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Abstract. The modern unification of the European standards EUROCODE requires
securing a constant quality of metallurgical production in the EU countriesthis
paper, experimentally found statistical characteristics of yield stress, atétinensile
strength and ductility of Czech and Austrian steel are presented. In dhalglistic
reliability analysis, the experimentally found yield stress histograms oftstalcsteel
S235 of both Czech and Austrian manufacturing processes are ewmthids basic
parameters. The reliability of steel members designed according to EQRE 3 is
investigated. The objective of the studies is the verification of partial sédetgrs of
load-carrying capacity, and of load action given in the standard EN1B8f&rences in
failure probabilities of steel members of Czech and Austrian productierstadied in
connection with the influence of model fuzzy uncertainties in the determmafitoad
action and load-carrying capacity values.

Keywords: Eurocode, stability, constructional steel, stochastic yield stress, stlictur
reliability, fuzzy sets, fuzzy reliability.

1 Introduction

In practical design, the primary reliability of structusgistems and objects is ensured by
unified standard design prescriptions — EUROCODE. Besiteslésign standards, the
production quality of load-carrying members also playsmapartant role in the resulting
steel structure reliability; in individual EU countriebjg quality may vary in dependence
on different production technologies.

One of the primary problems in the EU is the definition of théiropl reliability
level of structural systems. Securing the optimal religbilevel requires control of
the optimal variability of material properties and tolezaa on shape and dimensions
of metallurgical production in individual EU countries. &Mdefinition of the optimal

*The present paper was elaborated under the projecCREA3/07/1067, junior research project
B201720602 of Czech Academy of Science and Research CenfeeRCIDEAS 1M68407700001(1M0579).
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reliability level of structural systems, in particular seiag it from the point of view of
the optimal variability of quality parameters (size andpeision of material properties)
and of tolerances on shape and dimensions of metallurgicalugtion in individual
EU countries is among the primary problems. In the Czech BRlepuhe quality and
reliability of materials and steel products are controlbEth by manufacturers and at
independent scientific workplaces.

As in many probabilistic reliability studies, material pegties are input data iden-
tified, at scientific workplaces, with maximum objectivity]] Although the statistical
data are satisfactory, the quality and reliability of Czechterials and steel products
are sometimes considered to be unsatisfactory in westarntroes. In this context,
the unfinished elaboration state of probabilistic studgesfitopical significance with
aim at investigating to what extent differences in manuwfény quality can influence
the reliability from the point of view of transparency anck therification of processes
applied in practice [2]. The material properties obtainethie Czech Republic [1] were
compared with material properties of Austrian steels [3Hjaluations were carried out
independently at an Austrian workplace in Vienna and at aiEaerkplace in Brno; this
guaranteed maximum objectivity of results and conclusinasvn from them. Compar-
ison of statistical characteristics of yield stress, ultimmtensile strength and ductility
provide satisfactory evidence that, on the European mafketch products are fully
competitive [4]. The topic of the presented studies is th@iegtion of this knowledge to
probabilistic studies focused at reliability design cgrtseof Eurocodes.

The paper is aimed at the probability study of the ultimatstistate of a hot-rolled
beam IPE220 of steel grade S235 designed according to [BJmaiimum load-carrying
capacity. The misalignment of the design failure probgbaiccording to [6] is studied
applying statistical yield stress characteristics of Aimstand Czech steel. Discrepan-
cies between failure probabilities of members from Czedath Aastrian production are
compared. Numerous uncertainties, which are not of randoanacter, exist during
the evaluation of the failure probability [7]. With the aim &nalyse the effect of these
uncertainties, the probability calculation is supplenednwith fuzzy analysis. The fuzzy
inputs were considered to be model uncertainties in deténgnihe load action and load-
carrying capacity effects. The fuzzy analysis of outputifa probabilities was evaluated
according to the general extension principle [8]. The fuzagnbers of failure probability
are the outputs. The supports of fuzzy numbers are compatiednigp failure probability
values of steel members of Austrian and Czech production.

2 Parametric probabilistic study of the steel member

The reliability of a bar under permanen®) and long-time variable@) load actions
was analysed in the parametric study. The standard dedighiliey condition according
to [6] can be written in the form:

Y6Gr +70Qk < Ray fyr/7vMms 1)
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where R4, = xA is the product of buckling coefficient and cross sectional ared
valuesGy, Qi represent the characteristic load action valugs, is the yield stress
characteristic value. The design reliability is securedpbytial safety factorsy. The
standard design reliability condition (1) can be rewriteenan inequality of the design
load actionS; and the design load-carrying capacRy:

Sy < Ry. 2

In the probabilistic analysis, the function of ultimate lirstate is expressed by the in-
equality:

G+Q<R. 3

Failure occurs if condition (3) is not fulfilled, i.e., if theandom load action effect
S = G + Q is higher than the random load-carrying capadity The random load-
carrying capacityR is a function of material and geometrical imperfectionsjolitcan
be determined from experimental research [1, 4]. The mefolercarrying capacity is
calculated from the relation:

R = fyA- (4)

According to [6], it can be presumed during the determimatitthe statistical characteris-
tics of random load actiors and(@ that the characteristic valuég, andQ, are quantiles
of a Gaussian probability distribution and of a Gumbel disttion, respectively. It can be
assumed for the permanent load acti@rthat the characteristic valug; represents the
mean value of the Gaussian probability density functiod, that the variation coefficient
equalsd.1. Gumbel distribution with mean value6 @, and standard deviation21Q,
was considered for the long-time random load action. Whemideficharacteristic load
action values7y, Q, itis assumed that in (1), the design value of load actioeots$fS,; is
equal to the design value of load-carrying capaditydetermined according to [5]. The
aim of the study is the analysis of the failure probabilitydependence on the parameter
4, which expresses the ratio of variable load actihnto the general load actiafly, + Q.

Qr

= ———.
Gr + Qk

(®)

3 Experimental results of mechanical and geometrical characteris-
tics

The vyield stress is the basic mechanical characteristidrattsiral steels. The yield
stress is controlled in metallurgical works, and is utifiZer the determination of design
resistance values and the partial safety factor valuesambed with steel structural design
standards EUROCODES.

Statistical characteristics of yield stress, ultimatesienstrength and ductility of
steel grade S235 produced both in Bohemia and Austria aengivTable 1. Sample
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elements 020 mm thick metal sheets were analysed. The results pertainidgistrian
production were obtained from measurements on 1123 santfiesh steel results were
obtained from measurements on 5293 samples. The nomitdkyiess of tested samples
for element of thickness < 40 mm is235 MPa according to [5].

Table 1. Mechanical characteristics of Austrian and Czech steel

Austrian steel S235 Czech steel S235
Yield Ultimate  Ductilit Yield Ultimate  Ductility
stress strength [% stress strength [%0]
Mean 289.01 408.85 38.28 284.43 421.77 37.902
value MPa MPa % MPa MPa %
Standard  19.82 18.83 2.99 21.59 19.322 3.057
deviation MPa MPa % MPa MPa %
Coef. of
variation  0.0697 0.0461 0.0781 0.0759 0.0458 0.0806
Stand.
skewness 0.61083 1.4547 —0.65823 0.61429 0.84048 —0.41169
Stand.

kurtosis 1.3312 7.078 1.4492 1.6107 5.4322 0.7847

Comparison of results illustrate that the Austrian steeldg a slightly higher yield
stress and lower standard deviation, which results in thiginer reliability. As will be
illustrated later, this difference is negligible, i.e.eld stress statistical characteristics of
both manufacturers are in very good agreement from the ieshpoint of view. The
yield stress histograms are presented in Fig. 1.

Relative Frequency Histogram

Relative Frequency Histogram

0.14 0.14 —
0.12 1| Austrian Steel 0.12 Czech Steel
0.10 i 0.10 -
0.08 11 0.08
0.06 0.06
0.04 % - In 0.04 g
o d | 2l
0.00 v 0.00 HH
218.5 289.0 389.0 213.0 284.4 399.0
Yield Stress [MPa] Yield Stress [MPa]

Fig. 1. Histograms of yield stress of Austrian and Czech steel S235.
The cross section of the IPE220 is defined by the paramktérs; , to, which repre-

sent further input random quantities. The nominal georcatdross sectional dimensions
of IPE220 are presented in Fig. 2.
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Fig. 2. Geometry of hot-rolled profile IPE220.

The cross sectional area calculated from three rectangliegy tmnominal values
h =220 mm, b = 110 mm, t; = 5.9 mm, t; = 9.2 mm is 3213 mm?. The tabular
nominal value (taking into account rounding off in cornees3340 mm?; this value is
higher by127 mm?. As only random quantitied, b, t1,t,, have been measured and
statistically evaluated by experimental research [1], ahea random function will be
written in the form:

A = 2bty + (h — 2t2)t1 + 127. (6)

The area ofl27 mm? was considered as deterministic. According to comparison s
dies, it does not actually influence the probabilistic asiglyesults. The input random
quantities are specified in Table 2.

Table 2. Input statistical characteristics

Symbol Quantity f'aﬁgt‘cl‘g% Mean value &éeg%%rr?
h Cross sectional height ~ Histogram 220.22 mm  0.975 mm
b Flange width Histogram 111.49 mm  1.093 mm
t1 Web thickness Histogram 6.225 mm 0.247 mm
to Flange thickness Histogram 9.136 mm 0.421 mm
G Permanent action Gauss G 0.1G
Q Variable action Gumbel 0.6Qk 0.21Q%

) Austrian  Histogram 289.01 MPa 19.82 MPa
fy o Yieldstiess "o oon Histogram 284.43MPa  21.59 MPa

4 Probabilistic analysis

The probabilistic analysis results were obtained utitizthe Monte Carlo simulation.
The probability that condition (3) is not fulfilled was evated. Random load-carrying
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capacity R was calculated by (4) and (6) using random quantities frotvleTa. Input
statistical characteristics of load actioisand@ in (3) are defined in Table 2 by charac-
teristic values, and@,. Characteristic value§, and(@, are calculated according to
the relation:

135Gy, + 1.5Q), = 784.9 kN. )

Equation (7) is derived from (1) for partial safety factogs = 1.35; 7o = 1.5 and

~vm = 1.0 [6]. The value784.9 kN on the right side of equation (7) represents the design
load-carrying capacity of profile IPE220, determined byhetial safety factors method
according to [5]:

Af, 3.34-107%.235-10°

R =
d Ym 1.0

=784.9-10° N. (8)

While determining the characteristic values of dégdand variable));, load it is neces-
sary in (7) to choose the ratib(5). Theo value is stepwise increased and sampling is
repeated in order to get a dependency betweand failure probability?s. G, andQy
(for selected) are fixed for each simulation run.

Practically: for selected value of paramedde.g.o = 0.1) the characteristic values
G and@y, were evaluated according to (7). All input random variabl@able 2, which
are necessary for the evaluation of the failure probakilityording to (3), are known upon
the evaluation of7;, andQ);..

Sulfficient runs of the Monte Carlo simulation were used fdedwining the failure
probability Py, so that condition (3) was not fulfilled minimally 200 time$his gua-
rantees a balanced probability assessment error of appatedy 7 %. This problem was
analysed fop = 0,0.1, ..., 1. The probabilistic study results are depicted in Fig. 3.

Failure probability P, Reliability index 3

40E-5 3.35
35E-5 3.39
30E-5 3.43
25E-5 3.48
>,

20E-5 & /& | 354
15E-5 Qf S
10E-5 { '7.2E-5 & 38|37

SE-5 3.89

0 d
0 0.1 02 03 04 050.6 0.7 0.8 0.9 1.0

Fig. 3. Misalignment of failure probability by [6].

It is apparent from Fig. 3 that higher failure probability swabtained for the Czech
steel, which has a lower mean value and higher standardtabeviaf yield stress than
the Austrian steel. The design of the member from Czech #&estisfactory (failure
probability is lower than the reference valae - 10=°) for § € (0.03;0.66). For the
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Austrian steel the intervadl € (0.0;0.72) is reliable, i.e., the structural stress is relatively
unsafe for high values of long-time variable load acti@).( Differences between both
results are low, and as will be shown below, they can be gl¢ahscended by the fuzzy
uncertainty of the stochastic calculation model.

5 Fuzzy probabilistic analysis

The apparatus of mathematical statistics provides thaiciESorm of representation of
uncertainty. The theoretical value of failure probabilitfystructures may be evaluated
provided sufficient information on input random variablesl aheir correlation is avai-
lable. Limitation of stochastic models rests mainly in thdity to reflect only uncertainty
of the stochastic nature. In the event that sufficient inftiom on input random variables
is unavailable, a further source of uncertainty is of fuzzggue) origin. The notion
“fuzzy"was firstly used by Prof. Lotfi Zadeh in 1962 [9]. In 1®6L. Zadeh published
his pioneer, today still classical paper entitled “Fuzzg’sgL0]. Commonly encountered
problems may be characterised by both fuzzy and stochastertainty. This “combined”
fuzzy-random uncertainty can be modelled by applying fuandom variables and fuzzy
random functions only [7,11]. Newer mathematical appreachwvhich extend or depart
from the probability theory, are also available in [12—-16].

The combined fuzzy-random uncertainty is also encountdueithg the analysis of
failure probability according to (3). The source of fuzzycartainty is for e.g. density
functions and statistical characteristics of random @eisG and@. Precise statistical in-
formation on loading is not generally known during struatwutesign. Further uncertainty
may occur due to human involvement during the realizatioexpkeriments, evaluation of
results of experimental research, etc.

The aim of further studies is not the elaborate analysis efattigin of model un-
certainties, but rather the theoretical quantificationhdirt influence on the behaviour
of failure probability Py in dependence on parameter Model uncertainties can be
quantified utilizing the so-called coefficients of model ertaintiesk’s, K r and modified
reliability conditions (3):

Ks(G+ Q) < KrR. 9)

The influence of coefficients’s and K r on the failure probability?; may generally
be either linear or non-linear. For this purpose coeffidént, Kr were chosen as fuzzy
numbers with linear triangular symmetrical membershigfioms, see Fig. 4 and Fig. 5.

The graphical representations of uncertainty in Figs. 4%adsign toKz and K g
uncertainty by means of a degree of membership into the steovertical axis [8]. The
membership function has nothing in common with probabilitythe case of probability,
we examine the frequency of occurrences of a given phenomigiad occurred.

The fuzzy analysis of failure probability according to (®9swevaluated according to
the general extension principle foba-cuts [8], see Fig. 4 and Fig. 5.

pp; (Kr, Ks) = \/ (11 (KR) A p2(Ks))- (10)
Py
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The output of (10) is the fuzzy number of failure probabilty. An illustration of output
fuzzy number of failure probability’; evaluated according to (10) for Austrian steel for
6 = 1is depicted in Fig. 6. Equation (10) requires the evaluadiominimal and maximal
P; for all realization combinations of coefficientSs, K r on eachy-cut.

0 Degree of membership T Degree of membership
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0 : 0.0 :
0.98 1.0 1.02 0.98 1.0 1.02
Model uncertainties coeficient K Model uncertainties coeficient K

Fig. 4. Fuzzy number of resistance uncertainBig. 5. Fuzzy number of load action uncertainty.

10 Degree of membership

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.0 18.5E-5 29.6E-5 45.0E-5
Failure probability P,

Fig. 6. Fuzzy number oPy — Austrian steel§ = 1.0.

The fuzzy analysis procedure according to (10) may be axgthbn onex-cut.
Let us consider the zer@-cut (the so-called support) of input fuzzy numbéss, Kr
and output fuzzy numbeP;. The minimumPs ,,;,, = 18.5 - 1075 is evaluated for
Kg = 0.98, Kr = 1.02 and maximumpPy, .., = 5 - 1075 is evaluated forKg =
1.02, Kr = 0.98, see Fig. 6. The procedure is analogical for oth@uts. The non-linear
membership function evaluated for &6cuts is apparent from Fig. 6. Results depicted in
Fig. 6 quantify the dependence 8% on the change in coefficieniss, K (sensitivity
analysis of the influence of coefficiem&, K r on Py). The failure probability”s is non-
linearly dependent on coefficienfss, Kz for all considered values. Fuzzy analysis
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results of failure probability for Austrian and Czech staed depicted in Fig. 7 and Fig. 8.

The fuzzy analysis results in Fig. 7 and Fig. 8 supplementirtfiemation given in
Fig. 3 with the influence of coefficients of model uncertastk  and K g. Membership
functions of failure probability were calculated fde {0,0.2,0.4,0.6,0.8,1.0}. Degree
of membershipl.0 on the vertical axis means that the failure probability bhgk to
the set fully (kernel). The so-called support limiting thet of all failure probability
values with positive membership function is a further cheeastic of fuzzy numbers.
In Fig. 7 and Fig. 8, boundaries of the support interval areketh by the dashed line.
The defuzzified “crisp” failure probability value is drawwg Hot-and-dash line as the last
value; it can be compared with the reference valie: 10~° [6]. The defuzzification
was evaluated utilizing the centre of gravity method [8]eThajor characteristics of the
failure probability fuzzy analysis from Fig. 7 and Fig. 8 atearly depicted in Fig. 9 and
Fig. 10.

Failure probability P. Rc]iabi[i{){\'ndcx Vi
-5 3.24

2<
Kernel 329
——————— Support 3.
——————— Crisp quiput

o 0.1 02 03 04 05 06 0.7 08 09 1.0

Fig. 7. Fuzzy analysis of failure probability — Austrian steel.

Failure probability P.

Kernel
——————— Support
——————— Crisp oyptput

il
1) eor-s
M ssE-5

i
o

o 0.1 02 03 o4 05 06 0.7 08 09 1.0
Fig. 8. Fuzzy analysis of failure probability — Czech steel.
Itis apparent from Fig. 9 and Fig. 10 that defuzzified valuedégher than the kernel
ones — obtained by crisp stochastic solution in Fig. 3. Thidue to the non-linear and

asymmetrical membership functions of failure probabilty. The courses of defuzzified
values presenting a crisp controllable output are cledryws in Fig. 11.
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4SE-S Failure probability P; Reliability index B, 33
40E-5 /1335
35E-5 Kernel /1339
- Support /)
30E-5 -+ Crisp output /4343
25E-5 /(348
20E-5 /AP ]3.54
15E-5 SIS S |3.62
S
10E-517 5.5 SRS 38372
SE-S 3.89
0 STz 6
0 0.1 020304 0506 07 0809 1.0

Fig. 9. Fuzzy output of failure
probability — Austrian steel.

Failure probability P,

55E-5 Failure probability P, Reliability index B, 326

50E-5 /1329
. /332

45E-5 Kernel /

40E-5| | - Support YA 3.35

3SEs| | Crisp output /339

30E-5
25E-5
20E-5
15E-5]\

10E-5¢..

343
348
1354
3.62
372

SE-5

3.89

0
0 0.1 0203040506 070809 1.0

Fig. 10. Fuzzy output of failure

probability — Austrian steel.

Reliability index 3

40E-5 7
35E-5 339
30E-5 FAErE
25E-5 A s
20E-5 &@\f 3.54
15E-5 e S EXC
10E-5] 7.0E-5 Y W EXE
SE-5 1 et 3.89
0 TPttt S 5
0 01 0203 04 05 0607 0809 10

Fig. 11. Results of fuzzy analysis of failure probability.

6 Conclusion

Basic information on the misalignment and discrepancidaibfre probability of a steel
member produced from Austrian and Czech steel are preséentéid. 3. The failure
probability of the steel bar made from Austrian steel is Iotv&an that of Czech steel
for the same bar. The higher reliability of the member predlfrom Austrian steel is
due to the moderately higher mean value and lower standafidtide of yield stress.
The mentioned differences, however, are not significanbmgarison with the effect of
further uncertainties inevitably met when calculating liteed-carrying capacity and load
action effects.

The output membership functions are non-linear and procexdiy asymmetric, tri-
angular symmetric membership functions having been slems$ input fuzzy numbers
of coefficientsK'z and Kg. This information is very valuable because it quantifies the
non-linear dependence between the coefficients of mod@rtaistiesK  and K and
the failure probability.
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It is apparent from results depicted in Fig. 3 and Figs. 9 tahbt design of steel
bars is satisfactory for reasonable ratios of the variabsel laction to the total load
action. High failure probability values were obtained for= 0 (purely permanent
load) and§d = 1 (purely variable load), which represent limit unrealistizses. The
reliability analysis of bars under buckling is planned ie fluture. It can be expected
that imperfections will present a significant source of utaiaty. Whilst information on
statistical characteristics of initial strut curvatureaisilable, there is an insufficiency of
experimental information on system imperfections of sfemines. Further analytical
studies are planned for additional values of partial safatyorsva, v, ym. The
reliability analysis of the design of steel structures adiw to the allowable stress design
method foryg = 1.0; 79 = 1.0 ayy = 1.5 will be performed. Probabilistic analysis
results of the limit state method and the allowable streghoadewill be compared.
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