh number increases further (Ra = 106), Fig. 5, buoyancy induced
convection is dominant and the surface tension effect is noticeable only for large values
ofMa. For low and moderate values ofMa, the isotherms and streamlines resemble that
of pure buoyancy driven convection. Also temperature stratification exists in the vertical
direction. WhenMa = 105, there are two counter rotating cells, the smaller cell at top
left corner, driven by surface tension, and the another cell, driven by buoyancy, occupying
the major portion of the cavity. In this case, pulling of isotherms was found to be more
due to the combined buoyancy effect.
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(a) (b)

Fig. 4. Streamlines and isotherms forRa = 10
5, A = 1 andλ = 2: (a) Ma = 10

4,
(b) Ma = 10

5.

(a) (b) (c)

Fig. 5. Streamlines and isotherms forRa = 10
6, A = 2 andλ = 2: (a) Ma = 10

3,
(b) Ma = 10

4, (c) Ma = 10
5.
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The influence of aspect ratio is shown in Fig. 6. For low Rayleigh number andMa =
103, a single convective cell driven by buoyancy force exists inthe bottom of the cavity.
The streamlines indicate that the fluid at the top is attracted towards the top free surface
by surface tension pull. The same phenomena can also be observed from the isotherms,
as they are parallel near the top of the cavity. When the Marangoni number is further
increased to105, for the same Rayleigh number, thermocapillary effect becomes stronger
and two cells are produced in the cavity. The surface tensiondriven cell at the top of the
cavity is stronger than the buoyancy driven cell as is evident from the maximum stream
function value. This effect is reflected in isotherms as the isotherms are attracted towards
the top free surface. However as the Rayleigh number increases to106, forMa = 103, a
single convective cell occupying the entire cavity was observed. ForMa = 105, there is a

(a) (b) (c)

Fig. 6. Streamlines and isotherms forA = 2, andλ = 2: (a) Ra = 10
4, Ma = 10

3,
(b) Ra = 10

4, Ma = 10
5, (c) Ra = 10

6, Ma = 10
5.
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secondary cell at the top of the annulus, which is comparatively smaller than the buoyancy
driven cell. The isotherms show the temperature stratification inside the cavity along the
vertical direction. Also, the formation of thermal boundary layers along the side walls
can be observed.

Fig. 7 shows vertical velocity profiles at the midheight of the enclosure for different
values ofRa andMa. At Ra = 104, the vertical velocity increases with Marangoni
number. However, there is a reduction in the magnitude of vertical velocity forMa =
104. The same kind of phenomena is also observed as the Rayleigh number is increased
to 105. Fig. 8 is the temperature profiles at the midheight of the annular enclosure for
two values ofRa and forMa = 0 − 104. It can be observed, from the figures, that the
temperature stratification reduces forMa = 104.

Fig. 7. Vertical velocity at midheight forA = 1.

Fig. 8. Temperature profiles at midheight forA = 1.

The variation of average Nusselt number with dimensionlesstime τ is shown in
Fig. 9. During early stages of the flow development, the heat transfer is mainly due to
pure conduction. During the transition from conduction to convection heat transfer mode,
the Nusselt number curve passes through a minimum. The average Nusselt number then
increases slightly and levels off to reach the steady state.The Nusselt number increases
with Rayleigh number due to increased convection.
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Fig. 9. Transient variation of average Nusselt number.

5 Conclusion

The effect of surface tension on buoyancy-driven convection in a vertical cylindrical
annular cavity has been numerically studied. Heat transferand fluid flow results have been
presented. Distinct flow regimes in the steady state, have been obtained, for several com-
binations of the physical parameters. The numerical results indicate that, thermocapillary
forces induce multicellular flows even in smaller aspect ratio cavities. For highMa, a
bicellular flow is found in the cavity, with a stronger surface tension driven cell, at the top
of the cavity. Thermocapillary force has more effect in tallcavities, (A = 2), rather than
square cavities (A = 1). Quantitative results were presented in terms of overall Nusselt
number. The heat transfer rate increases with Marangoni number. The present numerical
results, in the absence of thermocapillary forces, are in good agreement with the existing
results for both cylindrical and rectangular cavities.
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