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Abstract. We construct the Fǔcik spectrum for some second order boundary value
problem with nonlocal boundary condition. This spectrum differs essentially from the
known Fǔcik spectra. We apply this result to the second order differential equation
x′′ + g(x) = f(t, x, x′) with the conditionsx(a) = 0,

∫

b

a
x(s)ds = 0.
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1 Introduction

In this paper we study Fučik spectra for some second order equations with piece-wise
linear right sides. The Fučik spectrum is useful in the study of the so called “jumping
nonlinearities.”

Investigations of Fǔcik spectra have started in sixtieth of XX century [1]. A number
of authors have studied the specific cases. Let us mention thecases of the Dirichlet [1]
and the Sturm-Liouville [2] boundary conditions. There aresome papers on higher order
equations. Habets and Gaudenzi have studied the third orderproblem with the boundary
conditionsx(0) = x′(0) = 0 = x(1) in the work [3], where many useful references on
the subject can be found. Fučik spectra for the fourth order equations were considered
by Kreiči [4] and Pope [5]. The eigenvalue problems for differential equations with
nonlocal conditions, except of few separate articles, has been systematically investigated
only over the past decade. Eigenvalue problems with nonlocal conditions were considered
for example in the work [6]. To the best of our knowledge Fučik spectra for problems with
nonlocal boundary conditions were not considered previously.

The paper is organized as follows.
In Section 2 we present results on the Fučik spectrum for the second order problem

z′′ + µ2z+ − λ2z− = 0, µ, λ > 0,

z+ = max{z, 0}, z− = max{−z, 0},
(1)
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with the boundary conditions

z(a) = 0;

b
∫

a

z(s)ds = 0. (2)

In Section 3 we compare the well known classical Fučik problem with the problem
(1), (2).

The results from Section 2 are employed to investigation of the problem

x′′ + g(x) = f(t, x, x′) (3)

with the boundary conditions

x(a) = 0;

b
∫

a

x(s)ds = 0 (4)

in Section 4. In this Section we prove the existence theorem.

2 Fučik spectrum for the problem (1), (2)

Consider the second order BVP (1), (2).

Definition 1. The Fučik spectrum is a set of points(λ, µ) such that the problem(1), (2)
has nontrivial solutions.

Notice thatλ andµ must be nonnegative in order the problem (1), (2) to have a
nontrivial solution.

The first result describes decomposition of the spectrum into branchesF+
i andF−

i

(i = 0, 1, 2, . . .) for the problem (1), (2).

Proposition 1. The Fučik spectrum
∑

=
⋃+∞

i=0 F±
i consists of a set of curves

F+
i =

{

(λ, µ)| z′(a) > 0, the nontrivial solutionz(t) of the problem has exactly

i zeroes in(a, b)
}

;

F−
i =

{

(λ, µ)| z′(a) < 0, the nontrivial solutionz(t) of the problem has exactly

i zeroes in(a, b)
}

.

Theorem 1. The Fučik spectrum
∑

=
⋃+∞

i=0 F±
i for the problem(1), (2) consists of the

branches given by

F+
2i−1 =

{

(λ, µ)| 2iλ

µ
− (2i − 1)µ

λ
−

µ cos(λ(b − a) − λπi

µ
+ πi)

λ
= 0,

iπ

µ
+

(i − 1)π

λ
≤ b − a,

iπ

µ
+

iπ

λ
> b − a

}

,
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F+
2i =

{

(λ, µ)| (2i + 1)λ

µ
− 2iµ

λ
− λ cos(µ(b − a) − µπi

λ
+ πi)

µ
= 0,

iπ

µ
+

iπ

λ
≤ b − a,

(i + 1)π

µ
+

iπ

λ
> b − a

}

,

F−
2i−1 =

{

(λ, µ)| 2iµ

λ
− (2i − 1)λ

µ
− λ cos(µ(b − a) − µπi

λ
+ πi)

µ
= 0,

(i − 1)π

µ
+

iπ

λ
≤ b − a,

iπ

µ
+

iπ

λ
> b − a

}

,

F−
2i =

{

(λ, µ)| (2i + 1)µ

λ
− 2iλ

µ
−

µ cos(λ(b − a) − λπi
µ

+ πi)

λ
= 0,

iπ

µ
+

iπ

λ
≤ b − a,

iπ

µ
+

(i + 1)π

λ
> b − a

}

, i = 1, 2, . . .

Proof. Consider the problem (1), (2).
It is clear thatz(t) must have zeroes in(a, b). That is whyF±

0 = ∅.
We will prove the theorem for the case ofF+

2i−1. Suppose that(λ, µ) ∈ F+
2i−1 and

let z(t) be a respective nontrivial solution of the problem (1), (2).The solution has2i− 1
zeroes in(a, b) andz′(a) > 0. Let these zeroes be denoted byτ1, τ2 and so on.

Consider a solution of the problem (1), (2) in the intervals(a, τ1), (τ1, τ2), . . . ,
(τ2i−1, b). We obtain that the problem (1), (2) in these intervals reduces to the linear
eigenvalue problems. So in the odd intervals we have the problem z′′ = −µ2z with
boundary conditionsz(a) = z(τ1) = 0 in the first such interval and with boundary
conditionsz(τ2i−2) = z(τ2i−1) = 0 in other ones, but in the even intervals we have the
problemz′′ = −λ2z with boundary conditionz(τ2i−3) = z(τ2i−2) = 0 in each such
interval but for the last one the only condition isz(τ2i−1) = 0. In view of (2) a solution
z(t) must satisfy the condition

τ1
∫

a

z(s)ds +

τ3
∫

τ2

z(s)ds + . . . +

τ2i−1
∫

τ2i−2

z(s)ds =

∣

∣

∣

∣

τ2
∫

τ1

z(s)ds +

τ4
∫

τ3

z(s)ds + . . . +

b
∫

τ2i−1

z(s)ds

∣

∣

∣

∣

. (5)

Sincez(t) = A sin(µt − µa) (A > 0) and z(τ1) = 0 we obtainτ1 = π
µ

+ a.
Analogously we obtain for the other zeroes

τ2 =
π

µ
+

π

λ
+ a,

τ3 = 2
π

µ
+

π

λ
+ a,

. . . . . . . . . . . . . . . . . .

τ2i−2 = (i − 1)
π

µ
+ (i − 1)

π

λ
+ a,

τ2i−1 = i
π

µ
+ (i − 1)

π

λ
+ a.
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In view of these facts it is easy to get that
∫ τ1

a
z(s)ds = A

µ
(1− cos µ(τ1−a)) = 2A

µ
.

Analogously

τ3
∫

τ2

z(s)ds =

τ5
∫

τ4

z(s)ds = . . . =

τ2i−1
∫

τ2i−2

z(s)ds =
2A

µ
.

Therefore

τ1
∫

a

z(s)ds +

τ3
∫

τ2

z(s)ds + . . . +

τ2i−1
∫

τ2i−2

z(s)ds = i
2A

µ
.

We have also

z′(τ1) = z′(τ3) = . . . = z′(τ2i−1) = −µA. (6)

Now we consider a solution of the problem (1), (2) in the remaining intervals. Since
z(t) = −B sin(λt − λτ1) (B > 0) in (τ1, τ2) we obtain

∫ τ2

τ1

z(s)ds = B
λ

(

cos λ(τ2 −
τ1) − 1

)

= − 2B
λ

.
Analogously

τ4
∫

τ3

z(s)ds =

τ6
∫

τ5

z(s)ds = . . . =

τ2i−2
∫

τ2i−3

z(s)ds = −2B

λ
.

But in the last interval(τ2i−1, b) we obtain

b
∫

τ2i−1

z(s)ds = −B

λ

(

1 + cos
(

λ(b − a) − i
λπ

µ
+ iπ

)

)

.

It follows from the last two lines that

∣

∣

∣

∣

τ2
∫

τ1

z(s)ds +

τ4
∫

τ3

z(s)ds + . . . +

τ2i−2
∫

τ2i−3

z(s)ds +

b
∫

τ2i−1

z(s)ds

∣

∣

∣

∣

= (i − 1)
2B

λ
+

B

λ

(

1 + cos
(

λ(b − a) − λπi

µ
+ πi

)

)

.

We have also that

z′(τ1) = z′(τ3) = . . . = z′(τ2i−1) = −λB. (7)

It follows from (6) and (7) thatA = λB
µ

.
In view of the last equality and (5) we obtain
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i
2λB

µ2
= (2i − 1)

B

λ
+

B

λ
cos

(

λ(b − a) − λπi

µ
+ πi

)

.

Dividing it by B and multiplying byµ, we obtain

2i
λ

µ
− (2i − 1)

µ

λ
− µ

λ
cos

(

λ(b − a) − λπi

µ
+ πi

)

= 0. (8)

Considering the solution of the problem (1), (2) it is easy toprove thatτ2i−1≤b<τ2i

or iπ
µ

+ (i−1)π
λ

≤ b − a < iπ
µ

+ iπ
λ

.

This result and (8) prove the theorem for the case ofF+
2i−1. The proof for other

branches is analogous.

Visualization of the spectrum to the problem (1), (2) in the case ofa = 0, b = 1 is
given in Fig. 1.

Fig. 1. The Fǔcik spectrum for the problem (1), (2).

Remark 1. The pointA (B) is a point at which the branchesF+
2 andF+

3 (F−
2 andF−

3 )
intersect. Analogously the branchesF+

4 and F+
5 (F−

4 and F−
5 ) are intersected at the

pointC (D). And so on.
Computations shows that the pointA is at ((

√
2 + 1)π; (

√
2 + 2)π, the pointC is at

((
√

6 + 2)π; (
√

6 + 3)π). So the branchesF+
2i andF+

2i+1 intersect at the point
(

(
√

i(i + 1) + i
)

π;
(
√

i(i + 1) + i + 1
)

π
)

, i = 1, 2, . . . .

(The points of intersections of negative branches are symmetric to those of the positive
branches with respect of the bisectrix.)
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3 Comparison

Now we consider the equation (1) with boundary conditions

z(a) = 0, (1 − α)z(b) + α

b
∫

a

z(s)ds = 0, α ∈ [0, 1]. (9)

Theorem 2. The Fučik spectrum
∑

α =
⋃+∞

i=0 F±
i for the problem(1), (9), where

meaning of the notation is the same as earlier, consists of the branches given by (where
i = 1, 2, . . .)

F+
2i−1 =

{

(λ, µ)| 2iλ

µ
α − (2i − 1)µ

λ
α −

µα cos
(

λ(b − a) − λπi
µ

+ πi
)

λ

+ µ sin
(

λ(b − a) − λπi

µ
+ πi

)

− αµ sin
(

λ(b − a) − λπi

µ
+ πi

)

= 0,

iπ

µ
+

(i − 1)π

λ
≤ b − a,

iπ

µ
+

iπ

λ
> b − a

}

,

F+
2i =

{

(λ, µ)| (2i + 1)λ

µ
α − 2iµ

λ
α

λα cos
(

µ(b − a) − µπi
λ

+ πi
)

µ

+ λ sin
(

µ(b − a) − µπi

λ
+ πi

)

− αλ sin
(

µ(b − a) − µπi

λ
+ πi

)

= 0,

iπ

µ
+

iπ

λ
≤ b − a,

(i + 1)π

µ
+

iπ

λ
> b − a

}

,

F−
2i−1 =

{

(λ, µ)
∣

∣

∣

2iµ

λ
α − (2i − 1)λ

µ
α − λα cos

(

µ(b − a) − µπi
λ

+ πi
)

µ

+ λ sin
(

µ(b − a) − µπi

λ
+ πi

)

− αλ sin
(

µ(b − a) − µπi

λ
+ πi

)

= 0,

(i − 1)π

µ
+

iπ

λ
≤ b − a,

iπ

µ
+

iπ

λ
> b − a

}

,

F−
2i =

{

(λ, µ)| (2i + 1)µ

λ
α − 2iλ

µ
α −

µα cos
(

λ(b − a) − λπi
µ

+ πi
)

λ

+ µ sin
(

λ(b − a) − λπi

µ
+ πi

)

− αµ sin
(

λ(b − a) − λπi

µ
+ πi

)

= 0,

iπ

µ
+

iπ

λ
≤ b − a,

iπ

µ
+

(i + 1)π

λ
> b − a

}

.
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Proof. The proof of Theorem is similar to that of Theorem 1.

Remark 2. If α = 0 we obtain the problem

z′′ + µ2z+ − λ2z− = 0, z(a) = 0, z(b) = 0. (10)

This problem is the classical Fučik problem, which was investigated in the work [1]. The
spectrum of this problem is well known.

In case ofα = 1 we have the problem(1), (2).
The branchesF±

1 to F±
5 of the spectrum for the problem(1), (9) for several values

of α are depicted in Figs.2 and3 in the case ofa = 0, b = 1.

Fig. 2. The Fǔcik spectrum of the problem (1), (9) forα = 1

2
andα = 3

4
.

Fig. 3. The Fǔcik spectrum of the problem (1), (9) forα = 8

9
andα = 19

20
.
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4 Application

Consider the second order BVP (3), (4), whereg(x) is a “principal” nonlinearity which
behaves like a linear function at infinity andf(x) is a bounded (nonlinear) continuous
function which satisfies the Lipschitz condition with respect to x. More precisely, let
g(x) = g+x+ − g−x− + ε(x) whereε(x) is a continuous function in[a, b] andε(x) tends
to 0 asx tends to±∞ andg(x) satisfies the conditions

g(x)/x → g+ as x → +∞;

g(x)/x → g− as x → −∞,
(11)

whereg−, g+ ∈ (0,+∞).

Theorem 3 (the existence theorem).Suppose that

(A1) equation(3) has a solutionξ(t) such thatξ(a) = 0,
∫ b

a
ξ(s)ds > 0;

(A2) equationz′′ + g+z+ − g−z− = 0 with the conditionsz(a) = 0, z′(a) = 1 has a

solutionz+(t) such that
∫ b

a
z+(s)ds < 0;

(A3) equationz′′ + g+z+ − g−z− = 0 with the conditionsz(a) = 0, z′(a) = −1 has a

solutionz−(t) such that
∫ b

a
z−(s)ds < 0.

Let the conditions(A1) to (A3) hold. Then, if g(x) satisfies the condition
(
√

g−,
√

g+) 6∈ ∑

, the problem(3), (4) has at least two solutions.

In the proof of Theorem 3 we use the following Lemma.

Lemma 1. Suppose that the conditions (A0) to (A3) hold. Then functions 1
|γ|x(t, γ) tend

to z+(t) if γ → +∞ (or tend toz−(t) if γ → −∞), wherex(t, γ) is a solution of the
Cauchy problem

x′′ + g(x) = f(t, x, x′), x(a) = 0, x′(a) = γ. (12)

Proof. Consider the Cauchy problem (12). We has that the equation (3) can be written in
the form

x′′ + g+x+ − g−x− + ε(x) = f(t, x, x′) (13)

or
(

1

|γ|x
)′′

+ g+

(

x

|γ|

)+

− g−

(

x

|γ|

)−

+
ε(x)

|γ| =
f(t, x, x′)

|γ| .

Let u(t, γ) := 1
|γ|x(t, γ). Then

u′′ + g+u+ − g−u− =
1

γ

(

f(t, |γ|u, |γ|u′) − ε(|γ|u)
)

. (14)
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This means that the problem (12) transforms to the problem

u′′ + g+u+ − g−u− = F|γ|(t, u, u′), u(a) = 0, u′(a) = 1. (15)

By the continuous dependence of solutions of (15) on the right-hand side [7, p.178], and
taking into account thatF|γ|(t, u, u′) → 0 as|γ| → +∞ uniformly in t we obtain, that
u(t, γ) tends to thez+(t) uniformly in t.

The proof of Lemma forγ → −∞ is analogous.

Proof of Theorem3. Consider the Cauchy problem (12).
If γ = ξ′(a) ∈ R thenx(t, γ) ≡ ξ(t). It follows from the condition (A1) that

b
∫

a

x
(

s, ξ′(a)
)

ds > 0. (16)

Let γ tend to the+∞.
From Lemma we obtain thatx(t,γ)

|γ| tends to a solutionz+(t) which is mentioned in

the condition (A2) of the theorem. It means that
∫ b

a

x(s,γ)
|γ| ds < 0 or

b
∫

a

x(s, γ)ds < 0. (17)

Let I(γ) =
∫ b

a
x(s, γ)ds. It follows from the unique solvability of the Cauchy problems

that x(t, γ) continuously depend onγ and, therefore, the functionI(γ) is a continuous
function ofγ. We obtainI(γ) > 0, if γ = ξ′(a), andI(γ) < 0, if γ → +∞. Then there
existsγ1 ∈ (ξ′(a),+∞) such thatI(γ1) = 0. It follows thatx(t, γ1) is a solution of the
problem (3), (4).

Similarly for γ → −∞ we obtain that there existsγ2 ∈ (−∞, ξ′(a)) such that
I(γ2) = 0. This means thatx(t, γ2) is a solution of the problem (3), (4).

Example 1. Consider the problem

x′′ + g(x) = 10, (18)

x(0) = 0,

1
∫

0

x(s)ds = 0, (19)

where

g(x) =

{

(2π)2x, if x ≥ 0,

0, if x < 0.

The functionξ(t) = 10
(2π)2 (1 − cos 2πt) is a solution of the equation (18) and

ξ(0) = 0,
∫ 1

0
ξ(s)ds > 0.
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The function

z+(t) =

{

1
2π

sin 2πt, if 0 ≤ t < 1
2 ,

1
2 − t, if 1

2 ≤ t ≤ 1

is a solution of the Cauchy problemz′′ + (2π)2z+ = 0, z(0) = 0, z′(0) = 1 and
∫ 1

0
z+(s)ds < 0.

The functionz−(t) = −t is a solution of the Cauchy problemz′′ + (2π)2z+ = 0,
z(0) = 0, z′(0) = −1 and

∫ 1

0
z−(s)ds < 0.

The graphs of these functions are depicted ir Fig. 4.

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5
Ξ

z+

z-

Fig. 4. Graphs of solutions.

Thus, all conditions of Theorem 3 are fulfilled, and this means that the problem (18),
(19) has at least two solutions.

Remark 3. The conditions(A2), (A3) are essential for the existence of two solutions of
the problem. Indeed, consider the problem

x′′ + g(x) = 0, (20)

x(0) = 0,

1
∫

0

x(s)ds = 0, (21)

where

g(x) =

{

π2x, if x ≥ 0,

0, if x < 0.

The problem has exactly one solution (the trivial one). Thisis because the condition
(A2) is not satisfied. Indeed, all solutions of the Cauchy problemz′′ + π2z+ − 0z− = 0,
z(0) = 0, z′(0) = 1 satisfy the condition

∫ 1

0
z+(s)ds > 0.
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Fučik Spectrum for the Second Order BVP with Nonlocal BoundaryCondition

Acknowledgement

The author wishes to thank F. Sadyrbaev for supervising thiswork.

References

1. A. Kufner, S. Fuchik,Nonlinear Differential Equations, Nauka, Moscow, 1988; Russian
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4. P. Kreǰci, On solvability of equations of the 4th order with jumping nonlinearities,Čas. pěst.
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