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Abstract. The Nehari manifold for the equation−∆pu(x) = λu(x)|u(x)|p−2 +
b(x)|u(x)|γ−2u(x) for x ∈ Ω together with Dirichlet boundary condition is investigated
in the case where0 < γ < p. Exploiting the relationship between the Nehari manifold
and fibrering maps (i.e., maps of the form oft → J(tu) whereJ is the Euler functional
associated with the equation), we discuss how the Nehari manifold changes asλ changes,
and show how existence results for positive solutions of the equation are linked to the
properties of Nehari manifold.
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1 Introduction

Consider the semilinear boundary value problem
{
−∆pu(x) = λu(x)

∣∣u(x)
∣∣p−2

+ b(x)
∣∣u(x)

∣∣γ−2
u(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1)

whereΩ is a bounded region with smooth boundary inRN andb : Ω → R is a smooth
function which may change sign.

The study of elliptic equations involving thep-Laplacian and using the fibrering
method sees great increase in number of papers published, see [1–3] which have studied
the equation with convex-concave linearity. Notice that these results have also generalized
to (p, q)-system in the papers such as [4,5] using the fibrering method.

In this paper we have generalized the article of Brown and Zhang [6] to the
p-Laplacian by using fibrering method for1 < γ < p. This problem whenγ > p
has been studied by Binding et al. [7,8] by using variationalmethod.

We shall discuss the existence and multiplicity of non-negative solution of (1) from
a variational viewpoint making use of the Nehari manifold [9,10].

143



G. A. Afrouzi, S. Mahdavi, Z. Naghizadeh

Suppose thatλ1 is the principal eigenvalue of the linear problem

{
−∆pu(x) = λu(x)

∣∣u(x)
∣∣p−2

, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(2)

The direction of bifurcation being determined by the sign of
∫
Ω
bφγ

1dx whereφ1 is the
positive principal eigenvalue corresponding toλ1. We shall show precisely the important
role played by

∫
Ω
bφγ

1dx by investigating the Nehari manifold changes withλ.
The Euler function associated with (1) is

Jλ(u) =
1

p

∫

Ω

|∇u|pdx−
λ

p

∫

Ω

|u|pdx−
1

γ

∫

Ω

b|u|γdx, u ∈W 1,p
o (Ω).

By the spectral theorem
∫

Ω

|∇u|pdx− λ

∫

Ω

|u|pdx ≥ (λ1 − λ)

∫

Ω

|u|pdx for all u ∈W 1,p
o (Ω)

and so

Jλ(u) ≥
1

p
(λ1 − λ)

∫

Ω

|u|pdx−
b

γ

∫

Ω

|u|γdx

≥
1

p
(λ1 − λ)

∫

Ω

|u|pdx−
b

γ
|Ω|1−

γ

p

( ∫

Ω

|u|pdx
) γ

p

,

whereb = supx∈Ω b(x). HenceJλ is bounded below onW 1,p
o (Ω) whenλ < λ1. It is

easy to see, however, that, whenλ > λ1, limt→∞ Jλ(tφ1) = −∞ and soJλ is no longer
bounded below onW 1,p

o (Ω). In order to obtain existence results in this case we introduce
the Nehari manifold

S(λ) =
{
u ∈W 1,p

o (Ω):
〈
J ′

λ(u), u
〉

= 0
}
,

where〈 , 〉 the usual duality. Thusu ∈ S(λ) if and only if
∫

Ω

|∇u|pdx− λ

∫

Ω

|u|pdx−

∫

Ω

b|u|γdx = 0.

ClearlyS(λ) is a much smaller set thanW 1,p
o (Ω) and so it is easier to studyJλ onS(λ).

OnS(λ) we have that

Jλ(u) =
(1

p
−

1

γ

)∫

Ω

(
|∇u|p − λ|u|p

)
dx =

(1

p
−

1

γ

)∫

Ω

b|u|γdx. (3)
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The Nehari manifold is closely linked to the behavior of the formφu : t→ Jλ(tu)(t > 0).
Such maps are known as fibrering maps and were introduce by Drabek and Pohozaev
in [11]. If u ∈W 1,p

o (Ω), we have

φu(t) =
tp

p

∫

Ω

(
|∇u|p − λ|u|p

)
dx−

tγ

γ

∫

Ω

b|u|γdx, (4)

φ′u(t) = tp−1

∫

Ω

(
|∇u|p − λ|u|p

)
dx− tγ−1

∫

Ω

b|u|γdx, (5)

φ′′u(t) = (p− 1)tp−2

∫

Ω

(
|∇u|p − λ|u|p

)
dx− (γ − 1)tγ−2

∫

Ω

b|u|γdx. (6)

It is easy to see thatu ∈ S(λ) if and only ifφ′u(1) = 0 and more generally thatφ′u(t) = 0
if and only if tu ∈ S(λ), i.e., elements inS(λ) correspond to stationary points of fibrering
maps. Thus it is natural to subdivideS(λ) into sets corresponding to local minima, local
maxima and points of inflection. It follows from (5) and (6) that if φ′u(t) = 0, then
φ′′u(t) = (p− γ)tγ−2

∫
Ω
b|u|γdx. Thus we define

S+(λ) =
{
u ∈ S(λ) :

∫

Ω

b|u|γdx > 0
}
,

S−(λ) =
{
u ∈ S(λ) :

∫

Ω

b|u|γdx < 0
}
,

S0(λ) =
{
u ∈ S(λ) :

∫

Ω

b|u|γdx = 0
}
,

so thatS+, S−, S0 corresponding to minima, maxima and points of inflection respec-
tively.

Let u ∈W 1,p
0 (Ω). Then

1) if
∫
Ω
(|∇u|p − λ|u|p)dx and

∫
Ω
b|u|γdx have the same sign,φu has a unique turning

point at

t(u) =

[ ∫
Ω
b|u|γdx∫

Ω

(
|∇u|p − λ|u|p

)
dx

] 1
p−γ

this turning point is a local minimum(maximum) so thatt(u)u ∈ S+(λ)((S−(λ)) if
and only if

∫
Ω
b|u|γdx > 0(< 0);

2) if
∫
Ω
(|∇u|p − λ|u|p)dx and

∫
Ω
b|u|γdx have different sign, thenφu has no turning

points and so no multiples ofu lie in S(λ).
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Thus, if we define

L+(λ) =
{
u ∈W 1,p

0 (Ω): ‖u‖ = 1 and
∫

Ω

(
|∇u|p − λ|u|p

)
dx > 0

}
,

B+ =
{
u ∈W 1,p

0 (Ω): ‖u‖ = 1 and
∫

Ω

b|u|γdx > 0
}
,

where the norm ofW 1,p
0 (Ω) is defined as‖u‖ = {

∫
Ω
|∇|pdx}

1
p and analogously define

L−(λ), L0(λ),B−,B0 by replacing′ > 0′ by ′ < 0′ or ′ = 0′ respectively.
Thus, if u ∈ L+(λ) ∩ B+, φu(t) < 0 for t small and negative,φu(t) → ∞ as

t → ∞ andφu(t) has a unique minimum att(u) so thatt(u)u ∈ S+(λ). Similarly if
u ∈ L−(λ) ∩B−, φu(t) > 0 for t small and positive,φu(t) → −∞ ast→ ∞ andφu(t)
has a unique maximum att(u) so thatt(u)u ∈ S−(λ). Finally if u ∈ L+(λ) ∩B− (resp.
u ∈ L−(λ) ∩B+), φu(t) is strictly decreasing (resp. increasing) for all(t > 0).

Thus we have

1) if u ∈ L+(λ) ∩ B+, then t → φu(t) has a local minimum att = t(u) and
t(u)u ∈ S+(λ);

2) if u ∈ L−(λ) ∩ B−, then t → φu(t) has a local maximum att = t(u) and
t(u)u ∈ S−(λ);

3) if u ∈ L+(λ) ∩B−, thent→ φu(t) is strictly increasing and no multiple of u lies in
S(λ);

4) if u ∈ L−(λ) ∩B+, thent→ φu(t) is strictly decreasing and no multiple of u lies in
S(λ).

The Euler functional changes sign inS(λ), it is positive inS−(λ) and is negative in
S+(λ). We shall prove the existence of solutions of (1) by investigating the existence of
minimizers onS(λ). AlthoughS(λ) is only a small subset ofW 1,p

o (Ω), it turns out that
minimizers ofJ(λ) onS(λ) are generically also critical points ofJ(λ) onW 1,p

o (Ω). We
have

Lemma 1. Suppose thatu0 is a local maximum or minimum forJ(λ) on S(λ). If
u0 /∈ S0, thenu0 is a critical point ofJ(λ).

Proof. If u0 is a local minimizer forJ onS(λ), thenu0 is a solution of the optimization
problem

minimizer J(u) subject toγ(u) = 0,

whereγ(u) =
∫
Ω
(|∇u|p−λ|u|p−b|u|γ)dx. Hence, by the theory of Lagrange multipliers,

there existsµ ∈ R such thatJ ′(u0) = µγ′(u0). Thus
〈
J ′(u0), u0

〉
= µ

〈
γ′(u0), u0

〉
. (1′)
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Sinceu0 ∈ S(λ), 〈J ′(u0), u0〉 = 0 and so
∫
Ω
|∇u0|

pdx =
∫

(λ|u0|
p + b|u0|

γ)dx. Hence

〈
γ′(u0), u0

〉
= p

∫

Ω

(
|∇u0|

p − λ|u0|
p
)
dx− γ

∫
b|u0|

γdx = (p− γ)

∫
b|u0|

γdx.

Thus if u0 /∈ S0(λ), 〈γ′(u0), u0〉 6= 0 and so by (1.1)µ = 0. Hence the proof is
complete.

The plane of the paper is as follows. In Section 2 we show the importance of the
conditionL−(λ) ⊆ B− in determining the nature of the Nehari manifold, in Section3 we
prove results about the existence of minimizers on the Nehari manifold and in Section 4
we discuss how the previous results yield information aboutnon-negative solutions of (1)
asλ changes and in particular about bifurcation from infinity. In Section 5 we investigate
the nature of the Nehari manifold in cases where it is known that no non-trivial non-
negative solutions of (1) exist.

Finally, it should be noted that our results hold only in the cases where the nonlinea-
rity is a homogeneous function. This ensures that the fibrering maps involve only power
of t and the simplicity of our proof rely heavily on this fact. Thecorresponding existence
and global bifurcation results hold in much more general or abstract setting and it seems
likely that analougous results for Nehari manifolds shouldalso hold in such cases.

2 Properties of the Nehari manifold

Whenλ < λ1,
∫
Ω
(|∇u|p − λ|u|p)dx > 0 for all u ∈ W 1,p

o (Ω) and soL+(λ) = {u ∈

W 1,p
0 (Ω): ‖u‖ = 1} andL−(λ), L0(λ) = ∅. Whenλ = λ1, we haveL−(λ) = ∅ and

L0(λ) = {φ1} and whenλ is greater thanλ1,L−(λ) becomes non-empty and gets bigger
asλ increases. In this section we shall discuss the vital role played by the condition
L−(λ) ⊂ B− in determining the nature of the Nehari manifold. In view of the preceding
remarks it is easy to see that this condition is always satisfied whenλ < λ1, may or may
not be satisfied whenλ > λ1 and is increasingly likely to be violated asλ increases.

Theorem 1. Suppose there existŝλ such that for allλ < λ̂, L−(λ) ⊂ B−. Then, for all
λ < λ̂,

(i) L0(λ) ⊆ B− and soL0(λ)
⋂
B0 = ∅;

(ii) S+(λ) is bounded;

(iii) 0 /∈ S−(λ) andS−(λ) is closed;

(iv) S+(λ)
⋂
S−(λ) = ∅.

Proof. (i) Suppose that the result is false. Then there existsu ∈ L0(λ) such thatu /∈ B−.
If λ < µ < λ̂, thenu ∈ L−(µ) and soL−(µ) 6⊆ B− which is a contradiction.
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(ii) Suppose thatS+(λ) is unbounded. Then there exists{un} ⊆ S+(λ) such that
‖un‖ → ∞ asn → ∞. Let vn = un

‖un‖ . We may assume without loss of generality

thatvn ⇀ v0 in W 1,p
o (Ω) and sovn → v0 in Lp(Ω) and inLγ(Ω). Sinceun ∈ S+(λ),∫

Ω
b|vn|

γdx > 0 and so
∫
Ω
b|v0|

γdx ≥ 0.
Sinceun ∈ S(λ),

∫

Ω

(
|∇un|

p − λ|un|
p
)
dx =

∫

Ω

b|un|
γdx

and so
∫

Ω

(
|∇vn|

p − λ|vn|
p
)
dx =

∫

Ω

b|vn|
γ 1

‖un‖p−γ
dx→ 0.

Supposevn 6→ v0 in W 1,p
0 (Ω). Then

∫
Ω
(|∇v0|

pdx < lim
∫
Ω
(|∇vn|

pdx and so

∫

Ω

(
|∇v0|

p − λ|v0|
p
)
dx < lim

n→∞

∫

Ω

(
|∇vn|

p − λ|vn|
p
)
dx = 0.

Thus v0

‖v0‖
∈ L−(λ) ⊂ B− which is impossible as

∫
Ω
b|v0|

γdx ≥ 0.

Hencevn → v0 in W 1,p
o (Ω). Thus‖v0‖ = 1 and

∫

Ω

(
|∇v0|

p − λ|v0|
p
)
dx = lim

n→∞

∫

Ω

(
|∇vn|

p − λ|vn|
p
)
dx = 0.

Thusv0 ∈ L0(λ) ⊆ B− which is again impossible. HenceS+(λ) is bounded.

(iii) Suppose0∈S−(λ). Then there exists{un}⊆S
−(λ) such thatlimn→∞ un =0. Let

vn = un

‖un‖ . Then we may assume thatvn ⇀ v0 in W 1,p
o (Ω) andvn → v0 in Lp(Ω).

Sinceun ∈ S−(λ), we have

∫

Ω

(
|∇vn|

p − λ|vn|
p
)
dx =

1

‖un‖p−γ

∫

Ω

b|vn|
γdx ≤ 0.

Since the left hand side is bounded, it follows thatlimn→∞

∫
Ω
b|vn|

γdx = 0 and so∫
Ω
b|v0|

γdx = 0.
Supposevn → v0. Then‖v0‖ = 1 and sov0 ∈ B0. Moreover

∫

Ω

(
|∇v0|

p − λ|v0|
p
)
dx = lim

n→∞

∫

Ω

(
|∇vn|

p − λ|vn|
p
)
dx ≤ 0

and sov0 ∈ L0(λ) orL−(λ). Hencev0 ∈ B− and this is impossible.
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Thus we must have thatvn 6→ v0 in W 1,p
o (Ω). Then

∫

Ω

(
|∇v0|

p − λ|v0|
p
)
dx < lim

n→∞

∫

Ω

(
|∇vn|

p − λ|vn|
p
)
dx ≤ 0.

Hence v0

‖v0‖
∈ L−(λ) ∩B0 which is impossible and so0 /∈ S−(λ).

We now prove thatS−(λ) is closed. Suppose{un} ⊆ S−(λ) andun → u in
W 1,p

o (Ω). Thenu ∈ S−(λ) and sou 6= 0. Moreover,
∫

Ω

(
|∇u|p − λ|u|p

)
dx =

∫

Ω

b|u|γdx ≤ 0.

If both integrals equal 0, thanu
‖u‖ ∈ L0(λ) ∪ B0 which is contradicts (i). Hence both

integrals must be negative and sou ∈ S−(λ). ThusS−(λ) is closed.

(iv) Let u ∈ S+(λ) ∩ S−(λ). Asu ∈ S−(λ), u 6= 0. Moreover it is clear that
∫

Ω

(
|∇u|p − λ|u|p

)
dx =

∫

Ω

b|u|γdx = 0.

and so u
‖u‖ ∈ L0(λ)

⋂
B0 which is impossible.

We can also deduce important results about the behaviour ofJλ on S+(λ) and
S−(λ). By considering fibrering maps it is clear thatJλ(u) > 0 onS−(λ) andJλ(u) < 0
onS+(λ). Moreover

Theorem 2. Suppose the same hypotheses are satisfied as in Theorem1. Then

(i) Jλ is bounded below onS+(λ);

(ii) infu∈S−(λ) Jλ(u) > 0 providedS−(λ) is non-empty.

Proof. (i) is an immediate consequence of the boundedness ofS+(λ).

(ii) Supposeinfu∈S−(λ) Jλ(u) = 0. Then there exists{un} ⊆ S−(λ) such that
limn→∞ Jλ(un) = 0. Then it is clear from (3) that

∫

Ω

(
|∇un|

p − λ|un|
p
)
dx→ 0 and

∫

Ω

b|un|
γdx→ 0 as n→ ∞.

Let vn = un

‖un‖ . Since0 /∈ S−(λ), {‖un‖} is bounded away from 0. Hence

lim
n→∞

∫

Ω

(
|∇vn|

p − λ|vn|
p
)
dx = 0 and lim

n→∞

∫

Ω

b|vn|
γdx = 0.

We may assume thatvn ⇀ v0 inW 1,p
0 (Ω) andvn → v0 in Lp(Ω). Then

∫
Ω
b|v0|

γdx = 0.
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If vn → v0, we have‖v0‖ = 1 and
∫
Ω
(|∇v0|

p − λ|v0|
p)dx = 0, i.e., v0 ∈

L0(λ), whereas, ifvn 6→ v0,
∫
Ω
(|∇v0|

p − λ|v0|
p)dx < 0, i.e., v0

‖v0‖
∈ L−(λ). In

both cases, however, we must also havev0

‖v0‖
∈ B0 and this contradiction. Hence

infu∈S−(λ) Jλ(u) > 0.

Lemma 2. SupposeL−(λ) ∩B+ 6= ∅. Then there existsk > 0 such that for everyε > 0
there existsuε ∈ L+(λ) ∩B+ such that

∫

Ω

(
|∇uε|

2 − λ|uε|
2
)
dx < ε and

∫

Ω

b|uε|
γdx > k.

3 The existence of minimizers

Theorem 3. SupposeL−(λ) ⊆ B− for all λ < λ̂. Then, for allλ < λ̂,

(i) there exists a minimizer forJλ onS+(λ);

(ii) there exists a minimizer forJλ onS−(λ) provided thatL−(λ) is non-empty.

Proof. By Theorem 2Jλ is bounded below onS+(λ). Let {un} ⊆ S+(λ) be a minimi-
zing sequence, i.e.,

lim
n→∞

Jλ(un) = inf
u∈S+(λ)

Jλ(u) < 0.

SinceS+(λ) is bounded, we may assume thatun ⇀ u0 in W 1,p
0 (Ω) andun → u0 in

Lp(Ω). SinceJλ(un) = ( 1
p
− 1

γ
)
∫
Ω
b|un|

γdx, it follows that

∫

Ω

b|u0|
γdx = lim

n→∞

∫

Ω

b|un|
γdx > 0

and so u0

‖u0‖
∈ B+. Hence by Theorem 1,u0

‖u0‖
∈ L+(λ) and so the fibrering mapφu0

has a unique minimum att(u0) such thatt(u0)u0 ∈ S+(λ).
Supposeun 6→ u0 in W 1,p

0 (Ω). Then
∫

Ω

(
|∇u0|

p − λ|u0|
p
)
dx < lim

n→∞

∫

Ω

(|∇un|
p − λ|un|

p)dx

= lim
n→∞

∫

Ω

b|un|
γdx =

∫

Ω

b|u0|
γdx

and sot(u0) > 1. Hence

Jλ(t(u0)u0) < Jλ(u0) < lim
n→∞

Jλ(un) = inf
u∈S+(λ)

Jλ(u)

which is impossible.
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Henceun → u0 and sou0 ∈ S(λ). It now follows easily thatu0 is a minimizer for
Jλ onS+(λ).

(ii) Let {un} be a minimizing sequence forJλ onS−(λ). Then by Theorem 2 we must
have

lim
n→∞

Jλ(un) = inf
u∈S−(λ)

Jλ(u) > 0.

Suppose that{un} is unbounded, we may suppose that‖un‖ → ∞ asn → ∞. Let
vn = un

‖un‖ . Since{Jλ(un)} is bounded, it follows that{
∫
Ω
(|∇un|

p − λ|un|
p)dx} and

{
∫
Ω
b|un|

γdx} are bounded and so

lim
n→∞

∫

Ω

(
|∇vn|

p − λ|vn|
p
)
dx = lim

n→∞

∫

Ω

b|vn|
γdx = 0.

Since{vn} is bounded, we may assume thatvn ⇀ v0 in W 1,p
0 (Ω) andvn → v0 in Lp(Ω)

so that
∫
Ω
b|v0|

γdx = 0.
If vn → v0 in W 1,p

0 (Ω), it is easy to see thatv0 ∈ L0(λ) ∩ B0 which is impossible
because of Theorem 1(i).

Hencevn 6→ v0 in W 1,p
0 (Ω) and so

∫

Ω

(
|∇v0|

p − λ|v0|
p
)
dx < lim

n→∞

∫

Ω

(
|∇vn|

p − λ|vn|
p
)
dx = 0.

Hencev0 6= 0 and v0

‖v0‖
∈ L−(λ) ∩B0 which is again impossible.

Thus {un} is bounded and so we may assume thatun ⇀ u0 in W 1,p
0 (Ω) and

un → u0 in Lp(Ω). Supposeun 6→ u0 in W 1,p
0 (Ω). Then

∫

Ω

b|u0|
γdx = lim

n→∞

∫

Ω

b|un|
γdx =

(1

p
−

1

γ

)−1

lim
n→∞

Jλ(un) < 0

and
∫

Ω

(
|∇u0|

p − λ|u0|
p
)
dx < lim

n→∞

∫

Ω

(
|∇un|

p − λ|un|
p
)
dx

= lim
n→∞

∫

Ω

b|un|
γdx =

∫

Ω

b|u0|
γdx.

Hence u0

‖u0‖
∈ L−(λ) ∩B− and sot(u0)u0 ∈ S−(λ) where

t(u0) =

[ ∫
Ω
b|u0|

γdx∫
Ω
(|∇u0|p − λ|u0|p)dx

] 1
p−γ

< 1.
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Moreovert(u0)un ⇀ t(u0)u0 but t(u0)un 6→ t(u0)u0 and so

Jλ(t(u0)u0) < lim
n→∞

Jλ

(
t(u0)un

)
.

Since the mapt→ Jλ(tun) attains its maximum att = 1,

lim
n→∞

Jλ(t(u0)un) ≤ lim
n→∞

Jλ(un) = inf
u∈S−(λ)

Jλ(u).

HenceJλ(t(u0)u0) < infu∈S−(λ) Jλ(u) which is impossible.
Thusun → u0 and it follows easilyu0 is a minimizer forJλ onS−(λ).
The existence of above minimizers implies the existence of corresponding non-

negative solution of (1). Suppose, for example, thatu0 is a minimizer forJλ onS−(λ).
SinceJλ(u) = Jλ(|u|), we may assume thatu0 is non-negative inΩ. SinceS−(λ) is
closed,u0 is a local minimum forJλ on S(λ). It follows from Lemma 1 thatu0 is a
minimizers onS+, (λ), Jλ(u0) < 0. Thusu0 must be a local minimizer onS(λ) and
so again corresponds to a classical solution of (1). So the positive solutions are saddle
points of the Euler functional and are characterized as local minimum of Euler functional
restricted toS+(λ) andS−(λ).

4 Bifurcation from infinity

It can be shown using bifurcation theory arguments that bifurcation from infinity occurs
atλ = λ1 and that the direction of this bifurcation is determined by the sign of

∫
Ω
bφγ

1dx.
In this section we show how these facts are related to properties of the Nehari manifold
for the problem.

SinceL−(λ) is empty forλ < λ1, it follows from Theorem 3 thatJλ has a minimizer
onS+(λ) wheneverλ < λ1.

Our next result corresponds to the fact that a branch of positive solutions bifurcates
from infinity to the left atλ = λ1 when

∫
Ω
bφγ

1dx > 0.

Theorem 4. Suppose
∫
Ω
bφγ

1dx > 0. Then

lim
λ→λ

−

1

inf
u∈S+(λ)

Jλ(u) = −∞.

Proof. Since
∫
Ω
bφγ

1dx > 0 and
∫
Ω
|∇φ1|

p − λ|φ1|
pdx = (λ1 − λ)

∫
Ω
|φ1|

pdx, we have
thatφ1 ∈ L+(λ) ∩B+ for all λ < λ1. Hencet(φ1)φ1 ∈ S+(λ) and

Jλ(t(φ1)φ1) =
(1

p
−

1

γ

)∣∣t(φ1)
∣∣p

∫

Ω

(
|∇φ1|

p − λ|φ1|
p
)
dx

=
(1

p
−

1

γ

)[ ∫
Ω
b|φ1|

γdx∫
Ω

(
|∇φ1|p − λ|φ1|p

)
dx

] p

p−γ
∫

Ω

(
|∇φ1|

p − λ|φ1|
p
)
dx
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=
(1

p
−

1

γ

) [ ∫
Ω
b|φ1|

γdx
] p

p−γ

[ ∫
Ω

(
|∇φ1|p − λ|φ1|p

)
dx

] γ

p−γ

=
(1

p
−

1

γ

) 1

(λ1 − λ)
γ

p−γ

[ ∫
Ω
b|φ1|

γdx
] p

p−γ

[ ∫
Ω
|φ1|γdx

] γ

p−γ

.

Thusinfu∈S+(λ) Jλ(u) ≤ Jλ(t(φ1)φ1) → −∞ asλ→ λ−1 .

Corollary 1. Suppose
∫
Ω
b|φ1|

γdx > 0. Then for everyλ < λ1 there exists a minimizer
uλ onS+(λ) such thatlimλ→λ

−

1

‖uλ‖ = ∞.

We now turn our attention to the case where
∫
Ω
b|φ1|

γdx < 0. In this case the
hypotheses of Theorem 1 hold some way to the right ofλ = λ1. Moreover precisely

Lemma 3. Suppose
∫
Ω
b|φ1|

γdx < 0. Then existδ1, δ2 > 0 such thatu ∈ L−(λ) ⇒∫
Ω
buγdx ≤ −δ2 wheneverλ1 ≤ λ ≤ λ1 + δ1.

The result can be proved by a straightforward contradictionargument.

Corollary 2. Suppose
∫
Ω
b|φ1|

γdx < 0 andδ1 is as in Lemma3. Then wheneverλ1 ≤
λ ≤ λ1 + δ1, there exist minimizersuλ andvλ of Jλ onS+(λ) andS−(λ) respectively.

Proof. Clearlyφ1 ∈ L−(λ) and soL−(λ) is non-empty wheneverλ ≥ λ1. By Lemma 3
the hypotheses of Theorem 3 are satisfied withλ̂ = λ1 + δ1 and so the result follows.

The next results show that when
∫
Ω
b|φ1|

γdx < 0, bifurcation from infinity occurs
to the right atλ = λ1.

Theorem 5. Suppose
∫
Ω
bφγ

1dx < 0. Asλ→ λ+
1 , vλ becomes unbounded inW 1,p

0 (Ω).

Proof. Let v∈S−(λ). Thenv = t(u)u for someu∈L−(λ)∩B−. Now
∫
Ω
b|u|γdx<−δ2

providedλ1 ≤ λ ≤ λ1 + δ1 and

0 >

∫

Ω

(
|∇u|p − λ|u|p

)
dx ≥

(
1 −

λ

λ1

) ∫

Ω

|∇u|pdx =
λ1 − λ

λ1
,

so that|
∫
Ω
(|∇u|p − λ|u|p)dx| ≤ λ−λ1

λ1
. Hence

Jλ(v) = Jλ

(
t(u)u

)
=

(1

p
−

1

γ

)[
t(u)

]p
∫

Ω

(
|∇u|p − λ|u|p

)
dx

=
( 1

γ
−

1

p

) ∣∣ ∫
Ω
b|u|γ

∣∣ γ

p−γ

∣∣ ∫
Ω

(
|∇u|p − λ1|u|p

)
dx

∣∣ γ

p−γ

≥
( 1

γ
−

1

p

) λ
γ

p−γ

1 δ
γ

p−γ

2

(λ− λ1)
γ

p−γ

.

Henceinfv∈S−(λ) Jλ(v) → ∞ asλ→ λ1 and sovλ is unbounded asλ→ λ+
1 .
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5 The case of non-existence

Finally we show that under hypotheses where it is known that no positive solutions to (1)
exist thenJλ is not bounded below onS(λ).

Lemma 4. Jλ is unbounded below onS(λ) wheneverL−(λ) ∩B+ 6= ∅.

Proof. Supposeu0 ∈ L−(λ) ∩ B+. It follows from Lemma 2 that there existsk > 0
and a sequence{un} ⊆ L−(λ) ∩ B+ such that

∫
Ω
b|un|

γdx ≥ k and0 <
∫
Ω
(|∇u|p −

λ|u|p)dx < 1
n

. Then,using the same computation as in the proof of Theorem 5, we have

Jλ

(
t(un)un

)
=

(1

p
−

1

γ

) ( ∫
Ω
b|un|

γdx
) p

p−γ

( ∫
Ω

(
|∇u|p − λ|u|p

)
dx

) γ

p−γ

≤
(1

p
−

1

γ

)
n

γ

p−γ k
p

p−γ → −∞ as n→ ∞.

HenceJλ is unbounded below onS(λ).
The following non-existence results for (1) are well-known. For completeness we

give their simple proofs.

Theorem 6. (i) Suppose
∫
Ω
b|φ1|

γdx > 0. Then(1) has no positive solutions whenever
λ > λ1.

(ii) Equation(1) has no positive solutions whenλ > λ̂ where λ̂ is the principal
eigenvalue of

− ∆pu(x) = λu(x)
∣∣u(x)

∣∣p−2
for x ∈ Ω+, u(x) = 0 for x ∈ ∂Ω+,

Ω+ =
{
x ∈ Ω: b(x) > 0

}
.

(7)

Proof. (i) Suppose
∫
Ω
b|φ1|

γdx > 0 and that (1) has a positive solutionu. Multiplying
(1) byφ1, (2) by u and subtracting gives

− ∆pu(x)φ1(x) + u(x)∆pφ1(x)

= (λ− λ1)u(x)φ1(x) + b(x)
∣∣u(x)

∣∣γ−p
u(x)φ1(x)

and so
∫

Ω

(φ1

u

)γ−p+1

(−∆uφ1 + u∆φ1)dx =

∫

Ω

(λ− λ1)φ
γ
1u

p−γdx+

∫

Ω

b|φ1|
γdx.

By Picone’s identity, the left hand side is negative. Hence we must haveλ < λ1 and so
(1) has no positive solutions whenλ > λ1.

(ii) Suppose that (1) has a positive solution. Thenu(x) ≥ o onΩ+ and

−∆u(x) = λu(x) + b(x)|u|γ−pu ≥ λu on Ω+; u(x) ≥ 0 on ∂Ω+.

It follows from the maximum principle thatλ ≤ λ.
Finally we observe that in each of the cases aboveJλ is not bounded below onS(λ).
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Theorem 7. Jλ is not bounded below onS(λ) when either of the following condition
hold:

(i)
∫
Ω
b|φ1|

γdx > 0 andλ > λ1;

(ii) λ > λ whereλ is as in Theorem6.

Proof. By Lemma 4 it is sufficient to show thatL−(λ) ∩ B+ 6= ∅. If (i) holds, then
φ1 ∈ L−(λ) ∩B+ and, if (ii) holds, thenψ ∈ L−(λ) ∩B+ where

ψ(x) =

{
positive principal eigenfunction of (7) onΩ+,

0 if x ∈ Ω/Ω+.
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