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Simple predator-prey models often predict extreme inktatn interactions where the

prey are depressed well below the carrying capacity — a phenon called the “paradox
of enrichment” (introduced by Hairston et al. [1] and Roseey [2]) because such

depression is more likely in nutrient rich systems. Anogimiilar paradox is the so called
“biological control paradox”, which was brought into dission by Luck [3], stating that

according to the classic predator-prey theory, you can aet both a low and stable prey
equilibrium density. It has long been recognized that a stilee progress in the study of
predator-prey interactions is the discovery of these pat@sl However, in reality, there
are numerous examples of successful biological controkevtige prey are maintained
at densities less than 2 % of their carrying capacities [4lis Elearly indicates that the
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I ntroduction

paradox of the biological control is not intrinsic to preataprey interactions.

In recent years there is a growing explicit biological anggblogical evidences
[4-9] that in many situations, especially when predatonsehta search for food (and
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therefore have to search or compete for food), a more saifaipictional response de-
pending on the densities of both prey and predator shoulditbediuced. Such a func-
tional response is called a ratio-dependent functionglaiese. Arditi and Ginzburg [10]
introduced a Michaelis-Menten type ratio-dependent fonel response of the form

_clz/y)
p(z/y) = Ry oy S 1)

wherez, y stand for densities of prey and predator respectively. Tdsitige constants

c andm are the capturing rate and the half capturing saturatiosteon, respectively.

Predator-prey models with such ratio-dependent functicesponse are strongly sup-
ported by numerous field and laboratory experiments [5,,8,1J0and their deterministic

dynamics have been studied extensively in ecologicahlitee [9, 12—16].

It is now well understood that many of the processes, bothraband manmade, in
biology, medicine etc. involve time-delays. Time-delagsur so often, in almost every
situation, that to ignore them is to ignore reality (seenafees [17—20] and references
there in). Samanta [20] argued that in an improved analfsiseffect of time-delay due
to the time required in going from egg stage to the adult stggstation period etc. has to
be taken into account. Kuang [18] mentioned that animalg tailte time to digest their
food before further activities and responses take placehande any model of species
dynamics without delays is an approximation at best. Algiouarious aspects of ratio-
dependent predator-prey models have been studied in écalditerature, the effect of
time-delay on such models has not yet been addressed catgidé-rom this viewpoint,
we have considered the following Michaelis-Menten typérdependent predator-prey
system involving discrete time-delay:

dr cxy

i z(a — bx) e

dy fx(t—71)

=7yl -4 2

dt y( Tt e 7)) @
d d

2(0) > 0, y(0)>0 and df - OTZ =0 for (z,y) = (0,0),

wherez(t) andy(t) respectively denote population densities of prey and poedé time

t. Herea/b > 0 is the carrying capacity of the prey,> 0 is the death rate of the predator
anda, ¢, m andf are positive constants that stand for prey intrinsic grawath, capturing
rate, half capturing saturation constant and conversitsmrespectively. The delay in
(2) can be regarded as the gestation period or reaction fithe @redator.

After Lorenz [21] and May [22,23], theoretical ecologists/b undoubtedly accepted
the fact that deterministic approach has some limitationbiology. In deterministic
situation, it is always difficult to predict the future of tlsgstem accurately. This diffi-
culty increases as we move outside the tightly controlledtémical and physiological
systems to the more complex behaviour of whole organisnmesystr to the dynamics
of population ecosystems or global environmental systébme reason to this difficulty
is that biological systems are subject to apparently ranfloctuations. That is, either
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the state variables themselves or the parameters are lpgritat random times and by
random events. In 1995, Renshaw [24] mentioned that the nadstal phenomena do
not follow strictly deterministic laws but rather oscibatandomly about some average so
that the deterministic equilibrium is not an absolutely dix@ate; instead it is a “fuzzy”
value around which the biological system fluctuates. In, faetdomness or stochasticity
plays a vital role in the structure and function of biologisgstems. The environmental
factors are time-dependent, randomly varying and shouldaken as stochastic. In
ecology, we have two types of stochasticity — namely the dgapmhic stochasticity
and the environmental stochasticity [25, 26]. Both typestothasticity play a signifi-
cant part in the realistic dynamical modelling of ecosysterA central obstacle in the
stochastic modelling of an ecosystem is the lack of mathiealahachinery available to
analyze non-linear multi-dimensional stochastic pro¢22s27]. A quantum leap in the
mathematical sophistication of ecological modelling aced when May [22] introduced
stochastic differential equations to investigate limdasiche overlap in randomly fluc-
tuating environment. Subsequently, the sensibility otlséstic models in comparison
with deterministic models is established by many reseascf?0, 28-33]. Recently,
Bandyopadhyay and Chattopadhyay [34] and Mankin et al.iag¢ studied the effect of
fluctuating environment on ratio-dependent predator-pnegel. These definitely indi-
cate that researchers are increasingly realizing the siégzed such considerations. But,
unfortunately, the effect of environmental fluctuation éme-delayed ratio-dependent
predator-prey model has not yet been investigated in ttieatecology. Our endeavour
may accomplish such a necessity.

The objective of this paper is to study the dynamical behagiof the model (2) in
deterministic and stochastic environment.

The paper is structured as follows. In Section 2, we preserdéterministic analysis
of the system (2). Our study includes boundedness, stalititl bifurcation of the
system (2). Numerical simulation of a variety of solutiofishis system is also presented
in this section. In Section 3, we have formulated the staghasrsion of the model (2) by
superimposing Gaussian white noises. Then a rigorous sinaif/the resulting stochastic
model (10) is presented following Nisbet and Gurney [26Lt®a 4 contains the general
discussions of the paper and biological implications ofroathematical findings.

2 Deterministic scenarios

In this section, we discuss the dynamical behaviours of ¢terdhinistic system (2) when
7=0andr #0.

Case 1: 7 = 0. We first discuss the boundedness of the system (2).
Theorem 1. When 7 = 0, the system (2) is dissipative.

For proof, see [34].
The system (2) always have the boundary equilibrium poiAtg0,0) and
E1((a/b),0). The interior equilibrium pointE™(z*, y*) exists uniquely if and only if
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any one of the following two conditions is true:

. d
i) d<f< ¢ ,  whenc>ma
Cc —ma

(i) f>d, whenc<ma.
In both the cases* andy* are given by

c_flam—+ed . (f—d){flam— ) +ad}

v omf YT bdfm?

Kuang and Beretta [9] derived a blend of dynamical behagidor the system (2).
We mention below some of their results.

Theorem 2. If f > d and am > c then the systemis per manent.
Theorem 3. If ¢ > am + dm, then the systemis not persistent.

On deterministic extinction, Kuang and Beretta [9] havewet the following re-
sults.

Theorem 4. If ¢ > am + dm, then there exist positive solutions (z(t), y(¢)) of the system
such that lim;_, o (z(t), y(t)) = (0,0).

Theorem 5. If c < am and f < d, then F; isglobally asymptotically stable.
Theorem 6. If f > ¢d/(¢c — am) and ¢ > am then Ej is globally asymptotically stable.
For proofs of Theorems 2-6, see [9].

Theorem 7. If E* exists, then it islocally asymptotically stable or unstable according as
A= (c—am—dm)f?+ (mf —c)d*> < or > 0.

The proof of the theorem is given in the Appendix.
On global stability of£*, we have the following theorems:

Theorem 8. If A < 0 and ¢ < am then E* isglobally asymptotically stable.

For proof, see [9].

Theorem 9. If f > dm and £ < min{ L, 7L, Lo (4 + L)), then B is
globally asymptotically stable.

For proof, see [34].
The following theorem gives a criterion for the existencadiopf bifurcation near
E*.

Theorem 10. If E* exists, then Hopf bifurcation occursat ¢ = ¢* = %ﬁ;@ﬂ:
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Following the same line as in [34], the theorem can easilyrbequ.

Case 2: 7 # 0. In this case the equilibrium points of the system (2) arestirae as that
of the system whem = 0 with the same conditions of existence. Beretta and Kuanp [36
derived some important behaviour of the time-delayed syg®). Some of them are
mentioned below.

Theorem 11. If f > d, then the time-delayed systemis dissipative.
Theorem 12. Theorem 2 and 3 also hold good for 7 # 0.

On deterministic extinction of the time-delayed system Bdretta and Kuang [36]
derived the following results.

Theorem 13. If ¢ > am + dm and f < cd/(c — am — dm), then there exist positive
solutions (z(t), y(t)) of the system such that lim;_, . (z(t), y(t)) = (0,0).

Theorem 14. If ¢ < am and f < d, then F; isglobally asymptotically stable.

We now study the stability behaviour of interior equilibrigppoint E* (z*, y*) of the
system (2) when # 0. We linearize the system (2) by using the following transfar
tions: 2’ = Inz, y = lny andz’ = 2™ + u, ¥’ = y"™* + v. Then the linear system is
given by

du
o =AU(t)+ BU(t — 1), 3)

where

U=[u,v]", A= (aij)axa, B = (bij)ax2

and
a1 = b+ ——m, ap=—"——""—3,
. (my*+29)2" "7 (my* +a7)?
bt = s by = — 5
(my* +z*) (my* + a*)

and all othet;; = b;; = 0.
We look for solution of the model (2) of the fori(t) = pe*t, 0 # p € R2. This
leads to the following characteristic equation:

A2 —a )+ (ag) + ag)ef)‘T =0, 4)

Wherea1 = —aii, az = —bao anda3 = a11bay — a12bo.

It is well known that the signs of the real parts of the soluiof (4) characterize the
stability behaviour of£*. Therefore, substituting = ¢ + in in (4) we obtain real and
imaginary parts, respectively, as

£ — 7]2 + a1€ + {(a2€ + a3) cosnT + agn sin 777'}6757 =0 (5)
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and

26n 4+ a1n + {agn cosnT — (ax€ + as) sin nT}e_fT =0. (6)

A necessary condition for a stability changefof is that the characteristic equation (4)
has purely imaginary solutions. Hence to obtain the stgftiterion, we set = 0in (5)
and (6) to obtain

772 = a3 cosNT + asnsinnT @)

a1n = a3 SinnT — asn Ccos NT. (8)

Eliminating = between (7) and (8) by squaring and adding, we get the equétio
determiningy as

0'2+d10'+d2:0, (9)

whereo = n?,d; = a% — a%, do = —a% < 0.

By Descartes’ rule, the quadratic equation (9) always hauaique positive root.
Consequently the stability criteria of the system (2)#o& 0 will not necessarily ensure
the stability of the system far £ 0. In the following theorem, we have given a criterion
for switching the stability behaviour af*. The proof of the theorem is deferred to the
Appendix.

Theorem 15. Let E* existswith (¢ — am — dm) f? + (mf — ¢)d* < 0. Asolet o = n}
be the unique positive root of the equation (8). Thenthereexistsa r = 7* such that E* is
locally asymptotically stable for 0 < 7 < 7* and unstable for 7 > 7*, provided

2 2 2
f(no) = 2n5 + ai — a3 > 0,
2
* e i « _ 1 ng(az—aiaz)
where 7" isgivenby 7" = - arccos[7a§7]§+a§ ]

On global stability of£*, we have the following theorems [36]:

. b 2m(fm—c) P
Theorem 16. If fm > cand 7 < mm{f—f, TPty 1 then E* is globally
asymptotically stablein R? .

2(fm—c)

Theorem 17. If fm > cand 7 < T asmD}

stablein R%.

then E* is globally asymptotically

For proofs of Theorems 16 and 17, see [36].
2.1 Numerical simulation

Analytical studies always remain incomplete without nuicaiverification of the results.
Here we present computer simulation of some solutions ofykseem (2).
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We take the parameters of the systermuas 1.1, b = 0.2, ¢ = 2.15, m = 1,
d =05, f =078 7 = 0and(z(0),y(0)) = (0.4,0.2). Then E*(z*,y*) =
(1.641,0.919) andA = —0.0079 < 0. Therefore, by Theorem Z* is locally asymptot-
ically stable. The corresponding phase portrait is showignl1(a). In this case, the prey
and predator populations approach to their equilibriunuest* andy™* respectively in
finite time (see Fig. 1(b)).

06

04t

02
0

@ (b)

Fig. 1. Herez(0) = 0.4, y(0) = 0.2 anda = 1.1, b = 0.2, ¢ = 2.15, m = 1,

d = 05, f = 078, = = 0. (a) Phase portrait of the system (2) showing that

E*(z",y*) = (1.641,0.919) is locally asymptotically stable; (b) the solid curve

depicts the prey population and the dotted one the predator population. Both th
populations converge to their equilibrium-state values in finite time.

If we gradually increase the value afkeeping other parameters fixed, then follow-
ing Theorem 10, we have a critical value = 2.172 such thatE* loses its stability as
¢ passes through®. Forc = 2.18 > ¢*, we verify thatE*(1.5872,0.8888) is unstable
(A = 0.0029 > 0) and there is a periodic orbit near (see Fig. 2(a)). The oscillations
of prey and predator populations in time are shown in Fig).2(b

It is mentioned before that the stability criteria in the ettise of delay£ = 0) will
not necessarily guarantee the stability of the system isgmee of delayr( £ 0). Let us
choose the parameters of the systemas 1.1, b = 0.2, ¢ = 2.15, m = 1, d = 0.5,
f = 0.78 and (z(0),y(0)) = (0.4,0.2). It is already seen that for such choices of
parameter®* (z*,y*) = (1.641,0.919) is locally asymptotically stable in the absence
of delay. Now for such choices of parameters, it is seen frdraofem 15 that there
is a unique positive root of the equation (9) givendy = 73 = 0.2474 for which
f(no) = 0.1179 > 0 and Hopf bifurcation occurs at = 7* = 0.2156. We verify that
for 7 = 0.15 < 7%, E* is locally asymptotically stable and the correspondingsgha
portrait (Fig. 3(a)) is a stable spiral convergingié. ForT = 0.24 > 7%, we see that
E* is unstable and there is a bifurcating periodic solutiorr fg¢a(see the phase portrait
depicted in Fig. 3(b)).

The numerical study presented here shows that, using tleedetay as control, it is
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possible to break the stable behaviour of the system (2) ewe il to an unstable state.
Also itis possible to keep the population levels at a reglitate using the above control.

16 T T T T T T T T 45
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04t
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0 a5 0 100 200 300 400 500 600 700 800 900 1000
t

@ (b)
Fig. 2. Here all the parameters are same as in Fig. 1 excef®.18 > ¢*. (a) Phase
portrait of the system (2) showing a periodic orbit nér(1.5872,0.8888); (b) os-
cillations of the prey and predator populations in time. The solid curve septs the
population density of the prey and the dotted one the population density afetiatpr.

06

04t

0.2
0

() (b)
Fig. 3. Herex(0) = 0.4, y(0) = 0.2, a = 1.1,b = 0.2, ¢ = 2.15,m = 1,d = 0.5,
f = 0.78. (a) Phase portrait of the system (2) wher- 0.15 < 7*; (b) phase portrait
whenr = 0.24 > 7",

3 Thestochastic model
The basic mechanism and factors of population growth likerisources and vital rates-

birth, death etc. change non-deterministically due to eam@nvironment and they are
the main parameters subject to coupling of the system wstlent/ironment [32, 33, 37,
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38]. From this viewpoint, we assume that fluctuations in tldrenment will manifest
themselves mainly as fluctuations in the intrinsic growtte raof the prey and in the
mortality rated of the predator. Thus the behaviour of the system in a randmimomment
will be considered within the framework of the following st@stic model with discrete
time-delay:

% =az{a+n(t) —br} — mchi o (10)
dy fx(t—7)y
o =ul=d+m®} + my(t—7)+a(t—71)

where the perturbed terms(t) andn»(t) are uncorrelated Gaussian white noises charac-
terized by

(n; (1)) =0 and (n;()n;(t")) = 0;6(t —t') for j=1,2.

Hered; (j = 1, 2) are the intensities or strengths of the random perturbsitiothe Dirac
delta function and-) represents the ensemble average.

Now we are concerned with stochastic differential equatid®) which are driven
by Gaussian white noises. Gaussian white noise, which idta-derrelated random
process, is very irregular and as such it is to be treated edtk. In spite of this, it
is an immensely useful concept to model rapidly fluctuatihgrmmenon. Of course,
true white noise does not occur in nature. However, as careée By studying their
spectra, thermal noise in electrical resistance, the faoting on a Brownian particle
and climate fluctuations, disregarding the periodicitiéastronomical origin etc. are
white to a very good approximation. These examples suppersefulness of the white-
noise idealization in applications to natural systems.th&armore, it can be proved that
the procesgz, y), a solution of (10), is Markovian if and only if the externalises are
white. These results explain the importance and appealeofvtiite noise idealization
[39]. Here we have assumed the Stratonovich interpretaifostochastic differential
equations, which conserves the ordinary rule of calculusiarthis case the stochastic
differential equations can be considered as an ensemblelioboy differential equations
[20].

Again using the transformations! = Inz, 3y’ = Iny; 2’ = 2’* +u, vy = y* +v
and assuming the delay to be very small, the system (10) (tstafiproximation) can be
written as

du
— = a1u+ Bv + 11,

dt
d (11)
pri asu(t —7) + Pov(t — 7) + 12,
where
o = —br* + ——F——, ="
1 (my* + 2*)2 A (my* + z*)2
Qg = ———— | =—
27 (my* +7)? 2T Ty )
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3.1 Fourier transforms: spectral density

Taking Fourier transform of both sides of each of the equation (11) and following
[20, 26], we obtain

n(s) = isu(s) — aqru(s) — Bro(s), (12)

Ta(s) = is0(s) — agti(s)e ™" — Bov(s)e™ T,
whereni(s) = [ n(t)e~"*!dt.

The system of equations (12) can be written in matrix form as

AX = B, (13)
where

_ | +tis —ﬁl _lu(s) _m(s)

A= —oe T — e T 4 is} ’ - |:5(8)] and B = {ﬁz(s)
Now

M = detA = {(a18> — az31) cos(sT) — sBasin(sT) — 5%}

— i{(alﬁg — agf1)sin(sT) — s cos(sT) — als}

We assume that ~! exists. Then we havd~! = (a;;)2x2, Where

o — —B2c09sT) + i{s + fBesin(sT)} o — b1

11 — M ) 12 — M7
_ao(cogsT) —isin(sT) _ —ag +is

a21 = M ) a22 = 7M .

Then the solution of (13) can be written as
2 2
E(S) = Zaljnj, 5(8) = Zagjﬁj. (14)
j=1 j=1
Now following [20, 26] and using (14), the spectral density:as given by
T/2 T/2 )
.1 .
Suw) = Jim = [ [ wlOu) esplist — o)t =3y, (o).
—T/2-T/2 i=1

Similarly the spectral density afis given by

Sy(w) = Z |az;|? Sy, (w).
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Therefore the fluctuation intensity (variance) ofis given by

00 o0 2

0 2
1 1 1
2 _ _ 2 _ 2
Ou= 5o Su(w)dw = o / § |a1;]7Sh; (w)dw = o / E :|a1J‘ dw,
e o J=1 oo J=1

sinces,, (w) = 1.
Similarly the fluctuation intensity of is given by

17
U%:%/Z|a2]|2dw

oo J=1
Let 7 be very small and the following two conditions hold

2 2
0 e —axt) <min { L2 (14 (o + )},

(i)) 4(1+ Bo7)(1fB2 — a2Bh) < {(a1B2 — azf)T — a1 — fBa},
Where(oqﬂg — Oégﬂﬁ = % > 0.

Then after some calculation using [40], we obtain the flubbucintensities of. and
vas

52 = Bi+ 85— (anfls — azB1)(1 + )

“ 2H(CV152 - 042»31) ’
and
o (14 Bor) (03 + a3) — (a1 B2 — a2 f31)
! 2(1 + Bor)H (a1 B2 — a2 31) ’
whereH = [{(a1 82 — a2f1)7 — a1 — B2}? — 4(1 + Bo7) (a1 B2 — a231)] /2
Let
Q — Bt + 83 — (a1f2 — asfi)(1 + Bor)
! 2(a1 82 — azf3) ’
Q, = (14 Bo7)(af 4 a3) — (12 — 04251).

2(1 + Bo1) (a1 B2 — azf31)

Following the criteria of stability in the stochastic erriment [22], it is seen that the
deterministic stability criteria is not enough to deterethe stability of the system in a
rapidly fluctuating environment. | < 2, (i = 1, 2), in rapidly fluctuating environment
then populations exhibit abnormally large fluctuationsahhiapidly lead to extinction. In
the intermediate region whef¢ and(2; (i = 1,2) are commensurate, the populations are
likely to undergo significant fluctuations, even though theysist for long times. Finally,

if H > Q; (i = 1,2) population fluctuations are relatively small and the envinent

is effectively deterministic. These results are in goodeagrent with those of Maiti and
Samanta [30], May [22], Prajneshu [31], Samanta [32] andeé®daaand Maiti [33].
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4 Concluding remarks

Although numerous population models have been proposedtadied in the literature,
most of them are built on the classical Lotka-Volterra mati which is incapable of
describing the vast biodiversity that we are part of and Hasited scope of application.
In this paper, we have considered a time-delayed predaggripodel with a Michaelis-
Menten type ratio-dependent functional response for pneyedator. Dynamical be-
haviours of the resulting model (2) are studied criticallissipativity of the system (2) is
discussed, which, in turn, implies that the system is biiclalty well behaved. Some
useful results on deterministic extinction are mentiondthe stability of the interior
equilibrium E* is discussed. When = 0, a criterion for Hopf bifurcation is derived by
taking the capturing rateas bifurcation parameter. These results are illustratenith
computer simulation. For # 0 it has been shown both analytically and numerically
that using the time-delay as control, it is possible to bribekstable (spiral) behaviour
of the system (2) and drive it to an unstable (cyclic) statksoAt is possible to keep the
population levels at a required state using the above dontro

To study the effect of environmental fluctuation on the tidetayed predator-prey
system (2), we have superimposed Gaussian white noise$ and2hen study non-equi-
librium fluctuation and stability of the resulting stochiagnodel (10) by using Fourier
transform technique. Following the criteria of stabilitythe stochastic environment [22],
it is seen that the environmental noises have a destalgjlifect on the system when
H <« Q; (i = 1,2). Also the deterministic system and the noise-induced ststah
system may behave alike with respect to stability wien> Q; (i = 1,2). Further, in
the intermediate region wheidg and(2; (i = 1,2) are commensurate, the populations
are likely to undergo significant fluctuations, even thouggytpersist for long times.

It is well known that natural populations of plants and ansmnaeither increase
indefinitely to blanket the world nor become extinct (excigpsome rare cases due to
some rare reasons). Hence, in practice, we often want to tkeeprey and predator
population to an acceptable level in finite time. In orderd¢oanplish this we strongly
suggest that in realistic field situations (where effectiofetdelay and environmental
fluctuation can never be violated), the parameters of theesyshould be regulated in
such a way thaE* is deterministically stable anfl > Q, (i = 1, 2).
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Appendix
Proof of Theorem 7. The variational matrix ab™*(x*, y*) is
* ) *2
cxy cT
—bx* + —
V() = (my* +a)  (my* + )
fmy*Q fm;v*y*
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It is easy to see that the trace6f{ E*) is

trV(EY) = ~ba™ + (¢~ fm) (mygf*i*z*)Q - femems dmﬁi}? mf &

and its determinant

bfmx*zy*

—= > 0.
(my* +ZL'*)2 >

det V(E*) =

The characteristic equation bf(E*) is
M4+ PA+Q=0,

whereP = —tr V(E*) andQ = det V(E*).

Since@ = det V(E*) > 0, it is clear thatE* is locally asymptotically stable or
unstable according @ > or < 0.

Hence the theorem. O

Proof of Theorem 15. We solve (7) fosin 79T and substitute in (8). Then we find the value
7* of 7 as given in the statement of Theorem 15. Now, we notice that fe- 7*, the
characteristic equation (4) have purely imaginary rottsy,. Again, if +n, is a solution
of (7) and (8), them? is the unique positive root of the equation (9). The theorelirbe
proved if we can show th@%]T:T* > 0. To show this, we differentiate (7) and (8) with
respect to- and then se¢ = 0 to obtain

d§ dn

C(n) 7= + D(n) 4= = G(n), (15)

dr dr
d d

oL L om ~ m), (16)
dr dr

where

C(n) = a1 — 7(az cosnt + aznsinnt) + az cosnr,

D(n) = —2n + 1(agn cosnT — azsinnt) + ag sinnr,

G(n) = n(azsinnT — azncosnT),

H(n) = 77(&277 sinnT — as cos 177).

Solving (15) and (16) withr = 7* andn = 79, we get

{dﬁ] __ m3f(m)
d’l7 T=T% 02(770) + DQ(HO) ’

which is positive under the conditiof{n,) > 0 and thus the theorem is established
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