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Abstract. The present analysis is motivated by the need to elucidate with more egcura
and sophistication the hydrodynamics of non-Newtonian flow via a chaomtaining

a porous material under pulsating pressure gradient. A one-dimahdi@msient
rheological model for pulsating flow through a Darcy-Forcheimmeaops channel is
used. A modified Casson non-Newtonian constitutive model is emplayeldd transport
fluid with a drag force formulation for the porous body force effecthe Tnodel is
transformed and solved using a finite element numerical techniquenld®fieal effects
are examined using/@parameter which vanishes in the limit (Newtonian flow). Velocity
profiles are plotted for studying the influence of Reynolds number, yDawmmber,
Forchheimer number and th# (non-Newtonian) parameter. The channel considered
is rigid with a pulsatile pressure applied via an appropriate pressure graeien. The
model finds applications in industrial filtration systems, pumping of poljerflerids etc.

Keywords: hydromechanics, pulsatile, rheological, non-Darcian porous medinite,
element solution, Reynolds number.

Introduction

Pulsating flows abound in many areas of engineering fluid ahyc& Pressure surges in
pipelines, cavitation in hydraulic systems [1], pumpingshifrries and foodstuffs [2] etc

*Dedicated to Professor A. Cemal Eringen, Emeritus ProfeBsimiceton University, School of Engineering,

on the occasion of his 86th birthday (February 2007), foohistanding contributions to engineering science.
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are just several examples of the diverse applications afgilé hydromechanics. Other
areas of technology in which pulsatile flows are importantide refrigeration systems,
combusting mechanisms, de-watering devices and alsamvastiular biomechanics. The
reader is refereed to the excellent treatise by Zamir [3ls&ung flows are characterized
by fluctuations in both mass flow rate and pressure about @emmmean value. Pulsatile
flows can be generated by a variety of techniques. Thesed@ckciprocating pumps,
steady flow pumps, hybrid systems with mechanical pulsatéwices etc. An early study
of pulsatile hydrodynamics was reported by Richardson arerT4] who studied the
alternating aerodynamic flow regimes in the vicinity of therg region of pipes under
periodic pressure differences. Sexl [5] later re-examthédproblem and considered also
the pulsatile flow generated by a reciprocating piston. Matér Uchida [6] considered
oscillatory boundary layer flow regimes in pulsating pipevo These analyses provide
classical benchmarks for more modern numerical studiespe@smented by Schlichting
[7]. Edwards and Wilkinson [8] later provided a succinctadission of the applications
of pulsatile flows. Other Newtonian studies of pulsatingepffpws include those by
Ishii [9], Yakhot et al. [10] and most recently by Blyth andZpi&idis [11] who studied
numerically the influence of pulsatile flow on gas column sitgb These studies were all
concerned withpurely fluid regimes. However it has been documented for some time
that porous materials often occur in industrial operatiand can be used to achieve
hydrodynamic control of key processes. A lucid discussibapmplications of porous
media in conduit and channel flows is available in the exotlleonograph by Schei-
degger [12]. Wang [13] investigated the pulsatile Newtorfiaw in a Darcian porous
channel with suction/injection effects. In the presentigtwe are concerned primarily
with studying the flow of a non-Newtonian fluid under pulsafitessure gradient. Several
studies of pulsatile non-Newtonian flow through porous dedshave appeared, mainly
in the context of biomechanics. For example, Bhatnagar §bé)yzed theoretically the
pulsating viscoelastic flow in a Darcian porous channel. Daian model [15] has been
shown to be generally valid for low Reynolds number flows. ighler Reynolds numbers,
inertial effects can become significant and the Darcian mdesually extended to
incorporate a second order drag force. In the present stwdtherefore consider the
pulsatile non-Newtonian flow in a Darcy-Forchheimer porousdium channel using
a bi-viscosity rheological flow model described by Nakamanal Sawada [16]. The
governing momentum equation is hon-dimensionalized ahedsubject to appropriate
boundary conditions using the finite element technique.efé\special cases are also
discussed briefly. Such a study has to the author’s knowladgeppeared thusfar in the
technical literature. The present model may be appliedtratiibn processes in chemical
engineering processes.

2 Hydromechanics of porous medium flow and rheological fluid
model

Many techniques exist for simulating porous media. Adléf][has described a wide
range of geometric approaches which re-create the comiplestisre of porous materials.
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In the context of engineering analysis we adopt instead g-fine formulation for
simulating the impedance imparted by the porous matrixctire to pulsating fluid in
the channel. This approach has been applied in many porod& mansport problems
including geothermal systems, fibrous insulations, biemals and ceramics. Following
Vafai and Tien [18] the appropriate formulation for flow via esotropic, homogenous,
non-stratified porous medium with high velocity effects thee Darcy-Forchheimer model
can be stated as follows:

K PO 2
Vp = KV KV , Q)
whereV designates the velocity vectarjs the hydrodynamic pressurgejs the dynamic
viscosity, K is hydraulic conductivity (permeability) of the porous re@al, p is the
density of the fluid and is the Forchheimer geometrical (inertial drag) coefficignbne-
dimensional version of this equation with velocity vec¥or= (U, 0, 0) will be employed
in our model. The above equations relate to Newtonian poifous. To accommodate
the rheological characteristics of a slurry material, esstitensor;; ;, has to be introduced
into the momentum equation. Following Nakamura and Sawa@pwWe employ the bi-
viscosity modified Casson rheological model. The constigugquations for such a fluid

may be presented as follows:

2[M3+p7y:|€ij7 ™ > T,

Tij = vpam : @
2{/“3 + \/770}61']', T < e

wherer = e;;e;; ande;; is the (4, 7)™ component of theleformationrate, r is the pro-

duct of the component of deformation rate with itseilf,is a critical value of this product

based on the Nakamura-Sawada model [1@],is plastic dynamic viscosity of the non-

Newtonian fluid,p, is yield stress of slurry fluid. This model allows a relativelasy

incorporation into the Navier-Stokes framework, as doegttrous media formulation in

().

3 Mathematical model

Consider the pulsatile, laminar, incompressible, flow obk&imura-Sawada fluid through
a two-dimensional Darcy-Forchheimer porous medium chiapossessing perforated
walls. The physical regime is depicted in Fig. 1. The chamadls are located a distance
H apart with reference to am,y coordinate system, where is in the longitudinal
direction, parallel to the walls angl is normal to this. Pressure gradient is directed
along the longitudinal axis. Transpiration can take plaeetve walls of the channel at a
uniform velocity,V,. The convective terms in the momentum conservation equstie.
w2 w22 are ignored, following Uchida [6] which is physically allale owing to the
dominance of the viscous diffusion terms in pulsatile floy [Bhe y-direction velocity

is neglected in the momentum equation and only simulatec\transpiration velocity
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Fig. 1. Pulsatile rheological flow in a non-Darcian porous channel.

via the walls i.e.V = V, everywhere along the lower wall (injection) aMd = -V,
on the upper wall (suction). Owing to the infinite length appmation for the channel
walls, flow variables can be taken as being dependent onlyadt. The conservation
equations can thereby be reduced to the following singletiau

ou ou 10P 110%u v 5

E—i_ Oaiy—'—;%_ B{ +E]87y2—?u—bu, 3)
wherew is the longitudinal velocity component,denotes timey is the kinematic vis-
cosity of the slurry fluid,P is the pressureyp is plastic kinematic viscosity of fluid?
denotes the upper limit of apparent viscosity coefficierd atl other parameters have
been defined previously. The penultimate term in equatidmiihe right hand side is
the Darcian linear porous resistance and the final term septe quadratic (inertial) drag.
The corresponding boundary conditions at the lower and rugennel walls are:

u=0aty=0 and aty=H. (4)

For infinite values ofg3, the yield stress of the fluid vanishes and the flow becomes
Newtonian For the case of a channel weblidwalls, V, — 0. We now introduce a series
of dimensionless transformations to reduce the momenturatia with corresponding
boundary conditions to non-dimensional form, aiding in aneucal solution to the flow
problem. Defining:
U X Yy Vo * P
U=—, X==, Y=2, T=2t P'=—
Vo’ H7 H7 H 9 pV02 ’
where X is the transformed coordinate parallel to channel waflgs the transformed
coordinate transverse to channel walls,is the transformed velocity component in
direction, V, is the transpiration velocity?* is the transformed hydrodynamic pressure
(x dropped for convenience in analysi§),is dimensionless time. We therefore obtain
the following second order partial differential equation fnomentum in terms of dimen-
sionless longitudinal velocity/:
ou oUu orP 1[ 1}82U 1

D e T Z - _ U —- NnU? 6
ar "oy T or T Re ayz U - NPU )

®)

*3
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where Re = %2 is the Reynolds number = 32 is the Darcian permeability pa-
rameter andVf = Hb is the Forchheimer inertial porous parameter. Effectivély

transpiration has been absorbed into the Reynolds numliebarcian parameter and
therefore no longer appears explicitly in the transformeatieh. The corresponding

transformed boundary conditions now become:
U=0atY =0 (lowerwal) and U=0 atY =1 (upper wall). @)

The pressure gradient in (6) is now decomposed irgteadycomponent and an imposed
(oscillatory) component as follows, as described by Uclda

P  [9P aP
“ox = lax). * lox

where (), is steady component and, is oscillating component. Prior to developing
numerical solutions we briefly consider several importgrgcgl cases of the general
porous rheological flow model. Computations have been pedi(discussed) for several
special cases in order to study simpler flow scenarios. Famele in our transformed
model, with3 — oo, g—g — 0, A\ — oo we havesteady Newtonian flow in a purely fluid
(non-porous) channelFor the case where only quadratic porous drag is excluded fro
the general dimensionless momentum equation (6), the Rencter term disappears i.e.
we setNf — 0 and we have the case stieady non-Newtonian flow in a Darcian porous
channel.For the case of a Navier-Stokes fluid (Newtonian) the visgg@siramete — oo
and we haveulsatile Newtonian flow in a non-Darcy channel.

} Oez'wt7 8)

4 Numerical solution
In the numerical (finite element) computations, the putgpipressure gradient in the
channel is re-defined as:
or*
0X

Implementing this expression in (6) we arrive at:

= Ps+ Po(cosw*T). 9)

ou  oU . 1 110U 1 9

8—T+8—Y—PS—Po(coswT)—ﬁ[l—FB}W—XU—NfU. (10)
The initial condition in time is now prescribed as

U=0atT=0. (11)

The entire flow domain is discretized into a set of 100 linerelets of equal width, each
element being two-noded. A variational formulation is eoyeld in the finite element
solution using a two-noded linear element with arbitrast fenctions. Further details are
provided in Bathe [19]. We are principally interested indsting velocity distributions in
the channel in the spatial dimensidr)(and over timeT).
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5 Graphical results and discussion

To study the interaction of pulsatile effects and rheolab@nd non-Darcian effects in the
flow regime we individually vary each of the following paratees: w* (dimensionless
angular frequency)Re (Reynolds number)s (non-Newtonian parameter), (Darcian
linear drag parameter}o (pulsating amplitude)Ps (steady component of pressure gradi-
ent) andNf (Forchheimer second order parameter). Velocity functamesplotted against
Y and/orT" (dimensionless time).

Fig. 2 illustrates the visualization of velocity with both space X coordinate)
and time {"). The oscillatory evolution of velocity is clearly visibleComputations
correspond to a strongly non-Newtonian fluid. 3 peak velegiare observed within a
time-span of0 < T < 2. Peak velocities always correspond to the centerline of the
channel i.e. at” = 0.5. The undulating profile is a direct function of the paramefer
and Ps. Longitudinal velocityU starts from0 atY = 0 ascends to a peak &t = 0.5
(centre of channel) and descends back to zeid at 1. The velocity also commences
at0 at 7 = 0 (initiation of the pulse) and the oscillatory flow nature ignessed in
time, rather than due to space, since the pulsatile gradieatime-imposed effectThe
computation corresponds to a strong pulsatile pressudiegria@* = 8). Numerical
solutions have been obtained for the general case by sejexparticular tim&” = 0.5
and computing the velocity function profiles at this instaMe utilize as default values,
w* = 8 (angular frequency of oscillationRe = 1 (Reynolds number)\ = 1 (Darcian
linear drag parameter)Yf = 1 (Forchheimer second order parametét)= 4 (non-
Newtonian parameter)Ps = 10 (steady component of pressure gradied®), = 7
(pulsating amplitude). All general cases correspond teaghalues. For special cases,
corresponding values of physical parameters are provideHe following discussion,
rather than on the graphs.

: l‘&%“ :&“\\‘\\\\\\\\\*\

i
)
| W’ll “t‘?\\‘“‘v‘!\\\

1l '% 'z‘y \\\ |

Fig. 2. Velocity profile for pulsating rheological flow in non-Darcian pssachannel

.8 P
(general case)yp™ =8, Re=1,8=4,A=1,Po=7,Ps =10, Nf = 1.

Figs. 3 to 5 illustrate th@-dimensional plots for the general case. The influence of
rheological parameters] on flow velocity (V) versusY coordinate is shown in Fig. 3.
Low 3 values correspond to stronger non-Newtonian behaviour mere plastic be-

322



Finite Element Solutions for Non-Newtonian Pulsatile Flow

haviour. Increasing’ decreases the effective viscosity of the fluid which tendth&
Newtonian flow case. A8 values tend to infinity, the terr/3 in equation (10) vanishes.
Velocity U increases markedly with a rise j#y peak value ofU at the centre of the
channel rises froni5 to approximatelyl8 as 3 increases from to 10 i.e. velocity
is boosted by20%. The fluid flow tends further from shear-thickening behavias 3

is increased. The flow field is therefore clearly acceleratedorder to overcome the
lower velocities for stronger rheological fluid, pulsatpeessure gradient values must
therefore be increased. This would indicate that a great®iping specification is needed
in industrial applications. We note that for Fig. 3 theand Nf values imply a Darcy-
Forchheimer flow. The influence of quadratic drag is quite lmv weak. Reynolds
number is low so the Darcian drag is dominant in this regintedires exert a considerable
influence on the velocity field.

20 - 20

=10 1 A=2
B p=5 =1
p=3 B=2
A=05
r T
D 104 > 10 =03
A=0.1
0 T \ 0 T \
0 0.5 1 0 0.5 1
Y —> Y—>

Fig. 3. Non-Newtonian effectsg): U
versesY for variousg values atl’ = 0.5;
w*=8T =05 Re=1,A=1,Po=1,

Fig. 4. Darcian (permeability) effects\):
U versesY for various) values afl’ = 0.5;
w*=8T=05Re=1,=4,Po=1T,

Ps =10, Nf = 1. Ps =10, Nf = 1.

20 -
Nf=1
Nf=5

Nf=10 Nf=1

Nf=20

0 015 1‘
Y —»

Fig. 5. Forchheimer effects\f): U verses

Y for various Nf values atT" = 0.5;

w* = 8 T = 0.5, Re = 1, 8 = 4,
A=1,Po=17,Ps=10.
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Plots for the effects ok and Nf values are illustrated in Figs. 4 and 5. In Fig. 4 the
influence of the porous matrix resistance embodied in theiBaparameteh (directly
proportional to permeability) on the spatial distributimirvelocity U versusy” is depicted.
As a filtration material in various industrial pumping preses,\ is a key regulation
parameter. Rising\ implies permeability increases and therefore the poroasmsl
material in the channel e.g. soil, ceramic, insulation malieprogressively decreases
in presence i.e. less and less impeding material is preséim: ichannel flow. We observe
that as a result the Darcian bulk impedance is decreasethstibfly. The fluid receives
less resistance and therefore is accelerated i.e. vesdiicrease ai rises from0.1
(low permeability i.e. densely-packed porous flter matpti@ough0.3,0.5 to 1 and?2.
The profiles are symmetrically parabolic as in Fig. 2 sineedhannel prescribes no-slip
conditions at either walls. Peak values of velocity aristacentre line of the channel at
Y = 0.5. Approximately &0 % boost inU values accompanies a riselrfrom 0.1 to 2.

Fig. 5 shows the velocity distribution versts for various Nf values i.e. Forch-
heimer quadratic parameter. A rise Mg from 1 (weak inertial effect) to5, 10,15
and20, depresses the longitudinal velocity considerably. Qaidclinertial drag effects
progressively decrease the influence of Darcian viscoustiied drag. VelocityJ
is seen to fall from a peak value at the channel centfe= 0.5) for Nf = 1, to
approximately3.5 for Nf = 20 i.e. strong inertial drag. The porous filtration material
in the channel has a significant deceleration effect on flomer@um at highVf values.
The influence of porous medium is infact much more effectiamtincreasing the shear-
thickening i.e. rheological characteristic of the pulsgtfluid (Fig. 3). Higher pulsation
field values therefore serve to augment the filtration effecthe porous matrix second-
order drag is substantially depressed.

In Fig. 6 to 9, we provide the computations obtained forgpecial case of steady
non-Newtonian flow in a Darcian channelhe influence of Reynolds number is illus-
trated in Fig. 6. The profiles correspondgo= 4, A = 1 and Ps = 10. The velocity
distributions are all skewed parabolas (to the right). Thwslip conditions (zero velocity)
at each channel wallY{ = 0,1) are observed as the zetd values at either end of
the parabolas. Maximum velocities all occur at approximyaie = 0.65, unlike in the
Newtonian case where they are exactly symmetrical. Vglaoireases substantially with
arise in Reynolds number as this parameter rises from @& (gkcous flows) td, 2, 3
and5. Up to Re ~ 10 the Darcian model is valid and therefoxés non-zero.

In Fig. 7 we have plotted the influence of rheological paramngt) on longitudinal
velocity. As in the general pulsatile, transient, rheotadji non-Darcian case (Fig. 3)
velocity U increases strongly with a rise ih Hence the highest value 6f (at the centre
of the channel for each profile) increases from approxingdtéis to 1.0 i.e. velocity is
boosted by more thagd %. We observe that in the absence of pulsating pressuresgitadi
i.e. when no periodic pressure differences are presenyelogities in the channel are
much lower than for the pulsating case (Fig. 3). As with Figh8 fluid behaviour
approaches Newtonian gds increased; however the increasesiis much less effective
than for the pulsating case (Fig. 3), verifying that in pieadt applications, pulsating
pressure gradient is the dominant control parameter foiedicly greater momentum
transfer in the fluid.
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3.4 Re=5 1.2 1
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Re=3 / ~ k=5
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o 17 > 0.6
Re = 0.5.
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0 T \ 0 T \
0 0.5 1 0 0.5 1
Y —p Y —p
Fig. 6. Reynolds number effectd¢): U Fig. 7. Non-Newtonian effectsg): U
versesY for various Re values; 3 = 4, versesY for various 3 values; Re = 1,
A=1,Ps=10, Nf = 0. A=1,Ps=10,Nf =0.
" n A=2 J=1 27 Ps =20 ps = 16
4=05 1=03 Ps =14 b= 1o
> 0.5 o1
A=01
Ps =10
0 i \ 0 . \
0 05 1 0 05 1
Y —> Yy—
Fig. 8. Darcian (permeability) effect\): Fig. 9. Steady pressure gradient effects
U versesY for various\ values;Re = 1, (Ps): U versesY for various Ps values;
B=4,Ps=10, Nf = 0. Re=1,A=1,8=4,Nf=0.

Fig. 8 illustrate the effects of the permeable materialstasice (Darcian parameter
A) on the spatial distribution of longitudinal velocity. As a characteristic of filtration
materials in various industrial processesis a key regulation parameter. As with the
pulsating case (Fig. 4), we see that velocity rises markegdly rises from0.1 (low
permeability i.e. densely-packed porous filter matertaiptigh0.3,0.5 to 1 and2. The
fluid receives less resistance with rising Darcian paransetd therefore is accelerated.
The profiles as in the pulsating case (Fig. 4) are once agammgyrically parabolic.
Maximum values of velocity arise in the centre line of therahel atY” = 0.5. However
velocities are much lower than in the pulsating case, onamalfuistrating the dominating
influence of a periodic pressure gradient. Therefore we iinfeonsistency with other
studies (e.g. Uchida [6], Wang [13] etc) that steady flowschattain anywhere near the
velocity magnitudes achievable with pulsation mechanisms

Finally in Fig. 9 we present the influence of steady presstadignt componentis)
on the flow velocity. Reynolds number has been fixed at unijoaity is seen to increase
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considerably a$s rises from10 through12, 14, 16 and eventually t®0. Velocities are
boosted from approximately8 to 2.8 over this range. However we observe yet again that
in the steady case, velocity magnitudes are much smallerftihany of the pulsatile flow
cases (Figs. 3, 4 and 5). Therefore the presence of a pgsatssure gradient is instru-
mental in generating high velocities whether the fluid is Mawan or non-Newtonian.
The present model is currently being extended to considentimerical simulation of
the pulsatile hydromechanics of more complex non-Newtofiigids in porous media,
including for example polar (couple stress) fluids and tsswill be communicated in the
near future.

6 Conclusions

A finite element numerical solution for the pulsatile nonwienian flow in a porous
medium channel has been presented. A non-Darcian dragrfavdel has been employed
to simulate the porous medium. The porous bulk matrix resge (Darcian drag) is
seen to substantially depress velocities i.e. velocitiesitacreased for materials with
progressively increasing permeability. Forchheimeraffalso have a major decelerating
influence on the flow velocity. Reynolds number is observedrigely boost velocity in
the steady flow case, although profiles are seen to be skesvemsiymmetric. Velocities
generally increase markedly with a decrease in nhon-Newatohehaviour. The present
computations also illustrate that much smaller velocites generated in steady flow
compared with pulsating flow.
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