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Abstract. The present work describes the effect of magnetohydrodynamic (MHD)
natural convection flow along a vertical flat plate with Joule heating and heat conduction.
The governing boundary layer equations are first transformed into a non-dimensional
form and resulting nonlinear system of partial differential equations arethen solved
numerically by using the implicit finite difference method with Keller box scheme. The
results of the skin friction co-efficient, the surface temperature distribution, the velocity
and the temperature profiles over the whole boundary layer are shown graphically for
different values of the Prandtl numberPr (Pr = 1.74, 1.00, 0.72, 0.50, 0.10), the
magnetic parameterM (M = 1.40, 0.90, 0.50, 0.10) and the Joule heating parameter
J (J = 0.90, 0.70, 0.40, 0.20). Numerical values of the skin friction coefficients and
surface temperature distributions for different values of Joule heatingparameter have
been presented in tabular form.
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1 Introduction

Free convection flow is often encountered in cooling of nuclear reactors or in the study of
the structure of stars and planets. Along with the free convection flow the phenomenon
of the boundary layer flow of an electrically conducting fluidup a vertical flat plate in
the presence of a Joule heating term and magnetic field are also very common because of
their applications in nuclear engineering in connection with the cooling of reactors. With
this understanding Takhar and Soundalgekar [1] have studied the effects of viscous and
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Joule heating on the problem posed by Sparrow and Cess [2], using the series expansion
method of Gebhart [3]. Pozzi and Lupo [4] deal with the laminar natural convection
and conduction along a flat plate. Lykoudis [5] has been investigated the behavior of
the natural convection of an electrically conducting fluid in the presence of a magnetic
field. Miyamoto et al. [6] studied the effect of axial heat conduction in a vertical flat
plate on free convection heat transfer. The present work considers the natural convection
boundary layer flow of electrically conducting fluid along a vertical flat plate of thickness
b in presence of strong magnetic field and Joule heating. The transformed non-similar
boundary layer equations governing the flow together with the boundary conditions based
on conduction and convection were solved numerically usingthe implicit finite differ-
ence method together [7] with Keller box scheme [7] along with Newton’s linearization
approximation.

Nomenclature

b thickness of the plate Tb temperature at outer surface of the plate
Cp specific heat at constant pressureT (x, 0) wall temperature of the fluid
g acceleration due to gravity u, v dimensionless velocity components
H0 applied magnetic field u, v dimensionless velocity components
J Joule heating parameter x, y cartesian coordinates
kf thermal conductivity of the fluid x, y dimensionless cartesian coordinates
ks thermal conductivity of the solid β co-efficient of volume expansion
M magnetic parameter η dimensionless similarity variable
P fluid pressure ν kinematic viscosity
p coupling parameter µ viscosity of the fluid
Pr Prandtl number h dimensionless temperature
q the velocity vector ρ density of the fluid
T temperature of the fluid σ the electric conductivity

Hossain [8] studied the effect of viscous and Joule heating effects on MHD free
convection flow with variable plate temperature. El-Amin [9] also analyzed the influences
of both first-order and second-order resistance, due to the solid matrix of non-darcy
porous medium, Joule heating and viscous dissipation on forced convection flow from
a horizontal circular cylinder under the action of transverse magnetic field. To the best
of our knowledge, no such study have been reported yet which deals with Joule heating
effect with the coupling of conduction and MHD and the present work demonstrates the
issue.

In the present investigation, Joule heating effect on the coupling of conduction with
magnetohydrodynamic free convection flow from a vertical flat plate has been studied.
The basic equations of motion are transformed into the localnon-similarity boundary
layer equations, which are solved numerically using finite difference method [7] together
with the Keller box scheme [11]. The effects of the Prandtl numberPr, the magnetic
parameterM and the Joule heating parameterJ on the velocity and temperature fields as
well as on the skin friction and surface temperature have been investigated and numerical
results have been presented graphically as well as in tabular form.
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2 Mathematical analyses

Let us consider a steady, two-dimensional laminar incompressible free convection boun-
dary layer flow along a side of a vertical flat plate of thickness b, insulated on the edges
for which pure conduction is occurred and with a temperatureTb maintained on the other
side. The fluid properties are assumed to be constant in limited temperature range except
for the influence of the density variations with temperature, which are considered only in
body force term. The physical model and the co-ordinate system are shown in Fig. 1. The
x-axis is taken along the vertical flat plate in the upward direction and they-axis normal
to the plate.
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Fig. 1. Physical configuration and coordinares system.

The mathematical statement of the basic conservation laws of mass, momentum and
energy for the steady viscous incompressible and electrically conducting flow has been
given by Crammer and Pie [10] in vector form. Under the Boussinesq approximations the
governing equations for the present problem in cartesian form can be written as

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞) −

σH2

0
u

ρ
, (2)

u
∂T

∂x
+ v

∂T

∂y
=

kf

ρcp

∂2T

∂y2
+
σH2

0

ρCp
u2. (3)

The appropriate boundary conditions to be satisfied by the above equations are

u = 0, v = 0 at y = 0,
(4)

u→ 0, T → T∞ as y → ∞.

The coupling conditions require that the temperature and the heat flux are continuous at
the solid-fluid interface and at the interface as given by Miyamoto et al. [6], we must have

ks

kf

∂Tso

∂y
=

(

∂T

∂y

)

y=0

, (5)
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whereks andkf are the thermal conductivity of the solid and the fluid respectively. The
temperatureTso in the solid as given by Pozzi and Lupo [4] is

Tso = T (x, 0) −
(

Tb − T (x, 0)
)y

b
, (6)

whereT (x, 0) is the local temperature at the solid fluid interface which isto be determined
from the solutions of the equations.

We observe that the equations (1) to (3) together with the boundary conditions (4) to
(5) are non-linear partial differential equations. In the following sections the solution
methods of these equations are discussed details. Equations (1) to (3) may now be
non-dimensionalized by using the following dimensionlessdependent and independent
variables:

x =
x

L
, y =

y

L
d1/4, u =

ν

L
d1/2u, v =

ν

L
d1/4v,

T − T∞
Tb − T∞

= θ,

L =
ν2/3

g1/3
, d = β(Tb − T∞).

(7)

Substituting expressions (7) into equations (1), (2) and (3) and in the boundary conditions
(4) to (6), the following dimensionless equations are obtained.

∂u

∂x
+
∂v

∂y
= 0, (8)

u
∂u

∂x
+ v

∂u

∂y
+Mu =

∂2u

∂y2
+ θ, (9)

u
∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

∂2θ

∂y2
+ Ju2, (10)

whereM = σH2

0
L2/µd1/2, the dimensionless magnetic parameter,Pr = µCp/kf ,

the Prandtl number,J = σH2

0
vd1/2/ρCp(Tb − T∞), the Joule heating parameter. The

corresponding boundary conditions (4) to (6) take the following form:

u = v = 0, θ − 1 = p
∂θ

∂y
at y = 0,

u→ 0, v → 0 as y → ∞,

(11)

wherep is the conjugate conduction parameter given byp = (kf/ks)b/Ld
1/4. Here

the coupling parameterp governs the described problem. The order of magnitude ofp
depends actually onb/L andkf/ks, d1/4 being the order of unity. The termb/L attains
values much greater than one because ofL being small. In case of air,kf/ks becomes
very small when the vertical plate is highly conductive i.e.ks � 1 and for materials,
O(kf/ks) = 0.1 such as glass. Therefore in different casesp is different but not always
a small number. In the present investigation we have consideredp = 1 which is accepted
for b/L of O(kf/ks).
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To solve the equations (8) to (10) subject to the boundary conditions (11), the follow-
ing transformations were introduced for the flow region starting from up stream to down
stream.

ψ = x4/5(1 + x)−1/20f(x, η), η = yx−1/5(1 + x)−1/20,

θ = x1/5(1 + x)−1/5h(x, η).
(12)

Hereη is the dimensionless similarity variable andψ is the stream function which satisfies
the equation of continuity andu = ∂ψ/∂y, v = −∂ψ/∂x andh(x, η) is the dimension-
less. Using the above transformation in equation (8) to (10)and simplifying, we get the
following transformed non-dimensional equations.

f ′′′ +
16 + 15x

20(1 + x)
ff ′′ −

6 + 5x

10(1 + x)
f ′2 −Mx2/5(1 + x)1/10f ′ + h

= x

(

f ′
∂f ′

∂x
− f ′′

∂f

∂x

)

, (13)

1

Pr
h′′ +

16 + 15x

20(1 + x)
fh′ −

1

5(1 + x)
f ′h+ Jx7/5(1 + x)−1/2f ′2

= x

(

f ′
∂h

∂x
− h′

∂f

∂x

)

. (14)

In the above equations the primes denote differentiation with respect toη. The boundary
conditions (11) then takes the following form

f(x, 0) = f ′(x, 0) = 0, h′(x, 0) = −(1 + x)1/4 + x1/5(1 + x)1/20h(x, 0),

f ′(x,∞) = 0, h′(x,∞) = 0.
(15)

3 Method of solution

To get the solutions of the parabolic differential equations (13) and (14) along with the
boundary condition (15), the implicit finite difference method [7] together with Keller-
box scheme [11] has been used which is well documented by Cebeci and Bradshaw [7]
and widely used by Keller and Cebeci [11] and Hossain [8].

4 Results and discussion

The system of non-linear ordinary differential equations (13) and (14) together with the
boundary condition (15) has been solved numerically by employing implicit finite dif-
ference method together with Keller-box elimination technique. Numerical computation
are carried out for Prandtl numberPr = 0.1, 0.5, 0.72, 1.0, 1.74 for a wide range of
the magnetic parameterM = 0.10, 0.50, 0.90, 1.40 and the Joule heating parameter
J = 0.20, 0.40, 0.70, 0.90.

With the above-mentioned flow parameters the results are displayed in Figs. 2 to
Figs. 6 for predicting velocity profiles, temperature profiles, skin friction coefficients
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and surface temperature distributions. Figs. 2(a), (b) display results for the velocity and
temperature profiles, for different small values of magnetic parameterM (M = 0.10,
0.50, 0.90, 1.40) plotted againstη atPr = 0.72 andJ = 0.07. It is seen from Fig. 2(a)
that the velocity profile is influenced considerably and decreases when the value of mag-
netic parameterM increases. But near the surface of the plate velocity increases signif-
icantly and then decreases slowly and finally approaches to zero. The maximum values
of the velocity are0.2765, 0.3302, 0.3895 and 0.4694 for M = 1.40, 0.90, 0.50, 0.10
respectively which occur atη = 1.3025 for the first maximum value andη = 1.3693
for others maximum values. Here we see that the velocity decreases by41.086 % as
M increases from0.10 to 1.40. Also observed that the temperature field increases for
increasing values of magnetic parameterM in Fig. 2(b). Here it is seen that the lo-
cal maximum values of the temperature profiles are0.9132, 0.8965, 0.8803, 0.8615 for
M = 1.40, 0.90, 0.50, 0.10 respectively and each of which occurs at the surface. Thus
the temperature profiles increase by5.67 % asM increases from0.10 to 1.40.
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Fig. 2. (a) Velocity and (b) temperature profiles for different values of magnetic
parameterM againstη with other fixed valuesPr = 0.72, J = 0.07.

Figs. 3(a) and (b) represent, respectively, the velocity and the temperature profiles
for different values of the Joule heating parameterJ for particular values of the Prandtl
number and the magnetic parameterM . We observe from Fig. 3(a), that an increase in the
Joule heating parameterJ , is associated with a considerable increase in velocity profiles
but near the surface of the plate the velocity increases and become maximum and then
decreases and finally approaches to zero asymptotically. The maximum values of the
velocity are0.3490, 0.3412, 0.0.3299, 0.3226 for J = 0.90, 0.70, 0.40, 0.20 respectively
and each of which occurs atη = 1.3693. Here we observe that the velocity increases by
7.57 % asJ increases from0.20 to0.90. However Fig. 3(b) shows the temperature profiles
againstη for some values of the Joule heating parameterJ (J = 0.90, 0.70, 0.40, 0.20).
Clearly it is seen that the temperature distribution increases owing to increasing the values
of the Joule heating parameterJ and the maximum is at the adjacent of the plate wall.
The local maximum values of the temperature profiles are0.9408, 0.9302, 0.9153, 0.9059
for J = 0.90, 0.70, 0.40, 0.20 respectively and each of which attains at the surface. Thus
the temperature profiles increase by3.71 % asJ increases from0.20 to 0.90.
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Fig. 3. (a) Velocity and (b) temperature profiles for different values of Joule heating
parameterJ againstη with other fixed valuesPr = 0.72, M = 1.0.

Fig. 4(a) and (b) illustrates the velocity and temperature profiles for different values
of Prandtl number in presence of the magnetic parameterM and Joule heating parameter
J . From Fig. 4(a), we may conclude that the velocity profile is influenced significantly
and decreases when the value of the Prandtl numberPr increases. But it is seen that near
the surface of the flat plate the velocity increases considerably and become maximum
and then decreases slowly and finally approaches to zero. Themaximum values of the
velocity are0.2373, 0.2852, 0.3156, 0.3513, 0.5169 for Pr = 1.74, 1.00, 0.72, 0.50, 0.10
respectively which occur atη = 1.1752 for the first maximum value,η = 1.3025 for
the second maximum value,η = 1.3693 for the third maximum value,η = 1.4382
for the fourth maximum value and atη = 1.8198 for the last maximum value. The
maximum values of the temperature are0.8310, 0.8732, 0.8972, 0.9232, 1.0249 for Pr =
1.74, 1.00, 0.72, 0.50, 0.10 respectively which occurs at the wall of the plate surface. Here
it is found that the velocity and temperature profiles decrease by54.1 % and18.92 %
respectively whilePr increases from0.10 to 1.74.
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Fig. 4. (a) Velocity and (b) temperature profiles for different values of Prandtl number
Pr againstη with other fixed valuesJ = 0.005, M = 1.0.

Figs. 5(a), (b) illustrate the variation of skin-frictionf ′′(x, 0) and surface temperatu-
re distributionθ(x, 0) againstx for different values of magnetic parameterM (M = 1.40,
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0.90, 0.50, 0.10). It is seen from Fig. 5(a) that the skin-frictionf ′′(x, 0) is decreases when
the magnetic parameter,M increases. It is also observed in Fig. 5(b), the surface tem-
peratureθ(x, 0) distribution increases whileM increases.The value of the skin-friction
f ′′(x, 0) decreases by23.53 % and the surface temperature distributionθ(x, 0) decreases
by 4.33 % while the magnetic parameterM increasing from0.10 to 1.40.
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Fig. 5. (a) Skin friction and (b) surface temperature againstx for different values of
magnetic parameterM with fixed parameterPr = 0.72, J = 0.07.

The effect of Prandtl numberPr (Pr = 1.74, 1.00, 0.72, 0.50, 0.10) on the skin-
friction f ′′(x, 0) and the surface temperature distributionθ(x, 0) againstx for the fixed
parameterM = 1.00 andJ = 0.005 is shown in Fig. 6(a), (b). It is observed that both the
values of skin friction and surface temperature distribution decrease for increasing values
of Prandtl number. The value of the skin-frictionf ′′(x, 0) decreases by13.401 % and
the surface temperature distributionθ(x, 0) decreases by6.8 % whilePr increasing from
0.01 to 1.0.
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Fig. 6. (a) Skin friction and (b) surface temperature againstx for different values of
Prandtl numberPr with M = 1.0, J = 0.005.

In Table 1 the numerical values of the skin friction coefficient f ′′(x, 0) and surface
temperatureθ(x, 0) againstx for different for different values of Joule heating parameter
J while M = 1.0 andPr = 0.72. It is observed from the table that the values of skin
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friction coefficient increases rapidly at different position ofx for Prandtl numberJ = 0.9,
0.7, 0.4, 0.2. Near the axial positionx = 3.0, the rate of increase of the local shear
stress coefficient is21.67 % as the Joule heating parameterJ changes from0.2 to 0.9.
Furthermore, it is seen that the numerical values of the surface temperature distribution
increase for increasing values of Joule heating parameter.It is also observed that the
same axial position ofx, the rate of increase of the surface temperature distribution is
14.23 % as the Joule heating parameterJ changes from0.2 to 0.9. The rate of increase in
the values of the skin-frictionf ′′(x, 0) and the surface temperatureθ(x, 0) become much
higher in the downstream than that of in the upstream values.

Table 1. Skin friction coefficient and surface temperature for different values of Joule
heating parameterJ againstx with the fixed values of parametersPr = 0.72, M = 1.0

J = 0.90 J = 0.70 J = 0.40 J = 0.20

x f ′′(x, 0) θ(x, 0) f ′′(x, 0) θ(x, 0) f ′′(x, 0) θ(x, 0) f ′′(x, 0) θ(x, 0)

0.0000 0.0155 0.2052 0.0155 0.2052 0.0155 0.2052 0.0155 0.2052
0.3045 0.4462 0.7201 0.4446 0.7184 0.4422 0.7158 0.4406 0.7141
0.7090 0.5553 0.7851 0.5494 0.7798 0.5407 0.7721 0.5351 0.7671
1.0265 0.6146 0.8204 0.6040 0.8115 0.5889 0.7990 0.5792 0.7910
2.0369 0.7699 0.9153 0.7370 0.8901 0.6929 0.8572 0.6667 0.8381
3.0049 0.9218 1.0119 0.8541 0.9614 0.7690 0.9003 0.7221 0.8679
4.0219 1.1131 1.1384 0.9890 1.0460 0.8428 0.9428 0.7688 0.8932
5.0387 1.3568 1.3058 1.1487 1.1489 0.9175 0.9864 0.8098 0.9154
6.0502 1.6696 1.5294 1.3430 1.2779 0.9968 1.0332 0.8477 0.9361
7.1132 2.0943 1.8459 1.5967 1.4516 1.0888 1.0885 0.8862 0.9573
10.0179 3.9224 3.3321 2.6475 2.2203 1.4115 1.2880 0.9926 1.0163

5 Conclusions

The effects of Joule heating parameterJ , magnetic parameterM and Prandtl numberPr
on the natural convection flow along a vertical flat plate has been studied numerically. The
transformed non-similar boundary layer equations governing the flow together with the
boundary conditions based on conduction and convection were solved using the implicit
finite difference method together with Keller box scheme. The coupled effect of natural
convection and conduction required that the temperature and the heat flux be continuous
at the interface. From the present investigation, the following conclusions may be drawn:

• The velocity distribution and the temperature distribution both are increasing for
increasing value of the Joule heating parameterJ .

• The velocity profile decreases and the temperature profile increases for increasing
value of the magnetic parameterM .

• The skin friction and the surface temperature decrease for increasing value of the
magnetic parameterM .
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• The skin friction and the surface temperature decrease for increasing value of the
Prandtls numberPr.

• It has been observed that the temperature distribution overthe whole boundary layer
and the velocity distribution decrease with the increase ofthe Prandtl numberPr.
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