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Abstract. The Nehari manifold for the equationA,u(z) = Mu(z)u(z)[P~2 +
b(z)|u(z)|"~2u(x) for z € Q together with Dirichlet boundary condition is investigated
in the case wheré < v < p. Exploiting the relationship between the Nehari manifold
and fibrering maps (i.e., maps of the formtof> J(tu) where.J is the Euler functional
associated with the equation), we discuss how the Nehari manifold chasyehanges,
and show how existence results for positive solutions of the equation &esllio the
properties of Nehari manifold.
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1 Introduction

Consider the semilinear boundary value problem
—Apu(x) = )\u(;v)‘u(x)|p72 + b(x)|u(x)’v72u(x), x € Q, B
u(z) =0, x € 09,

where() is a bounded region with smooth boundaryRf andb: Q — R is a smooth
function which may change sign.

The study of elliptic equations involving theLaplacian and using the fibrering
method sees great increase in number of papers publisheefll-s&] which have studied
the equation with convex-concave linearity. Notice thasthresults have also generalized
to (p, q)-system in the papers such as [4, 5] using the fibrering method

In this paper we have generalized the article of Brown andnghis] to the
p-Laplacian by using fibrering method fdr < v < p. This problem wheny > p
has been studied by Binding et al. [7, 8] by using variationathod.

We shall discuss the existence and multiplicity of non-tiggasolution of (1) from
a variational viewpoint making use of the Nehari manifold]@].
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Suppose thak; is the principal eigenvalue of the linear problem

{‘Apu@) = Mu(@)[u(@)["", e, @)

u(z) =0, z € 0.

The direction of bifurcation being determined by the sign[gb¢{dx whereg, is the
positive principal eigenvalue correspondinghto We shall show precisely the important
role played bny b¢] dz by investigating the Nehari manifold changes with

The Euler function associated with (1) is

1 1
Jy(u) = 5/|Vu|pdx— %/|u|pdx— ;/b|u|’ydﬂc, u € Whe(Q).
Q Q Q

By the spectral theorem

[ivupds [ o> 00 - [lrae torai we wire)
Q Q Q

and so

Ia(u) > =(N\ —)\)/|u|pd:1:— g/|u|7dx

Q Q

bR

ol

b o
_ p _ Y 1—; p P
(A /\)/|u| dz 7|Q| </|u| da:) ,

whereb = sup,.q, b(z). HencelJ, is bounded below ofV}:?(Q2) whenX < A;. Itis
easy to see, however, that, when- A1, lim;_. ., Jy(t¢1) = —oo and saJ, is no longer
bounded below o’} (2). In order to obtain existence results in this case we inttedu
the Nehari manifold

>

SRR

SO = {w € WIP(Q): (J3(w),u) = 0},
where(, ) the usual duality. Thus € S()) if and only if

/|Vu|pdac—)\/|u\pdx—/b\u|vd;v:0.
Q Q

Q

Clearly S()) is a much smaller set thdi!:?(Q2) and so it is easier to studij on S(\).
OnS(A) we have that

Ja(u) = (1 - 1) / (IVulP = AulP)dz = (;1) - %) /b|u|7d:n. @)
Q Q

p 7
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The Nehari manifold is closely linked to the behavior of thenfip,, : t — Jy (tu)(t > 0).
Such maps are known as fibrering maps and were introduce dyeRrand Pohozaev
in [11]. If u € W1P(Q), we have

Gult) = %/(wuv’ CNul)de — % /b|u\7d3:, @)
Q Q
o,.t) = 71 [ (9l = AulP)dz — 0 [ bulda, (5)
/ /
0116) = (o= 172 [ (19ul? = MuP)do — (v~ D2 [ fuda, (6)
Q Q

Itis easy to see that € S(\) if and only if ¢/,(1) = 0 and more generally that, (¢) = 0

if and only iftu € S()), i.e., elements it (\) correspond to stationary points of fibrering
maps. Thus it is natural to subdivid&\) into sets corresponding to local minima, local
maxima and points of inflection. It follows from (5) and (6)athf ¢!, (¢) = 0, then
du(t) = (p— )72 [, blu|"dz. Thus we define

{u € S(A /b|u|7d:c > O}
= {u €S /b|u|7dx < 0}
— {u e S(A /b|u|7dm = 0}

so thatS*, S—,S° corresponding to minima, maxima and points of inflectiorpees
tively.
Letu € W, (). Then

1) if [(|Vul” — Xul?)dz and [, b|u|”dz have the same sigi,, has a unique turning
point at

Jo blu|Vdx o=

tu) = Jo (IVulP — Au|P)dz

this turning point is a local minimum(maximum) so thét)u € ST(A\)((S~(N)) if
and only if [, blu|Ydz > 0(< 0);

2) if [,(IVul? — Xu|P)dz and [, blu|"dz have different sign, ther,, has no turning
points and so no multiples aflie in S(A).
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Thus, if we define

Lo = {u e WEP(@): luf = 1 and / (9l — Aup)dz > 0},
Q

B, = {uec WiP(@): Ju| = 1 and /b|uwdx >0,

where the norm oV, *(12) is defined agju|| = {/q |V\de}% and analogously define
L_(\), Lo(N), B—, By by replacing > 0/ by’ < 0’ or’ = 0’ respectively.

Thus, ifu € Li(A\) N By, ¢u(t) < 0 for t small and negativep,,(t) — oo as
t — oo and¢,(t) has a unique minimum atu) so thatt(u)u € ST (). Similarly if
u € L_(X) N B_, ¢,(t) > 0fort small and positivep,,(t) — —cc ast — oo ande,, (t)
has a unique maximum &fu) so thatt(u)u € S—(A). Finally if u € L1 ()\) N B_ (resp.
u € L_(\) N By), ¢,,(t) is strictly decreasing (resp. increasing) for@lt> 0).

Thus we have

1) if w € Ly(\) N By, thent — ¢,(t) has a local minimum at = ¢(u) and
t(u)u € ST(N);

2)ifu € L_(\) N B_, thent — ¢,(t) has a local maximum at = t(u) and
tu)u e S™(N);

3) if we Li(A\) N B_,thent — ¢,(t) is strictly increasing and no multiple of u lies in
S(N);

4) if we L_(\) N By, thent — ¢,(t) is strictly decreasing and no multiple of u lies in
S(A).

The Euler functional changes sign #(\), it is positive in S~ (A\) and is negative in
S*(A). We shall prove the existence of solutions of (1) by investigy the existence of
minimizers onS(\). Although S()) is only a small subset di!:?(Q), it turns out that
minimizers ofJ(\) on S(\) are generically also critical points df(\) on W2 (£2). We
have

Lemma 1. Suppose thati is a local maximum or minimum fo7(A) on S(A). If
ug ¢ S°, thenuy is a critical point of J(\).

Proof. If ug is a local minimizer forJ on S(\), thenuy is a solution of the optimization
problem

minimizer J(u) subjectto~y(u) =0,

wherey(u) = [,,(|VulP—Alu|P—blu|")dz. Hence, by the theory of Lagrange multipliers,
there emstgu € R such that/’(ug) = uy'(ug). Thus
(J'(ug), u0) = p{y (uo), uo)- 1)
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Sinceug € S(A), (J'(ug), uo) = 0 and sof, [Vuo|Pdx = [(Aug|? + blug|”)dz. Hence

(¥ (tt0), 0 = p / (IVuol? — Muol?)dz — / bluol"dz = (p — ) / bluso| .

Q

Thus if ug & S°(A), (v'(uo),uo) # 0 and so by (1.1 = 0. Hence the proof is
complete. 0

The plane of the paper is as follows. In Section 2 we show theoitance of the
conditionL_(\) C B_ in determining the nature of the Nehari manifold, in SecBame
prove results about the existence of minimizers on the Nehanifold and in Section 4
we discuss how the previous results yield information alboutnegative solutions of (1)
as ) changes and in particular about bifurcation from infinitySection 5 we investigate
the nature of the Nehari manifold in cases where it is knowat tio non-trivial non-
negative solutions of (1) exist.

Finally, it should be noted that our results hold only in thses where the nonlinea-
rity is @ homogeneous function. This ensures that the filigaraps involve only power
of t and the simplicity of our proof rely heavily on this fact. Tberresponding existence
and global bifurcation results hold in much more generalbstract setting and it seems
likely that analougous results for Nehari manifolds shalb hold in such cases.

2 Properties of the Nehari manifold

When < Ay, [o(|VulP — MulP)dz > 0 for allu € W} P(Q) and soL4(\) = {u €
WyP(Q): ||ul| = 1} andL_(\), Lo(A) = 0. WhenX = \;, we haveL_(\) = () and
Lo(N) = {¢1} and when\ is greater thar\;, L_ (\) becomes non-empty and gets bigger
as \ increases. In this section we shall discuss the vital rodeygd by the condition
L_(\) C B_ in determining the nature of the Nehari manifold. In view!ué ppreceding
remarks it is easy to see that this condition is always satisfihen\ < A;, may or may
not be satisfied wheh > \; and is increasingly likely to be violated asncreases.

Theorem 1. Suppose there existssuch that for allx < A, L_(\) c B_. Then, for all
A<,

(i) Lo(\) € B_and soLy(\) () Bo = 0;

(i) S*(A) is bounded;
(iii) 0¢ S—(\)andS—()\) is closed;

(V) SFOVNS—(A) = 0.

Proof. (i) Suppose that the result is false. Then there existsL,(\) such that. ¢ B_.
If A< p< A thenu € L_(u) and soL_(u) € B_ which is a contradiction.
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(i) Suppose thatS*(\) is unbounded. Then there exisfs,,} C ST ()\) such that
lun|| — o0 @asn — oo. Letw, = Ty We may assume without loss of generality
thatv,, — vg in WP(Q2) and sov,, — vg in LP(Q) and inL" (). Sinceu,, € ST (\),
Jo blvn|7dz > 0 and sof, bve|*dz > 0.

Sinceu,, € S(\),

/(|Vun\p — ANup|P)dz = /b|un\7dx

Q Q
and so
1
(IVvn|P = Nvn|P)dz = [ blv,|) +———dz — 0.
/ J O e

Supposer,, /> vo in Wy (Q). Then [, (|Vvo[Pdz < lim [,,(|Vv,[Pdz and so

/(|V1}0|p — Alvo[P)dz < lim /(|an|p — Alvp|P)dz = 0.
n—oo
Q Q
Thus e € L_(A) C B- which is impossible ag,, b|vo|"dz > 0.
Hencev,, — vy in WP (Q). Thus||v|| = 1 and

/(|Vvo|p — Mvo|?)dz = lim /(|Vun|p — Alvp|P)dz = 0.
Q Q

Thusvy € Lo(A) C B_ which is again impossible. Hence" () is bounded.

(iii) Supposed € S—(\). Then there exist$u,, } .S~ (A) such thatim,,_, o u,, =0. Let
Uy = ”Z—ZH Then we may assume that — v in W2?(Q) andv,, — vg in LP(Q).
Sinceu,, € S~(\), we have

1
/(|an|p - Aunf?)de = T /b\unwdaz <.
Q " Q

Since the left hand side is bounded, it follows thiat,, ... fQ blu,|"dx = 0 and so
Jo blvo|"dx = 0.
Supposes,, — vp. Then||vg|| = 1 and sovy € By. Moreover

/(|Vv0|p — MNvo|?)dz = lim /(|Vun|p — Alvp|P)dz <0
Q Q

and sovg € Lo(A) or L_()\). Hencevy € B_ and this is impossible.
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Thus we must have that, /4 vo in W1P(Q). Then

/(|V1}0|p = Mvo|P)dz < lim /(|an|p — Avp[P)dz < 0.
Q Q

Hencept, € L_(\) N By which is impossible and so ¢ S—(\).

We now prove thatS~ () is closed. Supposéu,} C S~(A) andu, — u in
WLr(Q). Thenu € S—(\) and sou # 0. Moreover,

/ (1Vul? — Aul?)dz = /b\uwdm <.
Q

Q

If both integrals equal 0, thaﬁuz—” € Lo(\) U By which is contradicts (i). Hence both
integrals must be negative and@@& S~ (\). ThusS~(\) is closed.

(iv) Letu € ST(A) NS~ (N). Asu € S~ (A), u # 0. Moreover it is clear that

/(|Vu|p — AulP)dz = /b\uﬁdm =0.

Q Q

and soﬁ € Lo(M) [ Bo which is impossible.

We can also deduce important results about the behaviouk, afn S*(\) and
S~(A). By considering fibrering maps itis clear that(u) > 0 on.S~—(\) andJy(u) < 0
on S*(\). Moreover

Theorem 2. Suppose the same hypotheses are satisfied as in Théofmn
(i) Jxis bounded below 08" (\);
(i) inf,eg-(x) Ja(u) > 0 providedS—(A) is non-empty.

Proof. (i) is an immediate consequence of the boundedne§s O} ).

(i) Supposeinf,cs-(n)Ja(u) = 0. Then there existfu,} C S~()\) such that
lim,, ., Jx(un) = 0. Then itis clear from (3) that

/(|Vun\p — Alup|P)dz — 0 and /b\un\"’dx —0 as n— oo.
Q Q

Letv, = 7. Sincel ¢ 5—(A), {||ur ||} is bounded away from 0. Hence

n
lun

lim | (|Vo,|[P = Ao, [P)dz =0 and lim [ bv,|"dz = 0.

Q Q

We may assume thal, — vy in W, ?(Q) andv,, — v in LP(Q). Then [, blvo|"dz = 0.
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If v, — wvo, we havellv|| = 1 and [,(|Vuo|? — Mvo|P)dz = 0, i.e., vy €
Lo()), whereas, ifv, /4 vo, [o(|[VuolP — Avol?)dz < 0, i.e., Toep € L(A). In
both cases, however, we must also h% € By and this contradiction. Hence
infues—o\) JA(U) > 0.

Lemma 2. Supposd._(\) N By # (. Then there exists > 0 such that for every > 0
there exists:. € L, (\) N By such that

/(|vu€\2 — Mu*)dz < e and /b\us\vdx > k.
Q Q

3 The existence of minimizers

Theorem 3. Supposd._(A) € B_ forall A < X. Then, for all\ < A,
(i) there exists a minimizer fof, on S*(\);
(i) there exists a minimizer fof, on .S~ (\) provided thatZ._(\) is non-empty.

Proof. By Theorem 27, is bounded below o8 ()). Let{u,} C S*()\) be a minimi-
zing sequence, i.e.,

lim Jy(un) = inf Jx(u) <0

n— o0 u€eS+(N)

SinceSt()) is bounded, we may assume that — u in Wy ?(Q) andu, — wug in

LP(Q). SinceJy(un) = (5 — 2) [, blun|dz, it follows that

/b|u0|“’dx = lim /b|un|7d:r >0
Q Q

and so "0H € B.. Hence by Theorem J1r“°| € L ()) and so the fibrering magp,,,

has a unique minimum atug) such that (ug)ug € ST(N).
Supposes,, 4 ug in W, *(22). Then

/(|Vu0\p Muo|P)dz < hm / [Vun|P — Mu,|P)dz
Q

= lim b|un|7dx—/b|uo|“’d$

n—oo

and saot(ug) > 1. Hence

In(t(ug)up) < Ja(ug) < lim Jy(u,) = inf Jy(u)

n— o0 ueSt ()

which is impossible.
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Henceu,, — ug and soug € S(\). It now follows easily that is a minimizer for
JyonST(\).

(i) Let {u,} be a minimizing sequence fok, on .S~ (). Then by Theorem 2 we must
have

nlLH;O In(uy) = ueigr{f(}\) Ix(u) > 0.

Suppose thafu, } is unbounded, we may suppose that,|| — oo asn — oo. Let
Un = T Since{Jx(ux)} is bounded, it follows thaf [, (|Vu,|? — Mu,[?)dz} and

{ /g, blun|"dz} are bounded and so

lim (\an\ = Mop|P)de = hm /b|vn|7d:r =0.

n—oo

Q Q

Since{v, } is bounded, we may assume that— v in W, "*(Q) andv,, — v in L?(Q)
so that[, blvg|"dx = 0.

If v,, — vo in Wy P(), itis easy to see that, € Ly(\) N By which is impossible
because of Theorem 1(i).

Hencev,, £ vy in W, " (€2) and so

/(|Vv0|p = Mvo|P)dz < lim /(|an|p — A|vp[P)dz = 0.
Q Q

Hencevy # 0 and ”OH € L_(\) N By which is again impossible.

Thus {u,} is bounded and so we may assume that — wug in W, *(€) and
w, — ug in LP(Q). Suppose, /4 ug in Wy*(€2). Then

1 1y
/b|uo|'ydat = lim /b|un|"’d$ - (— - —) lim Jy () < 0
n—oo p "y

Q

n—oo
Q
and

/(IWo\p = Aug|P)dz < lim / (IVtunl? — Nun|P)da
n—oo
Q

= lim b|un|'ydx—/b|u0|“’dx

n—oo

Hence2 € L_(\) N B_ and sot(ug)ug € S~ (\) where

llwoll

fQ bluo|"dx rlw <1
Jo(IVuolP — Aug|?)dz '

t(uo) =
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Moreovert(ug)u, — t(ug)ug butt(ug)u, # t(ug)ug and so

Ia(t(ug)ug) < lim Jy (¢(uo)un).

n—oo

Since the map — J, (tu,,) attains its maximum at= 1,

lim Jy(t(up)uy) < lim Jy(un) = inf  Jy(uw).

n—o00 n—00 u€S™(A)

HenceJ) (t(uo)uo) < inf,cg- (1) Jx(u) which is impossible.

Thusw,, — ug and it follows easilyu, is a minimizer forJ, on.S=(\).

The existence of above minimizers implies the existenceoofesponding non-
negative solution of (1). Suppose, for example, thats a minimizer for.J, on S~ (\).
SinceJy(u) = Jx(|u]), we may assume thai, is non-negative if2. SinceS—(\) is
closed,uy is a local minimum forJy on S(A). It follows from Lemma 1 that is a
minimizers onS™, (\), Jx(ug) < 0. Thusug must be a local minimizer o§()\) and
S0 again corresponds to a classical solution of (1). So tkéiy® solutions are saddle
points of the Euler functional and are characterized ad lkng@mum of Euler functional
restricted taS™(\) and.S— ().

4 Bifurcation from infinity

It can be shown using bifurcation theory arguments thatrbétion from infinity occurs
atA = \; and that the direction of this bifurcation is determined by $ign of [, b¢] dz.
In this section we show how these facts are related to priegasf the Nehari manifold
for the problem.

SinceL_()\) is empty for\ < A4, it follows from Theorem 3 thaf, has a minimizer
on ST (\) wheneven\ < ;.

Our next result corresponds to the fact that a branch ofipesiblutions bifurcates
from infinity to the left ath = \; when [, b¢]dx > 0.

Theorem 4. Suppos€/, b¢]dx > 0. Then

lim  inf Jy(u) = —oc.
A—AL ueSt(A)

Proof. Since [, bp]dx > 0and [, [Vp1|P — N|p1[Pdx = (A1 — A) [, |¢1|Pdz, we have
thatg, € L (\) N By forall A < \;. Hencet(¢1)¢; € ST(A) and

1 1

oo = (5= 2]’ [ (Tarr - No)ds
Q

— 1 _ l fQ b‘¢)1|’yd$ ﬁ B
— (p 'y) [fﬂ (|V¢1‘p _ )\|¢1|p)dm:| Q/(|V¢1|p /\‘¢1|p)d5c
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(1Y [y bl [ da] ™7
[Ja

P V[P — Alga|P)da] 7

(ol [ bl [7da] 7
P (A =N [ J;, |61 da] =]
ThUSinfu€S+(A) J,\(u) < J,\(t(qﬁl)(ﬁl) — —00 asA — A .

Corollary 1. Suppose/, b|¢1|?dxz > 0. Then for every\ < A, there exists a minimizer
uy onST()\) such thatiim, - |ua]| = oc.

We now turn our attention to the case whefieb|¢:["dz < 0. In this case the
hypotheses of Theorem 1 hold some way to the right ef A;. Moreover precisely

Lemma 3. Supposef,, b|¢1|"dz < 0. Then existi,d > 0 such thatu € L_(\) =
.fQ buvdxr < —8, whenever\; < XA < \; + ;.

The result can be proved by a straightforward contradidigument.

Corollary 2. SupposefQ bl¢1|7dx < 0 anddy is as in Lemma. Then whenevek; <
A < A\p + &1, there exist minimizers, andv, of J, on ST (\) and S~ ()\) respectively.

Proof. Clearly¢, € L_()\) and soL_(\) is non-empty whenevex > \;. By Lemma 3
the hypotheses of Theorem 3 are satisfied with \; + §; and so the result follows. O]

The next results show that whefp b|¢1 |Ydz < 0, bifurcation from infinity occurs
to the right ath = \;.

Theorem 5. Suppose/, b¢]dz < 0. AsA — Af, vy becomes unbounded T, P ().

Proof. Letve S~ ()). Thenv = t(u)u for someue L_(A)NB_. Now [, b|u|"dx < —d,
provided\; < XA < A1 4+ 47 and

A A1 —A
P _ \ulP _A Py —
O>/(|Vu| AulP)dz > (1 >\1>/Wu\ dr = N
Q )

so that] [, (|VulP — AlulP)dz| < 25321, Hence

Ta(v) = T (tH(u)u) = (1 - 1) [t(u)]p/ (IVul? = AulP)dz

p v
Q

_ (1 ~ 1) | Jy blul”|7

Y P ’fﬂ(\vU|p_)\1|u|p)dx|ﬁ - (7 p

11)W
A= A)77

Henceinf ,cs-(x) Jx(v) — oo @as\ — A; and sov, is unbounded a& — /\j’.
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5 The case of non-existence
Finally we show that under hypotheses where it is known thaiasitive solutions to (1)
exist thenJ is not bounded below o6 ().

Lemma 4. J, is unbounded below ofi(\) whenevet._(\) N B # (.

Proof. Supposeuy € L_(A) N By. It follows from Lemma 2 that there exists > 0
and a sequencgu, } € L_(X\) N By such thatf, blu,|["dz > k and0 < [,(|Vul? —
AlulP)dz < L. Then,using the same computation as in the proof of Theoreme have

I (t(un)un

-(-h (JoyVlun ) 7
p Yulp — \ulp dCUﬁ
Q
S(l_l)nﬁkﬁ—)—oo as n — oo.
p

HenceJ) is unbounded below of()).
The following non-existence results for (1) are well-knowfor completeness we
give their simple proofs.

Theorem 6. (i) Suppose/, b|$1|"dz > 0. Then(1) has no positive solutions whenever
A > A

(i) Equation(1) has no positive solutions when > X\ where X is the principal
eigenvalue of

— Apu(z) = )\u(a?)‘u(x)’p_2 for x € QF, w(z) =0 for z € 00T, @
Qt = {z € Q: b(x) > 0}.

Proof. (i) Suppose/,, b|¢1|"dz > 0 and that (1) has a positive solutian Multiplying
(1) by ¢1, (2) by u and subtracting gives

= Apu(x)d1(z) + u(w)Apd(z)
= (A= A)u(z)1 () + b(x)|ulz)|"  u(z)dr ()

and so
/ (%)7_p+1(—Au¢1 +ul¢r)dr = /()\ — A uPVda + /b|¢1wdx~
Q § ¢

By Picone’s identity, the left hand side is negative. Heneemust have\ < A; and so
(1) has no positive solutions when> \;.

(i) Suppose that (1) has a positive solution. Thém) > o onQ* and
—Au(z) = Mu(z) + b(x)|u|”Pu> Au on QF;  wu(z) >0 on 9NT.

It follows from the maximum principle that < ).
Finally we observe that in each of the cases abbyis not bounded below o6 ().
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Theorem 7. J, is not bounded below of(\) when either of the following condition
hold:

() J,bl¢17dz > 0andA > Ay;

(i) A > Xwhere) is as in Theoreng.

Proof. By Lemma 4 it is sufficient to show that_(\) N By # 0. If (i) holds, then
¢1 € L_(\) N By and, if (i) holds, then) € L_(\) N By where

() = positive principal eigenfunction of (7) dn™,
o if z e/t
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