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Abstract. Recently ratio-dependent predator-prey models have become the focus of
considerable attention in theoretical ecology in their own right. In this paper,we have
studied the deterministic and stochastic dynamical aspects of stability of a Michaelis-
Menten type ratio-dependent predator-prey system that includes discrete time-delay.
Computer simulations are carried out to explain the analytical findings in deterministic
environment. The biological implications of our analytical and numerical findings are
discussed critically.
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1 Introduction

Simple predator-prey models often predict extreme instability in interactions where the
prey are depressed well below the carrying capacity – a phenomenon called the “paradox
of enrichment” (introduced by Hairston et al. [1] and Rosenzweig [2]) because such
depression is more likely in nutrient rich systems. Anothersimilar paradox is the so called
“biological control paradox”, which was brought into discussion by Luck [3], stating that
according to the classic predator-prey theory, you can not have both a low and stable prey
equilibrium density. It has long been recognized that a milestone progress in the study of
predator-prey interactions is the discovery of these paradoxes. However, in reality, there
are numerous examples of successful biological control where the prey are maintained
at densities less than 2 % of their carrying capacities [4]. This clearly indicates that the
paradox of the biological control is not intrinsic to predator-prey interactions.

In recent years there is a growing explicit biological and physiological evidences
[4–9] that in many situations, especially when predators have to search for food (and
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therefore have to search or compete for food), a more suitable functional response de-
pending on the densities of both prey and predator should be introduced. Such a func-
tional response is called a ratio-dependent functional response. Arditi and Ginzburg [10]
introduced a Michaelis-Menten type ratio-dependent functional response of the form

p(x/y) =
c(x/y)

m + (x/y)
=

cx

my + x
, (1)

wherex, y stand for densities of prey and predator respectively. The positive constants
c andm are the capturing rate and the half capturing saturation constant, respectively.
Predator-prey models with such ratio-dependent functional response are strongly sup-
ported by numerous field and laboratory experiments [5,6,10,11] and their deterministic
dynamics have been studied extensively in ecological literature [9,12–16].

It is now well understood that many of the processes, both natural and manmade, in
biology, medicine etc. involve time-delays. Time-delays occur so often, in almost every
situation, that to ignore them is to ignore reality (see references [17–20] and references
there in). Samanta [20] argued that in an improved analysis,the effect of time-delay due
to the time required in going from egg stage to the adult stage, gestation period etc. has to
be taken into account. Kuang [18] mentioned that animals must take time to digest their
food before further activities and responses take place andhence any model of species
dynamics without delays is an approximation at best. Although various aspects of ratio-
dependent predator-prey models have been studied in ecological literature, the effect of
time-delay on such models has not yet been addressed considerably. From this viewpoint,
we have considered the following Michaelis-Menten type ratio-dependent predator-prey
system involving discrete time-delay:

dx

dt
= x(a − bx) −

cxy

my + x
,

dy

dt
= y

(
− d +

fx(t − τ)

my(t − τ) + x(t − τ)

)
,

x(0) > 0, y(0) > 0 and
dx

dt
=

dy

dt
= 0 for (x, y) = (0, 0),

(2)

wherex(t) andy(t) respectively denote population densities of prey and predator at time
t. Herea/b > 0 is the carrying capacity of the prey,d > 0 is the death rate of the predator
anda, c,m andf are positive constants that stand for prey intrinsic growthrate, capturing
rate, half capturing saturation constant and conversion rate respectively. The delayτ in
(2) can be regarded as the gestation period or reaction time of the predatory.

After Lorenz [21] and May [22,23], theoretical ecologists have undoubtedly accepted
the fact that deterministic approach has some limitations in biology. In deterministic
situation, it is always difficult to predict the future of thesystem accurately. This diffi-
culty increases as we move outside the tightly controlled biochemical and physiological
systems to the more complex behaviour of whole organism system or to the dynamics
of population ecosystems or global environmental systems.One reason to this difficulty
is that biological systems are subject to apparently randomfluctuations. That is, either
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the state variables themselves or the parameters are perturbed at random times and by
random events. In 1995, Renshaw [24] mentioned that the mostnatural phenomena do
not follow strictly deterministic laws but rather oscillate randomly about some average so
that the deterministic equilibrium is not an absolutely fixed state; instead it is a “fuzzy”
value around which the biological system fluctuates. In fact, randomness or stochasticity
plays a vital role in the structure and function of biological systems. The environmental
factors are time-dependent, randomly varying and should betaken as stochastic. In
ecology, we have two types of stochasticity – namely the demographic stochasticity
and the environmental stochasticity [25, 26]. Both types ofstochasticity play a signifi-
cant part in the realistic dynamical modelling of ecosystems. A central obstacle in the
stochastic modelling of an ecosystem is the lack of mathematical machinery available to
analyze non-linear multi-dimensional stochastic process[22, 27]. A quantum leap in the
mathematical sophistication of ecological modelling occurred when May [22] introduced
stochastic differential equations to investigate limits to niche overlap in randomly fluc-
tuating environment. Subsequently, the sensibility of stochastic models in comparison
with deterministic models is established by many researchers [20, 28–33]. Recently,
Bandyopadhyay and Chattopadhyay [34] and Mankin et al. [35]have studied the effect of
fluctuating environment on ratio-dependent predator-preymodel. These definitely indi-
cate that researchers are increasingly realizing the necessity of such considerations. But,
unfortunately, the effect of environmental fluctuation on time-delayed ratio-dependent
predator-prey model has not yet been investigated in theoretical ecology. Our endeavour
may accomplish such a necessity.

The objective of this paper is to study the dynamical behaviours of the model (2) in
deterministic and stochastic environment.

The paper is structured as follows. In Section 2, we present the deterministic analysis
of the system (2). Our study includes boundedness, stability and bifurcation of the
system (2). Numerical simulation of a variety of solutions of this system is also presented
in this section. In Section 3, we have formulated the stochastic version of the model (2) by
superimposing Gaussian white noises. Then a rigorous analysis of the resulting stochastic
model (10) is presented following Nisbet and Gurney [26]. Section 4 contains the general
discussions of the paper and biological implications of ourmathematical findings.

2 Deterministic scenarios

In this section, we discuss the dynamical behaviours of the deterministic system (2) when
τ = 0 andτ 6= 0.

Case 1: τ = 0. We first discuss the boundedness of the system (2).

Theorem 1. When τ = 0 , the system (2) is dissipative.

For proof, see [34].
The system (2) always have the boundary equilibrium pointsE0(0, 0) and

E1((a/b), 0). The interior equilibrium pointE∗(x∗, y∗) exists uniquely if and only if

385



A. Maiti, M. M. Jana, G. P. Samanta

any one of the following two conditions is true:

(i) d < f <
cd

c − ma
, when c > ma

(ii) f > d, when c ≤ ma.

In both the casesx∗ andy∗ are given by

x∗ =
f(am − c) + cd

bmf
, y∗ =

(f − d){f(am − c) + cd}

bdfm2
.

Kuang and Beretta [9] derived a blend of dynamical behaviours for the system (2).
We mention below some of their results.

Theorem 2. If f > d and am > c then the system is permanent.

Theorem 3. If c > am + dm, then the system is not persistent.

On deterministic extinction, Kuang and Beretta [9] have derived the following re-
sults.

Theorem 4. If c > am+dm, then there exist positive solutions (x(t), y(t)) of the system
such that limt→∞(x(t), y(t)) = (0, 0).

Theorem 5. If c ≤ am and f ≤ d, then E1 is globally asymptotically stable.

Theorem 6. If f ≥ cd/(c − am) and c > am then E0 is globally asymptotically stable.

For proofs of Theorems 2–6, see [9].

Theorem 7. If E∗ exists, then it is locally asymptotically stable or unstable according as
∆ = (c − am − dm)f2 + (mf − c)d2 < or > 0.

The proof of the theorem is given in the Appendix.
On global stability ofE∗, we have the following theorems:

Theorem 8. If ∆ < 0 and c ≤ am then E∗ is globally asymptotically stable.

For proof, see [9].

Theorem 9. If f > dm and c
a < min{ f

am , f
f−dm , f

f−dm ( d
a + f

d−am )}, then E∗ is
globally asymptotically stable.

For proof, see [34].
The following theorem gives a criterion for the existence ofa Hopf bifurcation near

E∗.

Theorem 10. If E∗ exists, then Hopf bifurcation occurs at c = c∗ = mf{f(a+d)−d2}
f2−d2 .
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Following the same line as in [34], the theorem can easily be proved.

Case 2: τ 6= 0. In this case the equilibrium points of the system (2) are thesame as that
of the system whenτ = 0 with the same conditions of existence. Beretta and Kuang [36]
derived some important behaviour of the time-delayed system (2). Some of them are
mentioned below.

Theorem 11. If f > d, then the time-delayed system is dissipative.

Theorem 12. Theorem 2 and 3 also hold good for τ 6= 0.

On deterministic extinction of the time-delayed system (2), Beretta and Kuang [36]
derived the following results.

Theorem 13. If c > am + dm and f < cd/(c − am − dm), then there exist positive
solutions (x(t), y(t)) of the system such that limt→∞(x(t), y(t)) = (0, 0).

Theorem 14. If c < am and f < d, then E1 is globally asymptotically stable.

We now study the stability behaviour of interior equilibrium pointE∗(x∗, y∗) of the
system (2) whenτ 6= 0. We linearize the system (2) by using the following transforma-
tions: x′ = lnx, y′ = ln y andx′ = x′∗ + u, y′ = y′∗ + v. Then the linear system is
given by

dU

dt
= AU(t) + BU(t − τ), (3)

where

U = [u, v]T , A = (aij)2×2, B = (bij)2×2

and

a11 = −bx∗ +
cx∗y∗

(my∗ + x∗)2
, a12 = −

cx∗y∗

(my∗ + x∗)2
,

b21 =
mfx∗y∗

(my∗ + x∗)2
, b22 = −

mfx∗y∗

(my∗ + x∗)2

and all otheraij = bij = 0.
We look for solution of the model (2) of the formU(t) = ρeλt, 0 6= ρ ∈ R

2. This
leads to the following characteristic equation:

λ2 − a1λ + (a2λ + a3)e
−λτ = 0, (4)

wherea1 = −a11, a2 = −b22 anda3 = a11b22 − a12b21.
It is well known that the signs of the real parts of the solutions of (4) characterize the

stability behaviour ofE∗. Therefore, substitutingλ = ξ + iη in (4) we obtain real and
imaginary parts, respectively, as

ξ2 − η2 + a1ξ + {(a2ξ + a3) cos ητ + a2η sin ητ}e−ξτ = 0 (5)
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and

2ξη + a1η + {a2η cos ητ − (a2ξ + a3) sin ητ}e−ξτ = 0. (6)

A necessary condition for a stability change ofE∗ is that the characteristic equation (4)
has purely imaginary solutions. Hence to obtain the stability criterion, we setξ = 0 in (5)
and (6) to obtain

η2 = a3 cos ητ + a2η sin ητ (7)

a1η = a3 sin ητ − a2η cos ητ. (8)

Eliminating τ between (7) and (8) by squaring and adding, we get the equation for
determiningη as

σ2 + d1σ + d2 = 0, (9)

whereσ = η2, d1 = a2
1 − a2

2, d2 = −a2
3 < 0.

By Descartes’ rule, the quadratic equation (9) always have aunique positive root.
Consequently the stability criteria of the system (2) forτ = 0 will not necessarily ensure
the stability of the system forτ 6= 0. In the following theorem, we have given a criterion
for switching the stability behaviour ofE∗. The proof of the theorem is deferred to the
Appendix.

Theorem 15. Let E∗ exists with (c− am− dm)f2 + (mf − c)d2 < 0. Also let σ0 = η2
0

be the unique positive root of the equation (8). Then there exists a τ = τ∗ such that E∗ is
locally asymptotically stable for 0 ≤ τ < τ∗ and unstable for τ > τ∗, provided

f(η0) = 2η2
0 + a2

1 − a2
2 > 0,

where τ∗ is given by τ∗ = 1
η0

arccos[
η2

0
(a3−a1a2)

a2

2
η2

0
+a2

3

].

On global stability ofE∗, we have the following theorems [36]:

Theorem 16. If fm > c and τ < min{ 2b
cf , 2m(fm−c)

f{bm+(fm+c)(1+m2)}}, then E∗ is globally

asymptotically stable in R
2
+.

Theorem 17. If fm > c and τ < 2(fm−c)
f{1+c2+f(1+m2)} , then E∗ is globally asymptotically

stable in R
2
+.

For proofs of Theorems 16 and 17, see [36].

2.1 Numerical simulation

Analytical studies always remain incomplete without numerical verification of the results.
Here we present computer simulation of some solutions of thesystem (2).
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We take the parameters of the system asa = 1.1, b = 0.2, c = 2.15, m = 1,
d = 0.5, f = 0.78, τ = 0 and (x(0), y(0)) = (0.4, 0.2). Then E∗(x∗, y∗) =
(1.641, 0.919) and∆ = −0.0079 < 0. Therefore, by Theorem 7,E∗ is locally asymptot-
ically stable. The corresponding phase portrait is shown inFig. 1(a). In this case, the prey
and predator populations approach to their equilibrium valuesx∗ andy∗ respectively in
finite time (see Fig. 1(b)).
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Fig. 1. Herex(0) = 0.4, y(0) = 0.2 anda = 1.1, b = 0.2, c = 2.15, m = 1,
d = 0.5, f = 0.78, τ = 0. (a) Phase portrait of the system (2) showing that
E∗(x∗, y∗) = (1.641, 0.919) is locally asymptotically stable; (b) the solid curve
depicts the prey population and the dotted one the predator population. Both the

populations converge to their equilibrium-state values in finite time.

If we gradually increase the value ofc, keeping other parameters fixed, then follow-
ing Theorem 10, we have a critical valuec∗ = 2.172 such thatE∗ loses its stability as
c passes throughc∗. For c = 2.18 > c∗, we verify thatE∗(1.5872, 0.8888) is unstable
(∆ = 0.0029 > 0) and there is a periodic orbit nearE∗ (see Fig. 2(a)). The oscillations
of prey and predator populations in time are shown in Fig. 2(b).

It is mentioned before that the stability criteria in the absence of delay (τ = 0) will
not necessarily guarantee the stability of the system in presence of delay (τ 6= 0). Let us
choose the parameters of the system asa = 1.1, b = 0.2, c = 2.15, m = 1, d = 0.5,
f = 0.78 and (x(0), y(0)) = (0.4, 0.2). It is already seen that for such choices of
parametersE∗(x∗, y∗) = (1.641, 0.919) is locally asymptotically stable in the absence
of delay. Now for such choices of parameters, it is seen from Theorem 15 that there
is a unique positive root of the equation (9) given byσ0 = η2

0 = 0.2474 for which
f(η0) = 0.1179 > 0 and Hopf bifurcation occurs atτ = τ∗ = 0.2156. We verify that
for τ = 0.15 < τ∗, E∗ is locally asymptotically stable and the corresponding phase
portrait (Fig. 3(a)) is a stable spiral converging toE∗. For τ = 0.24 > τ∗, we see that
E∗ is unstable and there is a bifurcating periodic solution near E∗ (see the phase portrait
depicted in Fig. 3(b)).

The numerical study presented here shows that, using the time-delay as control, it is
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possible to break the stable behaviour of the system (2) and drive it to an unstable state.
Also it is possible to keep the population levels at a required state using the above control.
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Fig. 2. Here all the parameters are same as in Fig. 1 exceptc = 2.18 > c∗. (a) Phase
portrait of the system (2) showing a periodic orbit nearE∗(1.5872, 0.8888); (b) os-
cillations of the prey and predator populations in time. The solid curve represents the
population density of the prey and the dotted one the population density of the predator.
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Fig. 3. Herex(0) = 0.4, y(0) = 0.2, a = 1.1, b = 0.2, c = 2.15, m = 1, d = 0.5,
f = 0.78. (a) Phase portrait of the system (2) whenτ = 0.15 < τ∗; (b) phase portrait

whenτ = 0.24 > τ∗.

3 The stochastic model

The basic mechanism and factors of population growth like the resources and vital rates-
birth, death etc. change non-deterministically due to random environment and they are
the main parameters subject to coupling of the system with its environment [32, 33, 37,
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38]. From this viewpoint, we assume that fluctuations in the environment will manifest
themselves mainly as fluctuations in the intrinsic growth rate a of the prey and in the
mortality rated of the predator. Thus the behaviour of the system in a random environment
will be considered within the framework of the following stochastic model with discrete
time-delay:

dx

dt
= x{a + η1(t) − bx} −

cxy

my + x
,

dy

dt
= y{−d + η2(t)} +

fx(t − τ)y

my(t − τ) + x(t − τ)
,

(10)

where the perturbed termsη1(t) andη2(t) are uncorrelated Gaussian white noises charac-
terized by

〈ηj(t)〉 = 0 and 〈ηj(t)ηj(t
′)〉 = δjδ(t − t′) for j = 1, 2.

Hereδj (j = 1, 2) are the intensities or strengths of the random perturbations,δ, the Dirac
delta function and〈·〉 represents the ensemble average.

Now we are concerned with stochastic differential equations (10) which are driven
by Gaussian white noises. Gaussian white noise, which is a delta-correlated random
process, is very irregular and as such it is to be treated withcare. In spite of this, it
is an immensely useful concept to model rapidly fluctuating phenomenon. Of course,
true white noise does not occur in nature. However, as can be seen by studying their
spectra, thermal noise in electrical resistance, the forceacting on a Brownian particle
and climate fluctuations, disregarding the periodicities of astronomical origin etc. are
white to a very good approximation. These examples support the usefulness of the white-
noise idealization in applications to natural systems. Furthermore, it can be proved that
the process(x, y), a solution of (10), is Markovian if and only if the external noises are
white. These results explain the importance and appeal of the white noise idealization
[39]. Here we have assumed the Stratonovich interpretationof stochastic differential
equations, which conserves the ordinary rule of calculus and in this case the stochastic
differential equations can be considered as an ensemble of ordinary differential equations
[20].

Again using the transformations:x′ = lnx, y′ = ln y; x′ = x′∗ + u, y′ = y′∗ + v
and assuming the delay to be very small, the system (10) (to a first approximation) can be
written as

du

dt
= α1u + β1v + η1,

dv

dt
= α2u(t − τ) + β2v(t − τ) + η2,

(11)

where

α1 = −bx∗ +
cx∗y∗

(my∗ + x∗)2
, β1 = −

cx∗y∗

(my∗ + x∗)2
,

α2 =
mfx∗y∗

(my∗ + x∗)2
, β2 = −

mfx∗y∗

(my∗ + x∗)2
.
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3.1 Fourier transforms: spectral density

Taking Fourier transform of both sides of each of the equations in (11) and following
[20,26], we obtain

η̃1(s) = isũ(s) − α1ũ(s) − β1ṽ(s),

η̃2(s) = isṽ(s) − α2ũ(s)e−isτ − β2ṽ(s)e−isτ ,
(12)

whereñ(s) =
∫ ∞

∞
n(t)e−istdt.

The system of equations (12) can be written in matrix form as

AX = B, (13)

where

A =

[
−α1 + is −β1

−α2e
−isτ −β2e

−isτ + is

]
, X =

[
ũ(s)
ṽ(s)

]
and B =

[
η̃1(s)
η̃2(s)

]
.

Now

M = detA =
{
(α1β2 − α2β1) cos(sτ) − sβ2 sin(sτ) − s2

}

− i
{
(α1β2 − α2β1) sin(sτ) − sβ2 cos(sτ) − α1s

}

We assume thatA−1 exists. Then we haveA−1 = (aij)2×2, where

a11 =
−β2cos(sτ) + i{s + β2sin(sτ)}

M
, a12 =

β1

M
,

a21 =
α2(cos(sτ) − isin(sτ)

M
, a22 =

−α1 + is

M
.

Then the solution of (13) can be written as

ũ(s) =

2∑

j=1

a1jηj , ṽ(s) =

2∑

j=1

a2jηj . (14)

Now following [20,26] and using (14), the spectral density of u is given by

Su(ω) = lim
T→∞

1

T

T/2∫

−T/2

T/2∫

−T/2

〈u(t)u(t′)〉 exp{iω(t′ − t)}dtdt′ =

2∑

j=1

|a1j |
2Sηj

(ω).

Similarly the spectral density ofv is given by

Sv(ω) =
2∑

j=1

|a2j |
2Sηj

(ω).
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Therefore the fluctuation intensity (variance) ofu is given by

σ2
u =

1

2π

∞∫

−∞

Su(ω)dω =
1

2π

∞∫

−∞

2∑

j=1

|a1j |
2Sηj

(ω)dω =
1

2π

∞∫

−∞

2∑

j=1

|a1j |
2dω,

sinceSηj
(ω) = 1.

Similarly the fluctuation intensity ofv is given by

σ2
v =

1

2π

∞∫

−∞

2∑

j=1

|a2j |
2dω.

Let τ be very small and the following two conditions hold

(i) (α1β2 − α2β1) < min

{
β2

1 + β2
2

1 + β2τ
, (1 + β2τ)

(
α2

1 + α2
2

)}
,

(ii) 4(1 + β2τ)(α1β2 − α2β1) < {(α1β2 − α2β1)τ − α1 − β2},

where(α1β2 − α2β1) = bmfx∗2y∗

(my∗+x∗)2 > 0.
Then after some calculation using [40], we obtain the fluctuation intensities ofu and

v as

σ2
u =

β2
1 + β2

2 − (α1β2 − α2β1)(1 + β2τ)

2H(α1β2 − α2β1)
,

and

σ2
v =

(1 + β2τ)(α2
1 + α2

2) − (α1β2 − α2β1)

2(1 + β2τ)H(α1β2 − α2β1)
,

whereH =
[
{(α1β2 − α2β1)τ − α1 − β2}

2 − 4(1 + β2τ)(α1β2 − α2β1)
]1/2

.
Let

Ω1 =
β2

1 + β2
2 − (α1β2 − α2β1)(1 + β2τ)

2(α1β2 − α2β1)
,

Ω2 =
(1 + β2τ)(α2

1 + α2
2) − (α1β2 − α2β1)

2(1 + β2τ)(α1β2 − α2β1)
.

Following the criteria of stability in the stochastic environment [22], it is seen that the
deterministic stability criteria is not enough to determine the stability of the system in a
rapidly fluctuating environment. IfH � Ωi (i = 1, 2), in rapidly fluctuating environment
then populations exhibit abnormally large fluctuations which rapidly lead to extinction. In
the intermediate region whereH andΩi (i = 1, 2) are commensurate, the populations are
likely to undergo significant fluctuations, even though theypersist for long times. Finally,
if H � Ωi (i = 1, 2) population fluctuations are relatively small and the environment
is effectively deterministic. These results are in good agreement with those of Maiti and
Samanta [30], May [22], Prajneshu [31], Samanta [32] and Samanta and Maiti [33].
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4 Concluding remarks

Although numerous population models have been proposed andstudied in the literature,
most of them are built on the classical Lotka-Volterra platform which is incapable of
describing the vast biodiversity that we are part of and has alimited scope of application.
In this paper, we have considered a time-delayed predator-prey model with a Michaelis-
Menten type ratio-dependent functional response for prey and predator. Dynamical be-
haviours of the resulting model (2) are studied critically.Dissipativity of the system (2) is
discussed, which, in turn, implies that the system is biologically well behaved. Some
useful results on deterministic extinction are mentioned.The stability of the interior
equilibriumE∗ is discussed. Whenτ = 0, a criterion for Hopf bifurcation is derived by
taking the capturing ratec as bifurcation parameter. These results are illustrated through
computer simulation. Forτ 6= 0 it has been shown both analytically and numerically
that using the time-delay as control, it is possible to breakthe stable (spiral) behaviour
of the system (2) and drive it to an unstable (cyclic) state. Also it is possible to keep the
population levels at a required state using the above control.

To study the effect of environmental fluctuation on the time-delayed predator-prey
system (2), we have superimposed Gaussian white noises on (2) and then study non-equi-
librium fluctuation and stability of the resulting stochastic model (10) by using Fourier
transform technique. Following the criteria of stability in the stochastic environment [22],
it is seen that the environmental noises have a destabilizing effect on the system when
H � Ωi (i = 1, 2). Also the deterministic system and the noise-induced stochastic
system may behave alike with respect to stability whenH � Ωi (i = 1, 2). Further, in
the intermediate region whereH andΩi (i = 1, 2) are commensurate, the populations
are likely to undergo significant fluctuations, even though they persist for long times.

It is well known that natural populations of plants and animals neither increase
indefinitely to blanket the world nor become extinct (exceptin some rare cases due to
some rare reasons). Hence, in practice, we often want to keepthe prey and predator
population to an acceptable level in finite time. In order to accomplish this we strongly
suggest that in realistic field situations (where effect of time-delay and environmental
fluctuation can never be violated), the parameters of the system should be regulated in
such a way thatE∗ is deterministically stable andH � Ωi (i = 1, 2).
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Appendix

Proof of Theorem 7. The variational matrix atE∗(x∗, y∗) is

V (E∗) =



−bx∗ +

cx∗y∗

(my∗ + x∗)2
−

cx∗2

(my∗ + x∗)2

fmy∗2

(my∗ + x∗)2
−

fmx∗y∗

(my∗ + x∗)2


 .
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It is easy to see that the trace ofV (E∗) is

trV (E∗) = −bx∗ + (c − fm)
x∗y∗

(my∗ + x∗)2
=

(c − am − dm)f2 + (mf − c)d2

mf2

and its determinant

det V (E∗) =
bfmx∗2y∗

(my∗ + x∗)2
> 0.

The characteristic equation ofV (E∗) is

λ2 + Pλ + Q = 0,

whereP = −tr V (E∗) andQ = detV (E∗).
SinceQ = detV (E∗) > 0, it is clear thatE∗ is locally asymptotically stable or

unstable according asP > or < 0.
Hence the theorem.

Proof of Theorem 15. We solve (7) forsin η0τ and substitute in (8). Then we find the value
τ∗ of τ as given in the statement of Theorem 15. Now, we notice that for τ = τ∗, the
characteristic equation (4) have purely imaginary roots,±iη0. Again, if±η0 is a solution
of (7) and (8), thenη2

0 is the unique positive root of the equation (9). The theorem will be
proved if we can show that[ dξ

dτ ]τ=τ∗ > 0. To show this, we differentiate (7) and (8) with
respect toτ and then setξ = 0 to obtain

C(η)
dξ

dτ
+ D(η)

dη

dτ
= G(η), (15)

−D(η)
dξ

dτ
+ C(η)

dη

dτ
= H(η), (16)

where

C(η) = a1 − τ(a3 cos ητ + a2η sin ητ) + a2 cos ητ,

D(η) = −2η + τ(a2η cos ητ − a3 sin ητ) + a2 sin ητ,

G(η) = η(a3 sin ητ − a2η cos ητ),

H(η) = η(a2η sin ητ − a3 cos ητ).

Solving (15) and (16) withτ = τ∗ andη = η0, we get

[
dξ

dη

]

τ=τ∗
=

η2
0f(η0)

C2(η0) + D2(η0)
,

which is positive under the conditionf(η0) > 0 and thus the theorem is established.
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