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Abstract. Quasi-linear systems governed pyntegrable controls, fot < p < oo with
constraint|u(-)||, < uo are considered. Dependence on initial conditions of attainable
sets are studied.
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1 Introduction

In this paper quasi-linear control systems which are nealirwith respect to phase state
vector, linear with respect to control vector and where @nbputs are constrained by
an integral inequality are studied.

It is well known that attainable sets play an important roleontrol theory. Many
problems of optimization, dynamics, game theory can bedtahd solved in terms of
attainable sets (see [1, 2]).

Many properties of attainable sets for linear and nonlirsyatems without integral
constraints is well known (see [3-5]). On the other handratae sets of control systems
with p-integrable controls are still in interest. General préipsrand computability of
attainable sets of latter completely differs from formeeg46-10]). Hence different
technigues are required.

Consider a control system whose behavior is described bijexetitial equation

@(t) = f(t,2(t)) + B(t,2(t))u(t), x(to) € Xo, @
wherez € R™ is then-dimensional phase state vector of the systera, R" is ther-di-

mensional control vectot, € [ty, T (to < T < o) is the time,f (¢, z) is n-dimensional
vector function,B(t, z) is an(n x r)-dimensional matrix function an&, C R™.
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It is assumed that the realization§&), t € [to, T}, of the controlu are restricted by
the constraint

T
[ luolPde < >0, 1<p <, @
to

where|| - || denotes the Euclidean norm. Inequality (2) describes tinstcaint on the

control pulse. This constraint is used for controls whickiehimited resources such as
fuel reserve for jet engines, or capital for economical @y, etc. It is also assumed
that the functionsgt, x) — f(¢,x), (t,2) — B(¢,x) and the se, satisfy the following
conditions:

1. The setX, c R" is compact.

2. The functiongt,z) — f(¢,z) and(¢t,z) — B(t,x) are continuous with respect
to (¢,z) and locally Lipschitz with respect to, that is for any bounded sé? C
[to, T] x R™ there exist Lipschitz constanfs = L;(D) € (0,00) (i = 1,2) such
that

(8 2) = f(t 2] < Laflz” = 2.]l,
[B(t,2") = B(t,z.)|| < Lafjz™ — a.|

forany(t,z*) € D, (t,z,) € D.

3. There exist constantg € (0, 00) (i = 1,2) such that

1) <@+ llzl),  ([BE2)] < y2(1+ [zl
for every(t, z) € [to, T] x R™.

Every functionu(-) € L, ([to,T],R"), (1 < p < o0), satisfying the inequality (2) is
said to be amdmissible contrglwhereL,, ([to, 7], R") denotes the space pfpower in-
tegrable functions. By the symbtllwe denote the set of all admissible control functions

Let u.(-) € U. The absolutely continuous function.(-): [to,7] — R™ which
satisfies the equatioi. (t) = f (¢, z.(t)) + B(t, z.(t))u.(t) a.e. in[tg, T] and the initial
conditionz..(ty) = xo € X, is said to be aolutionof the system (1) with initial condition
x4 (to) = xo, generated by the admissible control functiqit-). By the symbolX (¢¢, )
we denote the set of all solutions of the system (1) withahitionditionz(tg) = o,
generated by all admissible control functiar(s) € ¢/ and we set

to,XQ {I EXto,Io)ZI()GXo},
X t; tQ,Xo {ZL’ 6 R™: ) € X(to,Xo)}.

The setX (¢; o, Xo) is called theattainable sebf the system (1) with constraint (2) at the
instant of timet. It is obvious that the seX (¢; to, X() consists of all: € R™, at which the
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solutions of the system (1) which are generated by all ptessiintrolsu(-) € U arrive at
the instant of time € [y, T1.

The calculation of attainable sets can be a tedious tasktandyenerally treated
numerically with the use of a computer. Therefore it is vemportant to determine how
attainable set changes when the initial conditions chariges is studied in Proposi-
tions 1-6.

The Hausdorff distance between the nonempty Bets C R” is defined as

o(E,F)=inf{r >0: EC F+rB, FC E+rB}, (3)

whereB is unit ball inR™.

2 Preiminaries

First, let us give a useful inequality:

t
p—1

[ @1+ Kaluln))dr < Ka(T = 1) + KalT ~ 10)'F o (4)

to

for everyu(-) € U and allt € [to, T], whereK; and K, are positive constants. Inequality
(4) will be used frequently in the following sections and @incbe easily obtained via
Holder's integral inequality (see [11, pp. 122]).

The following proposition states that the graphs of all sohs of the system (1)
with constraint (2) is bounded.

Proposition 1. The inequality
()] <r

is fulfilled for all z(-) € X (¢o, Xo) andt € [to, T], where

p—1

q=7(T —to) + vopo(T —to) 7 ,
d.=max {[|z]|: z € Xo}

and

r = (d« + q) exp(q)- (5)

Proof. Letxz(-) € X(t9, Xo) be any solution of the system (1). Then there exist X
andu(-) € U such that

t

x(t) = xo +/ [f(T7{IJ(T)) + B(T71'(T))’U,(T)]d7', t € [to, T

to
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holds. After taking the norm of both sides, on using Condioand recalling thad,, =
max{||z| : € Xo}, we obtain,

t t
Jo®)] < de + (T~ t0) +1 [ falldr +1 [ Ju(ldr
to to

T / (o) ()l dr.

In view of Holder's integral inequality we have

j Ju(r) dr < ( / 1f1d7) B ( / ||u<7>||PdT)P <wlT-1)5. @

to
e

By virtue of (6) and sincg = v, (T — to) + vapo(T — L‘O)T1 we obtain

t

@) < du+q+ / (11 + 2l lz(7) ] dr.

to

It follows from Gronwall’s inequality that

l2(t)] < (d. + q) exp ( [ +w||u<7>>d7).

to
From inequality (4) it follows that
[z(8)]] < (ds + q) exp(q).

The right hand side of this last inequality is exactly the bem- (see (5)). Thus the
inequality

()] <
holds for allz(-) € X (to, Xo) and allt € [to, T. O
The set
Z(to,Xo) = {(t,:v(t)) S [t07T} x R™: {,E() S X(tho)}

is called thantegral funnelof the system (1) with constraint (2).
A corollary of the previous proposition is that the graphalb$olutions of the system
(1) is bounded by the cylinder

D ={(t,x) € [to,T] x R": ||lz|| < r}. 7

That is, the inclusiorZ (ty, Xo) C D holds. Herer > 0 is defined by (5). From now on
D will denote the cylinder (7).
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3 Dependenceon initial conditions
The following proposition determines the dependence afrable sets on the initial set
Xo.
Proposition 2. Let Xy and X; be compact subsets Bf*. Then the inequality
o (X (t;to, Xo), X (t;t0, X1)) < Ka(Xo, X1)
is valid for all t € [to, T]. Here, K is positive constant.

Proof. Letzo(-) € X (to, Xo) be arbitrary. Then there exist € X, andu(-) € U such
that

t

xo(t) = g +/ [f(T, xO(T)) + B(T, mO(T))u(T)}dT

to

holds for allt € [0, T]. SinceX, and X; are compact subsets Bf*, by the definition of
Hausdorff distance there exists € X; such that

|1 — xol] < a(Xo, X1) < 400

holds.

Therefore we obtain a new trajectaty(-) € X (to, X1 ) for the system (1) which is
generated by the same contidl) € U that satisfies the initial conditiom, (to) = ;.
Thus we can write

t

51 (t) = 2 + / [f(r,21(7)) + B(r,21(r))u(r)]dr

to

forall ¢t € [to, T).
By Condition 1 we have

20 () — 21 (1)[| < a(Xo, X1) + / (L1 + Le|lu(r)]) [lzo(r) — @1(7) |l dr

to

forall t € [to, T).
It follows from Gronwall’s inequality (see [11, pp. 189])ah

foaft) ~ 210 < alXo, Xp)exp ([ (24+ Lalutrlar ) ®)

to

is valid for allt € [to, T]. Taking (4) into account we obtain

2o(t) — 21 (2)]| < a(Xo, X1) exp (L1 (T — to) + La(T — to) 7 o)
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for all t € [to, T]. To shorten notation let us set

Kzexp (Ll(T—to)—‘rLg(T—to)L;l/J/Q). (9)
Thus we get
zo(t) — z1(t)]| < Ka(Xo, X1)

forall t € [to, T7.
The inclusion

X(t;to, Xo) C X(t;to, X1) + Ka(Xo, X1)B, t€ [to,T] (10)

is then immediate.
Similar arguments yield the inclusion

X(t;to, X1) C X(t;to, Xo) + Ka(Xo, X1)B (11)

forallt € [to, T).
Hence the desired inequality

a(X(t; to,XO), X(t, to,Xl)) < KO&(X(),Xl), te [to,T]
is an immediate consequence of (3). |

Our next result, an easy corollary of the Proposition 2sta#l that the set valued
mapX, C R" — X(¢;t9, Xo) C R™ is Lispschitz continuous with Lipschitz constaiit
which is defined by (9). It means that attainable set at artaim®f timet continuously
depends on the initial séf,.

Proposition 3. LetT > t; > tg, Xy, X1 C R™ be compact subsets,

p—1

ro = a(Xo, X1) + d1(t1 — to) + dopo(ts — to) 7 (12)
and

T = 19 exp (Ll(T —t1) + Lopo(T — tl)ijl).
Then the inequality

(X (t;to, Xo), X (t;11,X1)) <7, t€[ty,T]
holds for the systerfl) with constraint(2). Hered; andd, are positive constants.

Proof. Lett € [t1,T] andyy € X (¢;t0, Xo) be arbitrary, then there existy € Xo,
xo(+) € X(to, o) andu(-) € U such that

t

yo = xo(t) = xo —|—/ [f(T, {L‘()(T)) + B(T, CCo(T))u(T)]dT

to
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holds. By the definition of Hausdorff distance there exist& X; such that
||(E0 — $1|| < O[(Xo,Xl). (13)
Letz1(-) € X(t1,x1) be solution of the system (1) starting from the initial point
x1 € X1 and generated by the same contr0l) € U/ asz(-), then

t
z1(t) = 21 +/ [f(T,J;l(T)) + B(T,xl(r))u(r)}dr
t1
is fulfilled for all ¢ € [t;,T]. Therefore we obtain the inequality,

t

[zo(t) = 21 (B < flwo — 2]l + / [ £ (. 20(r)) = f (7, 21(7))||dr

ty

+ / H [B(T7 xo(T)) - B(T,:vl(T))]u(T)HdT (14)

forallt € [ty,T].

From Proposition1l there exists a cylinded, such that the inclusions
Z(tg, Xo) C D, andZ(t1, X;) C D, holds.

Let

dy = t andd, = B(t
1= max |If(t o) anddy = max |IB(: o),

then it follows from (14) and Condition 1 that

t

[zo(t) — 21 (B < llwo — 2l + / (L1 + Lallu()l]) (lzo(r) — @1 (7)) dr

" (15)

t1

—|—/(d1 +d2|\u(7')||)d7'

to

forallt € [t1,T].
In view of (13) and (4) the inequality

t

[zo(t) = 1 (B[] < 7o + / (L1 + Lalu(r)[) lzo(r) — z1(7)|ldr

t1
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is valid, whererg is defined by (12).
By virtue of Gronwall’s inequality and (4) we find

l2o(t) — 2 (D] < ro exp ( [+ L2||u<r>)df)

t1

p—1

Sroexp (Ll(T—t1)+L2/L0(T—t1) P )

forallt € [to, T).
Hence the inclusion

X(t;to, Xo) C X(t;t1,X1) +7B

p—1

holds for allt € [t1,T]. Here,r = roexp(L1(T — t1) + Louo(T — t1) 7 ).
Similarly choosing an arbitrary element froM(¢;¢1, X7) one can prove that the
inclusion

X(t;tl,Xl) C X(t;tO7X0) +rB

also holds for alt € [t, 7.
Thus the desired inequality

(X (tto, Xo), X (661, X)) <7, t € [ty,T]
follows from (3). O

An immediate corollary of Proposition 3 is the following.
Let Xo € R®"andX,, C R" (n = 1,2,...) be compact subseta(X,,, Xo) — 0
andt,, — tg asn — oo. Then the inequality

(X (ttn, Xy), X (t;t0, Xo)) — 0, ¢ € [to, T]

holds as» — oco.
Let g andy; be positive,

Uy = {u(-) € Ly([to, T, R™): [Ju()]lp < po}
and
U = {u(-) € Ly([to, TL,R™): u()lp < pa}-

The set of all solutions and attainable set at instant of timkthe system (1) from
the initial set(¢q, Xo) which are generated by all controls fréfy andi/; are denoted by
Xo (to, Xo), Xo (t, to, Xo) andX; (to, XQ), X4 (t, to, Xo) respectively.

The following proposition gives the dependence of attdmabts on the,.
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Proposition 4. Let K > 0 be constantyy = K (T — to)pT?1 |0 — p1| @and
r=r9 {H—(Ll(T —to) + Lopi (T — tO)L;l)
x exp (L1 (T — to) + Lop (T — to)%l)} ,
then the inequality
a(Xo(tsto, Xo), Xi(tsto, Xo)) <7

is fulfilled for all ¢ € [to, T].

Proof. Let yg € Xo(t;t0, Xo) be arbitrary fort € [tg,T], then there existy € Xo,
xo(+) € Xo(to, o) andug(-) € Uy such that

t

yo = zo(t) = xo —|—/ [f(T, mo(T)) + B(T, xo(T))uO(T)}dT

to

holds.
Let us define a new control functien (-) viauo(-) € Uy such that

un(t) = %w(t), t € [to, T).

Since

(0l = /T ||u1<t>|*°dt); - /T ||uo<t>|pdt)’l’ <,

to

we getu; (+) € U;.

We denote the solution of the system (1) starting from thainpoint (¢, 2¢) and
generated by the contral (-) € Uy, by 21 (-) € X1 (to,x0) C X1(to, Xo).

Settingz (t) = y1, we get

t

y1 = x1(t) = x0 +/ [f(T,x(T)) + B(T,x(T))u(T)] dr.

to
Hence we obtain the inequality

t

lyo — sl < / 1/ (. 20(r)) — £ (7.22()) || dr
+/HB(T,LL’()(T))’U,U(T)—B(T7x1(T))U1(T)"dT.
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It follows from Condition 1.

t

lyo — vl < / (L1 + Lalluo (7)) |20 (1) — @1(7) [l d7

to

+ [ 1B ) lus(r) - w(o)dr.

Taking K = max(; z)ep || B(t, z)|| and using the definition of the control (-) we
clearly have

1y — vl < / (L1 + Laluo (D)) 20 (7) — 21(7) | dr

to

t
+K[1=2| [ug(r)lar,
Ho ;
0

whereD is defined by (7).
From the Holder's integral inequality it follows that

1y — vl < / (L1 + Laluo (D)) 20 (7) — 21(7) | dr

to
p—1

+ Klpo — pa[(T' —to) 7.

Let us set

ro = Ko — (T — to) 7 .
Using Gronwall’'s inequality and (4) we find

2o(t) — 21 (8)]] < roexp (L1 (T — to) + Lojto(T — to) 7).
Definer = rgexp(L1 (T — to) + Lopo(T — to)%), then it follows that

[zo(t) —z1 ()] <7

Therefore the inclusion

Xo(t;to, Xo) C X1(t;to, Xo) + 7B (16)

valid fort € [to, T).
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Similarly, one can obtain the inclusion
Xi(t;t0, Xo) C Xo(t;to, Xo) + 7B (17)

for ¢ € [to, 1.
According to inclusions (16) and (17) we obtain the validifythe inequality

o(Xo(t;to, Xo), X1(tito, Xo)) <1, t€ [to,T]
as desired. O
Let us define
U = {u(-) € Ly([to, TLR™): [u()[lp < pn}
and denote the set of all solutions and attainable set arinef timet of the system (1)
with initial set(to, Xo) corresponding to control séi6, by X, (to, Xo) andX,, (¢; to, Xo)

respectively.
Proposition 4 implies that far,, — po asn — oo, the inequality

Oz(Xn(t; f,o, XQ), Xo(t; to, X())) — 0

holds ash — oo for all ¢ € [tg, T
By the following proposition it is proved that the set valuadpt — X (¢;to, Xo)
is Holder continuous.

Proposition 5. For the systen(fl) with constraint(2) the inequality
p—1
O[(X(tl; to, Xo), X(tz; to, Xo)) § M|t1 — tQ‘T
holds for everyty, ts € [to, T]. Here,M > 0 is constant.

Proof. Without loss of generality we can suppase< t. Lety; € X(¢1;t0, Xo) be
arbitrary, then there existy € Xo, z.(-) € X (to, zo) andu.(-) € U such that

y1 = 2. (t1) = 20 —|—/ [f (7, 2.(7)) + B(7,24(7) ) us(7)]dr

to

holds.
If we takeys = z.(t2) € X (t2;5t0, Xo)

to

yo = . (tz) = 70 + / [f(r.2.(1)) + B(r2.(7)u. (7)) dr.

to
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is obtained. Therefore we clearly have

ly1 — 2 S/Hf(Tafc*(T))HdTﬂL/HB(Tvx*(T))u*(T)HdT-

Let K1 = max{||f(t,z)]|: (t,z) € D} and Ky = max{||B(t,x)|: (t,z) € D},
then we find

to

1 — vl < / (K, + Ko) | (7) | dr

t1
Finally, applying Holder’s integral inequality we obtain
p—1
lyr = vl < (K1 + K2)polts —t2| 7.
If we setM = (K + K)o, then we get
p—1

lyr = wal| < Mty —to 7.
Therefore the inclusion

X (t1;t0, Xo) C X (taito, Xo) + Mlty — to| 7 B (18)

is valid for allt1, t5 € [to, T
Similarly, choosing an arbitrary elemegt from X (¢2; o, Xo) the inclusion

X (t2;5t0, Xo) CX(tl;toaXo)+M\t1*t2|pf;’lB (19)
can be obtained. Combining inclusions (18) and (19) we oliteé desired result. [
Let £ C R™. Then diameter o' is denoted by

diam F = sup ||z — vy
z,yel

The following proposition gives an upper bound for the ditanef the attainable
sets.

Proposition 6. Let
K = max ||B(t,z)|| andd = diam Xy, (20)
(t,z)eD
then the inequality
p—1

diam X (¢; to, Xo) < (d+2Kpo(t —to) 7 )exp (L1 (T — to))

holds for all¢ € [to, T).
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Proof. Lett € [to, T] andy;,ys € X(t;t9, Xo) be arbitrary, then there exist € X,
x1(+) € X(to, Xo), v1(-) € U such that

t

y1=21(t) = 11 +/ [f (7, 21(7)) + B(7,21(7))us ()] dr

to
holds and there exist, € X, z2(-) € X(to, Xo), u2(-) € U such that

t

Yo = wa(t) = 22 + / [f (7 a2(7)) + B(7,22(7) ) ua(7) ] d7

to

is valid. It follows from Condition 1 and (20) that

lon = vall < llox = 2]+ L [ la(r) ol o
+/HB(T,Il(T))HHUl(T)”dT+/.HB(T,$2(T))H||U2(T)||d7’

§d+L1/t||w1(T)—w2(T)dT+K[/t||u1(7)||d7+jIIUQ(T)IIdT}

In accordance with Hdlder’s integral inequality we obtain

p—1

t
o2 — wall < d+ Ly / 22(7) — 2a(r)ldr + 2K po(t — to) "5

to
Therefore utilizing the Gronwall’'s inequality (see [11, p89]) we find

p—1

ly1 = yall < (d+ 2K po(t —to) 7 ) exp (L1 (T — to)).
Sincet € [to, T] andy1, y2 € X (¢;1t0, Xo) arbitrary, we find

p—1

diam X (¢; to, Xo) < (d+ 2K po(t — to) 7 )exp (L1 (T — to))
forallt € [to, T). O

It is clear from Proposition 6 thatiam X (¢; tg, Xo) — diam X, ast — to.

We conclude from Propositions 1-6 that attainable set oyistem (1) with con-
straint (2) at the instant of timee [t, 7] continuously depends on initial s&) and .
Besides, the set valued mafig — X (¢; to, Xo) andt — X (¢;to, Xo) are Lipschitz and
Holder continuous respectively.
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