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Abstract. A one-dimensional advective-dispersive contaminant transpodemwith
scale-dependent dispersion coefficient in the presence of a nardimeaical reaction of
arbitrary order is considered. Two types of variations of the dispecsiefiicient with the
downstream distance are considered. The first type assumes thiapiesivity increases
as a polynomial function with distance while the other assumes an expdlyentia
increasing function. Since the general problem is nonlinear and pessae analytical
solutions, a numerical solution based on an efficient implicit iterative tgatial finite-
difference method is obtained. Comparisons with previously publishalytaral and
numerical solutions for special cases of the main transport equatopesformed and
found to be in excellent agreement. A parametric study of all physiaanpeters is
conducted and the results are presented graphically to illustrate interesttngss of the
solutions. It is found that the chemical reaction order and rate coeffic@se significant
effects on the contaminant concentration profiles. Furthermore, #ie-dependent
polynomial type dispersion coefficient is predicted to obtain significaahghs in the
contaminant concentration at all dimensionless time stages compared &itbribtant
dispersion case. However, relatively smaller changes in the contienttavel are
predicted for the exponentially-increasing dispersion coefficient.

Keywords: contaminant transport, scale-dependent dispersion, numericaiosolu
nonlinear chemical reaction, finite-difference method.

Nomenclature

a,b constants used in exponential dispersion coefficient
concentration of contaminant [ML3]

boundary concentration source [ME]

dimensionless concentration of contaminant
hydrodynamic dispersion coefficientJL ']
molecular diffusion coefficient [tT ]
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Dy characteristic dispersion constangfl=!]

D*  dimensionless hydrodynamic dispersion coefficient

erf error function

erfc  complementary error function

H unit step function

k chemical reaction rate coefficient of contaminarnt ML —3)' "]
n chemical reaction order

n1, N constant used in polynomial dispersion coefficient

Pe Peclet number

t time [T]
u flow velocity [LT']
x longitudinal distance [L]
Zo characteristic longitudinal distance [L]
Greek symbols
«@ dispersivity [L]
7 dimensionless longitudinal distance
A dimensionless chemical reaction rate coefficient
T dimensionless time

1 Introduction

The problem of contaminant transport in soil, groundwatet surface water has been
a research subject of many recent and old theoretical aneriexpntal investigations.
This is due to increased public awareness of significantacoimation of groundwater
and surface water by industrial, municipal, agricultufa¢imicals, accidental spills and
effect of soil contamination resulting from landfills andrying of hazardous materi-
als. The principle differential equation governing solusnsport and chemical reactions
has been developed using mass balance and advectivesiispprinciples [1] and is
widely used in modeling solute transport phenomenon. A rermbanalytical solutions
for steady-state flow and different boundary and initial dibons were given by van
Genuchten and Alves [2] for problems with linear adsorptom zero- and first-order
production and decay. Analytical solutions play an impartale in modeling because
they offer fundamental insight into governing physicalgesses, provide useful tools for
validating numerical approaches, and are sometimes maonputationally efficient [3].
Most previously published analytical solutions to adwesiilispersive transport problems
are obtained based on the assumption of a homogeneous poedliism [2]. In reality,
subsurface porous media through which the contaminant srereeseldom homogeneous
and significant spatial variability of transport propest&hould be expected [3-5].

As a result of the heterogeneity of the porous media, theedéspn coefficients
in all directions vary with the space coordinate and theltiegucontaminant transport
equation contains spatially-dependent coefficients. tadhanalytical solutions for scale-
dependent dispersion coefficients have been reported iitetadure. Yates [6,7] obtained
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one-dimensional solutions for uniform flow with constanbcentration or constant con-
centration flux boundary conditions when the medium has ealiy or exponentially-
increasing dispersion coefficient with the spatial cocatkn Huang et al. [8] also pre-
sented analytical solutions for a scale-dependent digpecoefficient which increases
linearly with the distance until some distance after whiateaches an asymptotic value.
Logan [9] derived an analytical solution for the one-dinienal equations incorporat-
ing rate-limited sorption and first-order decay under tvaeying boundary conditions,
assuming an exponentially-increasing dispersion coeffici Zi-ting [10] reported an
analytical solution for an exponential-type dispersiongass. However, the solutions
given by Yates [6,7], Huang et al. [8], Logan [9] and Zi-tiri@] are complex and difficult
to evaluate numerically. It is worth noting that other sasdof solute transport employ
time-dependent coefficients. Warrick et al. [11], Barry &pbsito [12] and Basha and
El-Habel [13] reported analytical solutions to the one-glinsional advection-dispersion
equation with arbitrary time-dependent dispersion andaitf coefficients.

This paper presents numerical solutions for one-dimemasioontaminant transport
through a semi-infinite porous medium domain in the presefi@nonlinear chemical
reaction. The transport starts from a continuous contamisaurce and the mechanical
dispersion effect is assumed to vary with the downstreataniie. The solutions include
first- and second-order homogeneous irreversible chemgeations as well as polyno-
mial and exponentially-increasing spatially-dependespetsion coefficients.

2 Formulation

Consider transient one-dimensional advective-dispesimtaminant transport in a porous
medium from a continuous source with a non-linear chemieattion. The movement
of the contaminant takes place in the semi-infinite redgion =z < co and the dispersion
coefficient is assumed to be spatially-dependent. The gowgequation for this situation
can be written as:

Oc(z,t) N dc(xz,t) 0 (D(m)ac(x,t)

- ox

U = o ) = ke, )", (1)

wheret is time, z is the one-dimensional spatial coordinaie{ = < oo) (or longitudinal
distance),c(z, t) is the concentrationy is the uniform velocity,D(z) is the spatially
variable hydrodynamic dispersion coefficient representire sum of both the effects
of molecular diffusion D.) and mechanical dispersion where« is usually called
the dispersivity),k is the chemical reaction rate coefficient ands the order of the
homogeneous irreversible chemical reaction. It should diechthat the first term on
the left hand side of equation (1) represents the transieatocumulation effect. The
second term on the left hand side of the equation represem@dvection or convection
effect which is defined as the transport of contaminant byntkean velocity in the flow
stream. The first term on the right side of the equation adsofar the dispersion or
diffusion effect which is responsible for the spreadingte tontaminant in the medium.
The last term of equation (1) represents the nonlinearimaeffect which may take place
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(depending on the nature and properties of the contamibaht)een the contaminant and
the medium.

The initial and boundary conditions for this problem are
Oc(oo,t)

c(z,0) =0, ¢(0,t) =cp, c(o0,t)=0 or 5 = 0, 2)

wherec, represents a constant continuous concentration source.
Equation (1) can be written as

Oc(z,t) n de(z,t) 0?c(z,t) N 0D(x) Oc(x,t)
ot Y or Ox? Ox Oox

It is convenient to work with dimensionless equations. Tais be accomplished by
using

= D(x) — kc(z, t)". 3

T ut
n= ;7 T = ;07
0
(4)
_c(z,t) . ~ D(x)
C(n,7) = o D*(n) = Dy

wherez and D, are characteristic longitudinal distance and dispersastant, respec-
tively.
Substituting equation (4) into equations (3) and (2) givespectively

0C(n,m) , 9C(n,7) _ D*(n) *Cln,7) 1 8D"(n) IC(n, )

= — n 5
or on Pe on? +Pe on on AC(, 7)", ()
0C (o0, T)
C(n,0)=0, C0,7)=1, C(oo,7)=0 or T =0, (6)
where
_ uxg  kmocy !
Pe = Do’ = — (7)

are the Peclet number and dimensionless chemical reaetierwonstant, respectively.

3 Numerical method

In its most general form, equation (5) is nonlinear. Thenefan analytical solution to this
equation is unlikely and a numerical procedure is requikéahy existing computer codes
employ a finite-difference approach for the solution of s@art equations. It is logical to

investigate the applicability of this methodology to edomt(5). In the present work,

an implicit iterative tri-diagonal finite-difference meith similar to that discussed by
Blottner [14] is employed. A two-point backward differergpaotient is used to represent
the dimensionless time derivative and three-point central difference quotiemeswsed
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to represent the dimensionless spacderivatives. The computation startszat= 0
and marches forward in time. At each time, a system of nagaliralgebraic equations
must be solved to determine thalistributions ofC'. An iterative procedure is employed
for this purpose. At each iteration, an equivalent lineastey of algebraic equations
(the linearization being effected by representing somatifies by their values from the
previous iteration) must be solved. These equations hasiedagonal form and can be
solved by the Potter's method variables which can be deteanby a forward sweep in
the h direction. Then the physical variables can be founah faacorresponding backward
sweep. This process avoids the need for matrix inversiogratibn is continued until
convergence is obtained at a given time. The procedure nifomeard for the next time.

It is helpful to have some analytical solutions for specades of equation (5) to use
as standards of comparison for the numerical procedure.

4 Analytical solutions

Consider the special case whdpé(n) = 1 (constant dispersion) and= 1 (first-order
chemical reaction) for which equations (5) and (6) are sifirepl to read

0C(n,7)  0C(m.T) _ 1.9°Cn,7)
or on  Pe 0n?

- )‘C(n’ T)a (8)

0C (00, T)

C(n,0)=0, C(0,7)=1, C(oo,7)=0 or on

=0. )

These equations are linear and can be solved analyticatlyeblyaplace transforma-
tion methods. Without going into detail, the solution of tifgove initial-value problem
can be shown to be

1 Pe — \/Pe? + 4)\Pe VPen—+/Pe+ 4\t
C(n,7)= 5| exp 7 ) erfc

2 2T
10
<P6+\/P62+4)\P6 VPen+/Pe+ 4\t (10)
+ exp 5 Tl) erfc( N )
2 o0
erfe(¢) =1 —erf(¢) = N exp(—6%)d6, (11)
=

whereerf anderfc are the error function and complimentary error functiospestively

and@ is a dummy variable. It should be noted that equation (10brsistent with and

represents the dimensionless form of that reported easliean Genuchten and Alves [2].
As Pe — oo (no diffusivity), equation (10) reduces to

C(n,7) = exp(=An)H (T — 1), (12)
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where H is the unit step function. For small amounts of diffusiviy/ Pe < 1) the
discontinuity exhibited by equation (12) at= 7 is replaced by a narrow continuous
transition layer.

For the special case in which= 0 (no chemical reaction), equation (8) becomes a
simple convection-diffusion equation. Equations (10) &) are valid with\ = 0. This
leads to the respective results:

C(n,7)= % (erfc(%) exp(Pen) erfc (%)) , (13)
C(n,7) = H(t —n). (14)

The accuracy of the numerical method discussed above wated by direct com-
parisons with the analytical results given in equationg @@ (13). These comparisons
are presented in Figs. 1 and 2, respectively. It is clear fitoese figures that excellent
agreement between the numerical and analytical resulitseadi all presented dimension-
less times for bottPe = 1 and Pe = 100 considered in these figures.

0254

Om T T 4 T 2
1x10" x10° 1x10' X107 n

Fig. 1. Comparison between numerical and analytical solutions foretdration
profiles.

In order to check the accuracy of the numerical results fopmlinear chemical
reaction, further comparisons are performed with the wdr®wyejekwe [15] who re-
ported the solution of a single-phase isothermal flow withlimear kinetics involving
one reactant. The governing equation for this problem indaalized one-dimensional
finite region is given by the following transport equatiordamnditions:

0C(n,m) | p, 90, ) _ 9°C(n, )

o an an? — APeC(n,7)", (15)
C(n,0) =0, acg);f) — PeC(0,7) = —Pe, 305(;7’” = 0. (16)
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The initial-value problem given by equations (15) and (1@)svgolved numerically by
the implicit finite-difference scheme discussed above. dtiined results for the exit
concentration were compared with those reported by Dalg R&émachandran [17] and
Onyejekwe [15] for different values of, Pe and ). These various comparisons are shown
in Tables 1 through 3.

1.00
- %00
s
£
Q
075 T=50 T—00
—Pe=10
- Pe=100
050- * Ardlytica

0254

0.00

- .
L o

Fig. 2. Comparison between numerical and analytical solutions forecaration
profiles.

Table 1. Comparison of numerical and approximate exit concentrati@single phase
reactor with Dale (1969) and Onyejekwe (1997) witk= 2.5 andn = 2

Pe Dale Onyejekwe Present
[16] [15]

0.4164 0.4164 0.41815

0.3882 0.3887 0.39058

0.3712 0.3707 0.37261

0.3587 0.3581 0.35994

0.3249 0.3239 0.32581

Srwrne

Table 2. Comparison of numerical and approximate exit concentrati@single phase
reactor with Ramachandran (1990) and Onyejekwe (1997) Wwith10 andn = 2

Pe Ramachandran Onyejekwe  Present
(17] [15]

0.1 0.2604 0.2609 0.26164
1 0.2056 0.2056 0.20674
10 0.1209 0.1206 0.12082
100 0.0958 0.0957 0.09521
200 — 0.0836 0.09336
300 — 0.06341 0.09272
1000 0.0250 blowsup  0.09181
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Table 3. Comparison of numerical and approximate exit concentrati@single phase
reactor with Onyejekwe (1997) with = 2.5 andn = 0.5

Pe Onyejekwe  Present
[15]

1 0.5951 0.59968
2 0.5896 0.59179
4 0.5808 0.58299
10 0.5710 0.57363

Again, these comparisons show good agreement except forvalges ofPe for which
Onyejekwe’s [15] method seem to under predict the exit comagon considerably and
blows up forPe = 1000. These discrepancies are probably due to the inaccurali¢ eva
ation of the closed-form solutions who involve complicatedctions reported by Onye-
jekwe’s [15] for large values oPe as evident from the fact that his solution blows up for
Pe = 1000. The various favorable comparisons reported in Figs. 1 aadd2Tables 1
through 3 lend confidence in the numerical results to be tegan the next section.

5 Resultsand discussion

Numerical solutions for the general advective-dispersagetive contaminant transport
equation (5) subject to the initial and boundary conditi@)sare obtained for two differ-
ent types of scale-dependent dispersion coefficients.eldes

D*(n) =1+ Ny™, (17)
D*(n) =1 — aexp(—bn), (18)

where all of N, ny,a andb are dimensionless constants. It should be noted that when
N = 0in equation (17) and = 0 in equation (18), the constant dispersion cases are
recovered. It should be noted herein that Zoppou and Knitgit derived an analytical
solution for a transport problem with variable velocity afiffusivity. In the notation of

this work, Zoppou and Knight [18] assumed tiait(n) = 7>. Also, Zi-ting [10] used the
exponential-type dispersion coefficient given by equatis).

The computational domain was divided up irfit@0 points in then direction and
600 points in ther direction with variable step sizes in both directions. Tihiéial step
sizes and growth factors employed in thandr directions werd).001, 0.001, 1.055 and
1.03, respectively. In this casey,,.. = 4 x 1010 represented the conditiop — oc.
These values were arrived at after performing various nicaleexperiments to access
grid-independent results. The convergence criterionireduhat the difference between
the current and previous iterations mustiibe”.

Various numerical results are obtained and a represeatsgivof results is presented
in Figs. 3 through 12. These results are chosen to illusthaténfluence of the chemical
reaction ordern, the Peclet numbePe, the chemical reaction constantand the scale-
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dependent dispersion constantsanda. In Figs. 3 through 6, the dispersion coefficient
is constant while in Figs. 7 through 12, the dispersion cdieffit is spatially variable.

Fig. 3 presents the temporal development of the contamu@rtentration profiles
for various values of the chemical reaction order n (cowasgng to first-, second- and
third-order reactions) for the case of constant dispersffatts withPe = 1. In this and
all subsequent figures, the space coordinate is represbptadogarithmic scale so as
to capture the complete transition from unsteady conditiansmall time values of the
dimensionless time to steady-state conditionsat= co. In general, it is predicted that
increases in the chemical reaction order increases theentmation. This is accompa-
nied by an increase in the concentration boundary-layekiigiss. The increase in the
concentration field and its boundary layer appears to be sigreficant at larger time
values especially at steady-state conditions. Physjdaklyincrease in the concentration
boundary-layer thickness as n increases means that it & scdnsport with a first-order
chemical reaction reaches its steady-state conditiondaster rate than it would with a
higher chemical reaction order.

10—
= Pe=10
= A=0.01
© b
075
T —
050 -8
1 =06
o
025 E N
000 , , ! S
1x10" 1 1x10' xI10° 1x10° x10* ]

Fig. 3. Effects of reaction order on the temporal development ofeunation profiles.

Fig. 4 displays the same parameters as in Fig. 3 except the ghthe Peclet number
which is set tal 00 representing a small dispersive effect. The same genamaluszion is
obtained is which the contaminant concentration profileitsdoundary-layer thickness
tend to increase as n increases. Also, effect of increasisgmore pronounced at the
steady-state conditions. However, by direct comparisdh fig. 3 for Pe = 1, it can be
seen that the effect of the chemical reaction order is maredotaminant transports with
higher dispersive effects.

Fig. 5 illustrates the influence of the Peclet numPBeron the concentration profile
for a contaminant transport with a second-order reactitimrat different time values cor-
responding to early timer(= 0.6), intermediate timer{ = 52) and state-state conditions
(7 = o). Itis predicted that higher dispersive effects (low valoéPe) provide smooth-
ing effects in the concentration profiles. Also, increading dispersive effects (that is,
decreasing the values &) has the tendency to increase the ability of the contamitwant
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transport easier through the porous medium. This is refléntdhe increases in the values
of C' as Pe decreases. In addition, @ decreases, the concentration boundary-layer
thickness increases and this seems to be more pronouncadyatransport time stages.

It should also be noted that at early time stages-(0.6), the concentration increases as
Pe decreases every where except in the immediate vicinityeirtlet boundarys{ = 0).
This is because aBe — oo (no dispersive effects), it is expected that the concentrat
profile to drop sharply (a step function) to the terminal déod asn — oo.

100
= Pe=100
= A=0.01
O
0754
0504
=06 -
0254
000 T T ‘ T X T : T S——
1x10" 0 1x10' X107 1x10° 1x10* n ®

Fig. 4. Effects of reaction order on the temporal development ofeunation profiles.

1,
= =20
£ A=0.01
O
0754
— P01
,,,,, Pe=01
- Pe=10
0504 ----Pe=100
rrrrr - Pe=1000
0254
000 b ; Vo T
1x10" x10° 1x10' X107 1x10° n ®

Fig. 5. Effects of Peclet number on the temporal development ofecdration profiles.

Fig. 6 depicts the influence of the chemical reaction constan the temporal devel-
opment of the concentration profiles for a second-ordetti@aandPe = 1. Physically,
the chemical reaction term in equation (5) represents aecdration decay or sink term.
This means that for a specific reaction orderjascreases, the decaying effect increases
causing the contaminant concentration to decrease evergwh the flow region away
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from the boundaries and for all times except the early tirages. It is worth noting that
the decaying effect is much more significant at the steaalysbnditions than at all other
time conditions. In addition, the concentration boundager thickness decreasesas

increases.

100 —————
= | o Pe=10
S l
075
0504 ;
=06
025
000 \I T ' e T | T
110" w1 1x10' e 1x10° x10* ¢ g X

Fig. 6. Effects of reaction constant on the temporal development nferdration
profiles.

Fig. 7 displays the effect of the dispersion coefficient poaeponentn; for the
polynomial-type dispersion coefficient on the temporalailegment of the contaminant
concentration profiles for a first-order chemical reactibngeneral, as the power expo-
nentn, increases, the concentration level decreases everywkegpten the region close
to the end boundary where itincreases causing the contientb@undary-layer thickness
to increase. This behavior takes place for almost all tiragest. It should be noted that

1.00 1.0
Iy N =1
l; N=1.0
5 Pe=1.0

0751 =001

=0
e

004 N N e e n=2

=110

0251

0m : Taa — e ke

o i 10 id n &

Fig. 7. Effects of dispersion exponent on the temporal developnferdr@entration
profiles.
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for n; = 2, the steady-state condition is reached at a faster ratetlizmbserved for
the linear case where; = 1. Specifically, forn; = 2 the steady-state conditions are
achieved already at = 12.

Fig. 8 presents the same parameters as in Fig. 7 except foakhe ofn which is
set to2 representing a second-order chemical reaction. As is abviimm this figure,
the same conclusion as in Fig. 7 is reached. That is, incrgdbe value of.; causes
reductions in the contaminant concentration level evegr@lexcept in the region close to
the end boundary where it increases resulting in increastbgiconcentration boundary-
layer thickness. Also, forn,; = 2 the steady-state conditions are achieved at12.

Fig. 9 shows the effect of increasing on the contaminant concentration for a
second-order chemical reaction aid = 100. Again, in general, the concentration

20
N=1.0
Pe=1.0
=001

—n=0
—ng
----n=2

025 \
\,
T=06
000 : ‘ki\x"l SR - e : -
10" wid? 110 10 10 n X

Fig. 8. Effects of dispersion exponent on the temporal developnferdracentration

profiles.
100
= =20
= N=1.0
O Pe=100
075 =001
——n=0
—n
050 =10 ----N2
T—=00
025 :
000 '\I . L . | e
1x10" X1 %10 X107 1x10° n Xt

Fig. 9. Effects of dispersion exponent on the temporal developnferdr@entration
profiles.
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level decreases in most of the domain except near the davamstboundary where it
increases as; increases. The changes in the concentration profiles are prominent
at the steady-state conditions than at the earlier timeestafjthe flow.

Figs. 10 through 12 present the effects of the constant airexptial-type dispersion
coefficienta on the unsteady concentration profiles for the cases ofdidg chemical
reaction withPe = 1, second-order chemical reaction wiite = 1, and second-order
chemical reaction withPe = 100, respectively. It is observed from these figures that
increasing the value of the constantauses decreases in the contaminant concentration
level and in the concentration boundary layer thicknessoAthis decrease is greater at
small time stages than it is at higher time stages. In addits expected, the effect of
increasing the constantis very little for high values ofPe (small dispersion effects).
These trends are clearly depicted in Figs. 10 through 12.

025

000 ; — LS.
110" wxie? 10 xI0° n &C

Fig. 10. Effects of exponential dispersion constant on the temporala@ment of
concentration profiles.

(4]

o C(TlsT) =

75

025

000 | — al T
10" L x10' 10 xI0° n X

Fig. 11. Effects of exponential dispersion constant on the temporala@ment of
concentration profiles.
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100
= b=0.05
b5 =20
o Pe=100
075 A=001
050 S
025
000 T T T T
110" w1 1x10' (g (% n X

Fig. 12. Effects of exponential dispersion constant on the temporalaement of
concentration profiles.

6 Conclusion

A one-dimensional advective-dispersive contaminansiart model with scale-dependent
dispersion coefficient in the presence of a nonlinear chamé@action was considered.
The scale-dependent dispersion coefficient was used taatieaize dispersion in a het-
erogeneous porous medium. Two types of variations of thgedsson coefficient with
the downstream distance were considered. The first typereskthat the dispersivity in-
creased in a polynomial function with distance while theeoissumed an exponentially-
increasing function. The nonlinear chemical reaction m&giian arbitrary reaction order.
Since the general problem was nonlinear and possessed Iytiaaiaolutions, a numer-
ical solution based on an efficient implicit iterative tiagonal finite-difference method
was obtained. The accuracy of the numerical method wasateticdby various favorable
comparisons with known analytical solutions and reporteaerical solutions for special
cases of the main transport equation. Several numericaliso$ based on the general
model were reported assuming a uniform flow field. A parametudy was conducted
and the results were presented graphically to illustragzésting features of the solutions.
It was found that the chemical reaction order and rate cieffidiad significant effects
on the contaminant concentration field especially at thadstestate conditions. It was
predicted that as the chemical reaction order increased¢cghtaminant concentration
increased. On the other hand, increases in the chemicaiaeaate coefficient produced
reductions in the contaminant concentration level. In @aoidj as the Peclet number
was increased, the concentration level was decreasechefumre, the scale-dependent
polynomial-type dispersion coefficient was predicted ttadbsignificant changes (re-
ductions) in the contaminant concentration at all time esagbmpared with the constant
dispersion case. However, relatively smaller changeauétazhs) in the concentration
level were predicted for the exponentially-increasingédrision coefficient.
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