Nonlinear Analysis: Modelling and Control, 2007, Vol. 1208, 419-429

Fucik Spectrum for the Second Order BVP
with Nonlocal Boundary Condition*

N. Sergejeva

Daugavpils University
Parades str. 1, Daugavpils LV-5400, Latvia
natalijasergejeva@inbox.lv

Received:22.12.2006 Revised:29.05.2007 Published online: 31.08.2007

Abstract. We construct the Rik spectrum for some second order boundary value
problem with nonlocal boundary condition. This spectrum differs d@&dnfrom the
known F&ik spectra. We apply this result to the second order differential equation
z'" + g(x) = f(t, =, ") with the conditionse(a) = 0, fab z(s)ds = 0.
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1 Introduction

In this paper we study Rk spectra for some second order equations with piece-wise
linear right sides. The Rk spectrum is useful in the study of the so called “jumping
nonlinearities.”

Investigations of Féik spectra have started in sixtieth of XX century [1]. A nuenb
of authors have studied the specific cases. Let us mentiocages of the Dirichlet [1]
and the Sturm-Liouville [2] boundary conditions. There soene papers on higher order
equations. Habets and Gaudenzi have studied the third prdelem with the boundary
conditionsz(0) = 2/(0) = 0 = z(1) in the work [3], where many useful references on
the subject can be found. Eil spectra for the fourth order equations were considered
by Krei€i [4] and Pope [5]. The eigenvalue problems for differdnéguations with
nonlocal conditions, except of few separate articles, le@hlsystematically investigated
only over the past decade. Eigenvalue problems with nohémeralitions were considered
for example in the work [6]. To the best of our knowledg&spectra for problems with
nonlocal boundary conditions were not considered preljous

The paper is organized as follows.

In Section 2 we present results on the&Elkuspectrum for the second order problem

4 pPat =N =0, pA>0,
1)

2zt =max{z,0}, 2z~ =max{—z,0},
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with the boundary conditions

z(a) = 0; /z(s)ds =0. 2

In Section 3 we compare the well known classicatikyproblem with the problem
1), (2).
The results from Section 2 are employed to investigatiomefiroblem
o +g(z) = f(t,2,2") 3
with the boundary conditions
b

z(a) = 0; /x(s)ds =0 4)

a

in Section 4. In this Section we prove the existence theorem.

2 Fucik spectrum for the problem (1), (2)

Consider the second order BVP (1), (2).

Definition 1. The Fucik spectrum is a set of poirits, ;1) such that the probler(L), (2)
has nontrivial solutions.

Notice that\ and ;. must be nonnegative in order the problem (1), (2) to have a
nontrivial solution.

The first result describes decomposition of the spectrumbranches”;” and F;~
(:=0,1,2,...)for the problem (1), (2).
Proposition 1. The Futik spectrumy = [J;"% Fi* consists of a set of curves

F" ={(\p)| #'(a) >0, the nontrivial solutionz(t) of the problem has exactly

i zeroes in(a, b) };
F7 ={(A\n)| #'(a) <0, the nontrivial solutiorz(t) of the problem has exactly

2

i zeroes in(a,b) }.

Theorem 1. The Fucik spectrumy = j;g ﬂi for the problem(1), (2) consists of the
branches given by

peos(A(b—a) — A + i)

2N (20— 1w

F2J§71 = {(A,H) 7 - b\ - \ L =0,
i—ﬂ—l—i(i_l)ﬂgb—a, Z.7T—|—Z.ﬂ->b—a},
I A I A
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2+ 1A 2ip Acos(u(b —a) — K5 4 i)
r = {ou S22 )
L
. : 1 .
E—|—E§b—a, i+ )ﬂ-—|—m>b—a},
L A I A
_ 2ip (20— 1A Acos(u(b—a) — % + i)
Fyia=y )| — = - =0,
w0 22 - B2 -
(Z_l)ﬂ-l—ljﬁb—a, E+Zj>b—a,
I A I A
= ={ouw) (22’—1—1)#_%_ucos()\(b—a)—%—i-m')_0
2 S 0 b\ =4
. . ‘ 1
ZI+%I§b_a7 ZI+(Z+ )W>b—a , 1=1,2,...
I A I A

Proof. Consider the problem (1), (2).

Itis clear thatz(t) must have zeroes ifu, b). That is whyF5~ = §.

We will prove the theorem for the case Bf; ;. Suppose that\, 1) € F,; , and
let z(¢) be a respective nontrivial solution of the problem (1), e solution hagi — 1
zeroes ina, b) andz’(a) > 0. Let these zeroes be denotedhyr and so on.

Consider a solution of the problem (1), (2) in the intervélsn), (11,72), ...,
(12i—1,b). We obtain that the problem (1), (2) in these intervals reduo the linear
eigenvalue problems. So in the odd intervals we have thelgmob” = —p2z with
boundary conditiong(a) = z(m) = 0 in the first such interval and with boundary
conditionsz(7o;_2) = z(72;—1) = 0 in other ones, but in the even intervals we have the
problemz” = —\2z with boundary condition:(my;_3) = z(72;_2) = 0 in each such
interval but for the last one the only conditionzigrz;—1) = 0. In view of (2) a solution
z(t) must satisfy the condition

]lz(s)ds +]3z(s)d8 +... —f/zl(s)ds = ’jz(s)ds —i—/mz(s)ds +... —l—/bz(s)ds

a T2 T2i—2 T2i—1

. (5)

Sincez(t) = Asin(ut — pa) (A > 0) andz(r;) = 0 we obtainy = T+ a.
Analogously we obtain for the other zeroes

™ m
7'2—*+X+G,

o
7'3:2*4‘}4‘0/,
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In view of these facts it is easy to get thft =(s)ds = 4 (1 —cos u(71 —a)) = 24.
Analogously
T3 T5 T2i—1 94
/z(s)ds = /z(s)ds =...= / z(s)ds = —.
I
Therefore
T1 T3 T2i—1 2A
/z(s)ds + /z(s)ds +...+ / z(s)ds = 27

We have also
Z(m)=2"(m3) = ... =2 (T2i-1) = —pA. (6)

Now we consider a solution of the problem (1), (2) in the rerimgj intervals. Since
z(t) = —Bsin(At — A1) (B > 0)in (7, 2) we Obtainf:l2 z(s)ds = £ (cos A2 —

1) — 1) = —%.
Analogously
T4 76 T2i—2 9B
[#s= [stopds == [ so)is =2
73 75 T2i—3

But in the last intervalr;_1, b) we obtain

b

/ 2(s)ds = —? (1 + cos ()\(b —a) - zA—: + m))

T2i—1

It follows from the last two lines that

T2i—2 b

’/z(s)ds+/z(s)ds+...+ / z(s)ds + / 2(s)ds
. 2B B TS )
= (171)7 +)\(1+cos ()\(b—a) — Mer))_
We have also that
Z’(TI) :Z/(T3):"':Z/(TQi—l):_/\B' (7)

It follows from (6) and (7) that! = 2.
In view of the last equality and (5) we obtain
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2\B B B AT
i 2 (2i ))\ + 5, €08 (/\(b a) . +7m>

Dividing it by B and multiplying by, we obtain

A . [T ATE N\
QZE—(QZ—l)X—XCOS <)\(b—a)—u—|—m) =0. (8)

Considering the solution of the problem (1), (2) it is easprove thatrs; 1 <b < Ty,
or iz LUt <pq < iz iz,

This result and (8) prove the theorem for the casngf_ 1- The proof for other
branches is analogous. |

Visualization of the spectrum to the problem (1), (2) in theeofa = 0,6 = 1 is
given in Fig. 1.

o e 67 )

Fig. 1. The Fgik spectrum for the problem (1), (2).

Remark 1. The pointA (B) is a point at which the branches;” and F; (F, and Fy")
intersect. Analogously the branchég" and F;" (F,” and F;) are intersected at the
pointC' (D). And so on.

Computations shows that the poifitis at ((v/2 4 1)m; (v/2 + 2) 7, the pointC is at
(V6 + 2)7; (V6 + 3)m). So the branches}; and F;, intersect at the point

(Vii+ D +i)m (Vi + D +i+1)r), i=1,2,....

(The points of intersections of negative branches are syriarie those of the positive
branches with respect of the bisectrix.)
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3 Comparison

Now we consider the equation (1) with boundary conditions
b
2a) =0, (1—a)2(b)+ a/z(s)ds —0, aclo1]. ©)
Theorem 2. The Futik spectrun}_, = U5 F* for the problem(1), (9), where

meaning of the notation is the same as earlier, consistseobthnches given by (where
i=1,2,...)

) ) ATi .
2\ (26 — 1)p LLQL COS (/\(b —a) — AT m)
F;;—l{@‘»,u) 704* 3 o — 5 H

+ psin ()\(b—a) — % +7ri)

. TG .
(—au&)}ln(/\(b—a)—’u—i-m)—(),
i 1— 1) (Y
il <b— LR
m + 3 < a, m + h > a},
2i+ 1)\ 2ip Aacos (u(b—a) — LT 4 i
FQ—L_ :{()‘MU’) ( ) oa— —« ( A )
I A "
in (o — )~ BT
+ Asin (u(b a) \ —|—m)
—asin (ulb—a) = P4 mi) =
aAsin (u(b a) \ +7Tz) 0,
ZirJrzirﬁbfa, (Z+1)W+Zl>bfa ,
A I A
_ 2ip (20 — 1A Aacos (pu(b— a) — & + i)
o= o] 2 B
at { A p , M
+ Asin (u(b a) 5 + m)

— alsin (u(b—a) - % +7m') =0,

1 ) . .
(Gt LN ”+”>b—a},
I A I A
B 2+ 1)u 2\ 1L COS (A(b—a)—@—i-m')
By = {()\»/i) ()\)04—“04— b\ :

+ psin ()\(b—a) - % +m’)

. ATTE )
— apsin ()\(b—a)—7+7m) =0,
) ) . 1
E-i-ﬁgb—oz, M+W>b—a}.
I A W A
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Proof. The proof of Theorem is similar to that of Theorem 1. O
Remark 2. If « = 0 we obtain the problem
2t =A%z =0, z(a)=0, z(b)=0. (10)

This problem is the classical Fu€ik problem, which was $tigated in the work [1]. The
spectrum of this problem is well known.

In case ofo = 1 we have the problerfl), (2).

The branchesFlﬂE to FjE of the spectrum for the proble(i), (9) for several values
of « are depicted in Figs2 and 3 in the case of: = 0, b = 1.

T ir o 3 o in o A

1

Fig. 2. The Fiik spectrum of the problem (1), (9) for = 5 anda = %

prs in o7 X o ir o 3

Fig. 3. The Fiik spectrum of the problem (1), (9) for= § anda = 32.
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4  Application

Consider the second order BVP (3), (4), whe(e) is a “principal” nonlinearity which
behaves like a linear function at infinity arfdx) is a bounded (nonlinear) continuous
function which satisfies the Lipschitz condition with respt . More precisely, let
g(z) = gra™ — g_x~ + e(x) wheree(z) is a continuous function ifu, b] ande(x) tends
to 0 asz tends tot-co andg(x) satisfies the conditions

g(@)/x—gs as z— +og; a
g(@)/e—g- as @ — -0

whereg_, g+ € (0, +00).
Theorem 3 (the existence theorem)Suppose that
(A1) equation(3) has a solutiorg¢(t) such that(a) = 0, ff &(s)ds > 0;

(A2) equationz” + g, 2T — g_2~ = 0 with the conditions(a) = 0, 2’(a) = 1 has a
solutionz (t) such thatff 2+ (s)ds < 0;

(A3) equationz” + g, 2T — g_z~ = 0 with the conditiong(a) = 0, 2/(a) = —1 has a
solutionz_(t) such thatf; z_(s)ds < 0.

Let the conditions(Al) to (A3) hold. Then, ifg(x) satisfies the condition
(V/9=,+/9+) € >_, the problem(3), (4) has at least two solutions.

In the proof of Theorem 3 we use the following Lemma.

Lemma 1. Suppose that the conditions (A0) to (A3) hold. Then funstjvé[m(t, ~) tend
to 24 (t) if v — +oo (or tend toz_(¢) if v — —o0), wherexz(t,~) is a solution of the
Cauchy problem

"+ g(e) = f(te.a'), (@) =0, o'(a) = 7. (12)

Proof. Consider the Cauchy problem (12). We has that the equatjara(Bbe written in
the form

2 +giat —g a7 +e(x) = f(t,x,2) (13)

() o) () - 245

Letu(t,v) := ﬁx(t,’y). Then

or

1
u' +giut —guT = §(f(t, ylu, y|u') — e(ly|w)). (14)
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This means that the problem (12) transforms to the problem
u' +giut —guT = F(tu,d), ula) =0, u'(a)=1. (15)

By the continuous dependence of solutions of (15) on the-tigihd side [7, p.178], and
taking into account thak},(t,u,u’) — 0 as|y| — +oo uniformly in ¢t we obtain, that
u(t,~y) tends to the:, (¢) uniformly in ¢.

The proof of Lemma fory — —cc is analogous. O

Proof of Theoren8. Consider the Cauchy problem (12).
If v =¢(a) € Rthenz(t,v) = £(¢). It follows from the condition (A1) that

b

/x(s@’(a))ds > 0. (16)

a

Let~ tend to thetoco.
From Lemma we obtain thaﬁ% tends to a solutior (¢) which is mentioned in

the condition (A2) of the theorem. It means t}j’é{t%ds <0or

b

/m(s,v)ds < 0. (17)

a

LetI(v) = ff x(s,7)ds. It follows from the unique solvability of the Cauchy probis
thatz(¢,~) continuously depend of and, therefore, the functiof(~) is a continuous
function ofy. We obtaini () > 0, if v = ¢'(a), andI(y) < 0, if ¥ — 4o00. Then there
existsy; € (¢'(a), +o00) such that/ (v;) = 0. It follows thatz (¢, ;) is a solution of the
problem (3), (4).

Similarly for v+ — —oo we obtain that there existg, € (—o0,&'(a)) such that
I(~2) = 0. This means that(¢,~,) is a solution of the problem (3), (4). |

Example 1. Consider the problem

2+ g(x) = 10, (18)
1

z(0) =0, /x(s)ds =0, (29)
0

where
_J@n)%x, if 2>0,
9le) = {o, if x <0,
The functioné(t) = (217?)2(1 — cos27t) is a solution of the equation (18) and

£(0) =0, [ &(s)ds > 0.

427



N. Sergejeva

The function

wsin2rt, if 0<t< 3,
24 () = 9] -
1t if 2<t<1

is a solution of the Cauchy probleat’ + (27)?z" = 0, 2(0) = 0, 2/(0) = 1 and
fol 24+ (s)ds < 0.

The functionz_(t) = —t is a solution of the Cauchy problea? + (27)2zF = 0,
2(0)=0,2'(0) = —1and , z_(s)ds < 0.

The graphs of these functions are depicted ir Fig. 4.

3
0.5 P
0.25
,//’/// - ~ Zs R
\O 2 0.4 0.6 _ 0.8 1
0.25 ~
\ ~
~ Z_ ~
0.5 ~ =~
~
~
-0.75 -
~_
-1 ~

Fig. 4. Graphs of solutions.
Thus, all conditions of Theorem 3 are fulfilled, and this nwetimat the problem (18),
(19) has at least two solutions.

Remark 3. The conditiongA2), (A3) are essential for the existence of two solutions of
the problem. Indeed, consider the problem

2" +g(z) =0, (20)
1
x(0) =0, /Jc(s)ds =0, (21)
0
where
w2z, if ©>0,
“@:{Q if <0,

The problem has exactly one solution (the trivial one). Thlzecause the condition
(A2) is not satisfied. Indeed, all solutions of the Cauchy probiém 722+ — 0z~ =0,
z(0) = 0, 2/(0) = 1 satisfy the conditiorfo1 z4(s)ds > 0.

428



FuCik Spectrum for the Second Order BVP with Nonlocal Boundaoydition

Acknowledgement

The author wishes to thank F. Sadyrbaev for supervisingitbig.

References

1. A. Kufner, S. Fuchik,Nonlinear Differential EquationsNauka, Moscow, 1988; Russian
translation of A. Kufner, S. Ftik, Nonlinear Differential EquationsElsevier, Amsterdam-
Oxford-New York, 1980.

2. B.P. Rynne, The Fucik Spectrum of General Sturm-Liouville Probledn Differential
Equations 161, pp. 87-109, 2000.

3. M. Gaudenzi, P. Habets, Eilt Spectrum for a Third Order Equatioh,Differential Equations
128 pp. 556-595, 1996.

4. P. Krei, On solvability of equations of the 4th order with jumping nonlinearitiéas. pést.
mat, 108 pp. 29-39, 1983.

5. P.J. PopeSolvability of non self-adjoint and higher order differential equations withging
nonlinearities PhD Thesis, University of New England, Australia, 1984.

6. B. Bandyrskii, I. Lazurchak, V. Makarov, M. Sapagovas, Eigdme problem with Nonlocal
Conditions Nonlinear Analysis: Modelling and Contrdl 1(1), pp. 13-32, 2006.

7. L. Pontryagin,Ordinary Differential EquationsNauka, Moscow, 1974.

429



