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Abstract. In the present paper we examine the steady double-diffusive free convective
heat and mass transfer of a chemically-reacting micropolar fluid flowingthrough a
Darcian porous regime adjacent to a vertical stretching plane. Viscous dissipation
effects are included in the energy equation. Assuming incompressible, micro-isotropic
fluid behaviour the transport equations are formulated in a two-dimensional coordinate
system(x, y) using boundary-layer theory. The influence of the bulk porous medium
retardation is modeled as a drag force term in the translational momentum equation.
Transformations render the conservation equations into dimensionless form in terms
of a single independent variable,η, transverse to the stretching surface. A simplified
first order homogenous reaction model is also used to simulate chemicalreaction in the
flow. Using the finite element method solutions are generated for the angular velocity
field, translational velocity field, temperature and species transfer fields. The effects
of buoyancy, porous drag and chemical reaction rate are studied. Chemical reaction
is shown to decelerate the flow and also micro-rotation values, in particular near the
wall. Mass transfer is also decreased with increasing chemical reaction rate. Increasing
Darcy number is shown to accelerate the flow. Applications of the study include cooling
of electronic circuits, packed-bed chemical reactors and also the nearfield flows in
radioactive waste geo-repositories.

Keywords: micropolar, reactive flow, heat and mass transfer, porous media, numerical,
buoyancy, viscous dissipation, finite elements.
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1 Introduction

Micropolar convection flows have been analyzed by many authors following the semi-
nal work of Eringen who introduced the micropolar fluid [1] asa special case of the
micromorphic fluid [2]. Such fluids can accurately simulate the micro-rotational ef-
fects observed in colloidal solutions, blood, dielectric fluids, plasmas, liquid crystals etc.
Micropolar convective flows find applications in the purification of crude oil, polymer
technologies, centrifugal separation processes, coolingtower dynamics, chemical reaction
engineering, metallurgical drawing of filaments and solar energy systems. Bhargava et
al. [3] studied the combined free and forced convection of a micropolar fluid past a stretch-
ing surface with applications in polymer processing. Chamkha et al. [4] presented an
interesting study of the combined micropolar heat transferand flow in a vertical channel.
Such studies were confined to purely fluid regimes. Porous media however constitute a
growing importance in many manufacturing and environmental systems. These include
grain storage systems, heat pipes, packed microsphere insulation, distillation towers, ion
exchange columns, subterranean chemical waste migration,solar power absorbers etc.
Many studies of both Newtonian and non-Newtonian heat transfer in porous media have
been presented. Kaviany [5] also provides an excellent treatment of applications of con-
vection as well as conduction and radiative heat transfer inporous media. Recent studies
include those by Chamkha [6] who discussed the unsteady flow of an Ostwald-deWaele
pseudoplastic fluid in a Darcian porous medium. More recently Bég et al. [7] studied the
influence of Rossby number and thermal stratification on rotating convection in a non-
Darcian porous medium. Micropolar flow and transport in porous media has received
less attention despite important applications in emulsionfiltration, polymer gel dynamics
in packed beds, petroleum and lubrication flows in porous wafers. Several studies have
however been communicated both with and without heat transfer. Aganovic and Tutek [8]
examined the dynamics of a micropolar creeping flow through aDarcian porous medium
using the homogenization method. The free convective boundary layer flow through a
Darcian porous medium was studied using a shooting method byMohammeadin et al. [9].
Elbarbary and Elgazery [10] considered the hydromagnetic convection in a porous regime
using the Chebyshev finite difference method also reportingon the influence of thermal
radiative flux and variable viscosity on the micro-rotationand temperature profiles. An
excellent study of two-dimensional coupled magneto-convective heat and mass transfer
in micropolar flow through a Darcian porous medium was communicated by Kim [11]
who also obtained solutions using the Keller-box implicit method. Chamkha et al. [12]
studied the combined heat and mass transfer of a chemically-reacting micropolar fluid in
a porous medium. More recently Bharagava et al. [13] have studied convective heat and
mass transfer of a micropolar fluid in a Darcian porous squarecavity with heat source
effects using finite element and finite difference methods. These studies did not consider
the important effect of viscous mechanical dissipation. Such effects can be important
in geophysical flows and also certain industrial operationsand are usually characterized
by the Eckert number. A number of authors have considered viscous heating effects
on Newtonian convection flows. Rajasekaran and Palekar [14]studied the influence of
Eckert number on rotating mixed convection using Merk’s series expansions. For the
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case of uniform wall temperature, increasing the Eckert number reduces heat transfer
rates. However for an equivalent viscous dissipation effect, heating by uniform heat
flux produced larger Nusselt number compared with the uniform wall temperature case.
Mahajan and Gebhart [15] reported on the influence of viscousheating dissipation effects
in natural convection flows, showing that heat transfer rates are depressed by an increase
in the dissipation parameter. Bég et al. [16] studied the influence of vorticity diffusion
and viscous dissipation on thermoconvection flow in a non-Darcian porous medium. Koo
and Kleinstreuer [17] considered the influence of viscous heating on microtube and mi-
crochannel convection regimes. Haddad et al. [18] considered the influence of viscous
heating on entropy generation due to laminar incompressible forced convection flow
through a parallel-plate microchannel configuration. These studies of viscous heating
effects have been confined to Newtonian flows. The present study considers such an effect
in micropolar fluids. A limited number of studies have considered viscous dissipation
effects in micropolar thermal convection. Soundalgekar and Takhar [19] have provided
one of the earliest studies of viscous dissipation effects on micropolar heat transfer past a
wedge. A rise in Ec from 0.01 to 0.02 was shown to induce a decrease in the heat transfer
rate at the wedge surface. Mansour and Gorla [20] more recently presented a boundary
layer solution for transient free micropolar convection heat transfer with Joule thermo-
electric effects. Viscous dissipation was shown numerically to decrease heat transfer
rates. An excellent analysis of micropolar stagnation thermal boundary layer flow on
a moving surface was presented by Bhargava and Takhar [21] for both non-dissipative
and dissipative cases.

In the present analysis we shall consider the viscous dissipation and buoyancy effects
on micropolar chemically-reactive convective heat and mass transfer past a stretching sur-
face adjacent to a micropolar fluid-saturated porous medium. Such a study goes beyond
those already reported and constitutes an important addition to the scientific literature on
environmental contamination, geophysical transport phenomena and also reactive non-
Newtonian thermofluid dynamics in the process industries.

2 Dynamics of thermo-micropolar fluids

In this study the thermo-micropolar non-Newtonian fluid model is implemented. Such a
fluid is a special sub-class of the much more complex micromorphic fluid. In thermo-
micropolar fluid mechanics, the classical continuum and thermodynamics laws are ex-
tended with additional equations which account for the conservation of micro-inertia
moments and the balance of first stress moments which arise due to the consideration of
micro-structure in a fluid. Hence new kinematic variables (gyration tensor, microinertia
moment tensor), and concepts of body moments, stress moments and microstress are
combined with classical continuum fluid dynamics theory. Thermo-micropolar fluids can
accurately simulate liquids consisting of randomly orientated particles suspended in a
viscous medium and offer an excellent framework to study advanced geophysical and
environmental pollution flows. The governing equations forthermo-micropolar fluids in
terms of vector fields may be presented following Eringen [22] and Lukaszewicz [23], as
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follows:

conservation of mass:

∂ρ

∂t
= −ρ∇ • V ; (1)

conservation of translational momentum:

∂V

∂t
= −∇p+ κ∇× ω∗ − (µ+ κ)∇×∇× V + (λe + 2µ+ κ)∇∇• V + ρfb; (2)

conservation of angular momentum (micro-rotation):

ρj∗
∂Ω

∂t
= κ∇× V − 2κω∗ − γ∇×∇× ω∗ + (αv + βv + γ)∇(∇ • ω∗) + ρl; (3)

conservation of energy (heat):

ρ
∂E

∂t
= −p∇ • V + ρΦ −∇ • q; (4)

dissipation function of mechanical energy per unit mass:

ρΦ = λe(∇ • V )2 + 2µDT : DT + 4κ
(∇

2
× V − ω∗

)2

+ αv(∇ • ω∗)2 + γ∇ω∗ : ∇ω∗ + βv∇ω
∗ : (∇ω∗)T ;

(5)

deformation tensor:

DT =
1

2
[V ij + V ji], (6)

whereE is the specific internal energy,q the heat flux,Φ is the viscous dissipation
function of mechanical energy per unit mass,ρ denotes the mass density of thermo-
micropolar fluid,V is translational velocity vector,ω∗ is angular velocity (microrota-
tion or gyration) vector,j∗ is microinertia,p is the thermodynamic pressure,fb is the
body force per unit mass vector,l is the body couple per unit mass vector,µ is the
Newtonian dynamic viscosity,λe is the Eringen second order viscosity coefficient,κ
is the vortex (microrotation) viscosity coefficient, andαv, βv and γ are spin gradient
viscosity coefficients for thermo-micropolar fluids. In thespecial case where the fluid
has constant physical properties, no external body forces exist and for steady state flow,
the conservation equations can be greatly simplified. Additionally for the case where
κ = α = β = γ = 0 and with vanishingl andfb, the gyration vector disappears and
equation (3) due to Eringen [22] vanishes. Equation (2) alsoreduces in this special case
to the classical Navier-Stokes equations. We also note thatfor the case of zero vortex
viscosity (κ) only, the velocity vectorV and the micro-rotation vectorω∗ are decoupled
and the global motion is unaffected by the micro-rotations.A simplified version of these
equations is utilized in the mathematical transport model presented next.
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3 Mathematical model

We examine the laminar boundary layer heat and mass transferof a micropolar chemi-
cally-reacting fluid against gravity past a vertical stretching surface adjacent to a Darcian
micropolar-fluid-saturated porous medium. Concentrationof species in the free stream
i.e. far away from the stretching surface, is assumed to be infinitesimal (zero) and defined
asC∞. Temperature in the free stream is taken asT∞. Thex-axis is located parallel
to the vertical surface and they-axis normal to it. Constant micropolar fluid properties
are assumed throughout the medium i.e. density, mass diffusivity, viscosity and chemical
reaction rate are fixed. In the general Navier-Stokes equations, the Rayleigh expression
for viscous dissipation due to internal friction in the fluidper unit volume, takes the form:

2

3
µ

[

(∂v

∂y
−
∂w

∂z

)2

+
(∂w

∂z
−
∂u

∂x

)2

+
(∂u

∂x
−
∂v

∂y

)2
]

+µ

[

(∂w

∂y
+
∂v

∂z

)2

+
(∂u

∂z
+
∂w

∂x

)2

+
(∂v

∂x
+
∂u

∂y

)2
]

.

(7)

For boundary layer flows they-direction velocity gradient i.e.

(∂u

∂y

)

�
∂u

∂x
,
∂u

∂z
,
∂v

∂x
,
∂v

∂y
,
∂v

∂z
,
∂w

∂x
,
∂w

∂y
,
∂w

∂z
.

Therefore we only retain, following Schlichting [24] the(∂u
∂y )2 component in the general

three-dimensional viscous dissipation term. Chemical reaction of the micropolar fluid is
assumed to be homogenous and first order. The governing transport equations for the flow
regime, illustrated in Fig. 1, incorporating a linear Darcian drag can be shown to take the

Fig. 1. Geometry of flow regime.
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following form, under these approximations and in consistency with the Boussinesq and
boundary-layer approximations:

conservation of mass:

∂u

∂x
+
∂v

∂y
= 0; (8)

conservation of linear momentum:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ k1

∂N

∂y
−

ν

kp
u+ βga(T − T∞) + β∗ga(C − C∞); (9)

conservation of angular momentum:

u
∂N

∂x
+ v

∂N

∂y
=

γ

ρj∗
∂2N

∂y2
−

κ

ρj∗

[

2N +
∂u

∂y

]

; (10)

conservation of micro-inertia:

u
∂j∗

∂x
+ v

∂j∗

∂y
= 0; (11)

conservation of energy:

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
ν

cp

(∂u

∂y

)2

; (12)

conservation of species diffusion:

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− ΓC. (13)

In equation (9) the porous matrix resistance at low Reynoldsnumbers i.e. the Darcian
bulk impedance is defined by the term− ν

kp

u. The boundary conditions on the vertical
surface and far away from the surface (in the free stream) canbe defined as follows:

y = 0: u = U(x), v = 0, T = Tw, C = Cw, N = −s
[∂u

∂y

]

, (14)

y → ∞ : u = 0, T = T∞, C = C∞, N → 0, (15)

whereν = µ+κ
ρ denotes the apparent kinematic viscosity,k1 = κ

ρ (k1 > 0) is the Eringen
micropolar coupling constant, s is the surface condition parameter and varies from 0 to
1 andU(x) is the surface velocity of the stretching wall. In equations(8) through (13),
u andv are thex-direction (streamwise) andy-direction (spanwise) fluid velocities,ga

denotes gravitational acceleration,j∗ is micro-inertia per unit mass,κ is micropolar vortex
viscosity,γ is the micropolar spin gradient viscosity,C designates species concentration
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in the boundary layer,C∞ is the concentration at the free stream,Tw is concentration
at the wall,Cw is concentration at the wall (stretching surface),β is the coefficient of
volume expansion,T is temperature,N is the angular velocity (micro-rotation),ν denotes
kinematic viscosity,kp is permeability of the porous medium,α is the thermal diffusivity,
D is the species diffusivity andΓ is the chemical reaction rate parameter. Subscripts
()w and()∞ denote conditions at the wall and free stream respectively.In (14) the initial
boundary condition for micro-rotation physically corresponds to thevanishing of the anti-
symmetric part of the stress tensorand corresponds toweakconcentrations of the micro-
elements of the thermo-micropolar fluid. The microelement (particle) spin is equal to the
fluid vorticity at the boundary for fine particle suspensions. In this scenario therefore the
particles are able to sustain rotation in the vicinity of thestretching surface (near-field
regime). At the wall, the normal component of the translational velocity,v, is zero due to
the absence of transpiration effects i.e. there is no lateral mass flux. The continuity (mass
conservation) equation is automatically satisfied by defining a stream function using the
Cauchy-Riemann equations,ψ(x, y) such that:

u =
∂ψ

∂y
, (16)

v = −
∂ψ

∂x
. (17)

Proceeding with the analysis, we now define the following transformations to reduce the
mathematical model into dimensionless form:

ψ =
[

νxU(x)
]1/2

f(η), (18)

η =
[U(x)

νx

]1/2

y, (19)

N =

√

U(x)

νx
U(x)g(η), (20)

U(x) = ax, (21)

λ =
γ

ρj∗ν
, (22)

G∗ =
γU(x)

κνx
, (23)

h =
T − T∞
Tw − T∞

, (24)

j =
C − C∞

Cw − C∞

, (25)

whereη is dimensionless transverse (spanwise) coordinate,f is dimensionless stream
function,g is dimensionless micro-rotation function,h is dimensionless temperature func-
tion, j is dimensionless concentration,λ andG∗ are micropolar material parameters
and a denotes a dimensional constant (a > 0). Introducing these non-dimensional
transformations reduces the conservations equations froman (x, y) coordinate system
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to an (η) coordinate system, with the continuity equation identically satisfied by the
Cauchy-Riemann equations (16) and (17) leading to the following coupled set of non-
linear ordinary differential equations in terms of the fourdependent variablesf, g, h, j
and the new independent variable,η.

Conservation of momentum:

d3f

dη3
+B1

dg

dη
+ f

d2f

dη2
−

( df

dη

)2

+GrxRexh+GmxRexj−
1

RexDax

df

dη
= 0; (26)

conservation of angular momentum:

λ
d2g

dη2
−

λ

G∗

(

2g +
d2f

dη2

)

−
df

dη
g + f

dg

dη
= 0; (27)

conservation of energy:

d2h

dη2
+ Pr f

dh

dη
+ Pr Ec

(d2f

dη2

)2

= 0; (28)

conservation of species:

d2j

dη2
+ Sc f

dj

dη
− Sc

[

χRexj + j
df

dη

]

= 0, (29)

whereRex = Ux
ν is the local Reynolds number,Grx = νgaβ[Tw−T∞]

U3 is the local
Grashof number (buoyancy parameter for free thermo-convective heat transfer),Gmx =
νgaβ∗[Cw−C∞]

U3 is the species Grashof (free convective mass transfer i.e. buoyancy) pa-

rameter,Dax =
kp

x2 is the local Darcy number,Ec = U2

Cp(Tw−T∞) is the Eckert viscous
dissipation number,Sc = ν

D is the Schmidt number,Pr = ν
α is the Prandtl number,

χ = νΓ
U2 is dimensionless chemical reaction rate parameter andB1 = k1

ν = κ
µ is the

micropolar coupling parameter. The corresponding transformed boundary conditions for
the problem now become:

initial:

η = 0: f(0) = 0,
df

dη
(0) = 1, h(0) = 1, j(0) = 1, g(0) = −s

d2f

dη2
(0); (30)

end:

η → ∞ :
df

dη
(∞) → 0, h(∞) → 0, j(∞) → 0, g(∞) → 0. (31)

The rate of heat transfer from the wall is given by:

qw = −kf
∂T

∂y

∣

∣

∣

y=0
= −kf (Tw − T∞)

(a

v

)1/2

h′(0), (32)

wherekf is the coefficient of thermal conductivity and a is the stretching parameter. We
can further define the dimensionless wall shear stress and wall couple stress functions, but
these are omitted here for brevity.

164



Buoyancy-Driven Reactive Micropolar Porous Convection

4 Numerical solution by the finite element method

The finite element method is used to generate accurate, efficient solutions to the trans-
formed two-point boundary value problem viz equations (26)to (29) with corresponding
boundary conditions (30) and (31). Details of the method areavailable in Reddy [25] and
Bathe [26]. We introduce the substitution:

df

dη
= A, (33)

whereA is the dimensionless velocity.
The equations (26) to (29) are therefore reduced to the following, where()′ indicates

d/dη:

A′′ +B1g
′ + fA′ +GrxRexh+GmxRexj −A2 −

1

DaxRex
A = 0, (34)

λg′′ −
λ

G∗
(2g +A′) −Ag + fg′ = 0, (35)

h′′ + Pr fh′ + Pr EcA′2 = 0, (36)

j′′ + Sc fj′ − ScRexχj = 0. (37)

The corresponding boundary conditions are:

η = 0: f(0) = 0, A(0) = 1, h(0) = 1, j(0) = 1, g(0) = −sA′(0), (38)

η → ∞ : A→ 0, h→ 0, j → 0, g → 0. (39)

Convergence has been efficiently achieved by fixing infinity as 8. The whole domain is
discretized into a set of 70 line elements of equal width, each element being two-noded.

4.1 Variational formulation

The variational form associated with equations (33)–(37) over a typical two noded-linear
element(ηe, ηe+1) is given by:

ηe+1
∫

ηe

w1{f
′ −A}dη = 0, (40)

ηe+1
∫

ηe

w2

{

A′′+B1g
′+fA′+GrxRexh+GmxRexj−A

2−
1

DaxRex
A

}

dη=0, (41)

ηe+1
∫

ηe

w3

{

λg′′ −
λ

G∗
(2g +A′) −Ag + fg′

}

dη = 0, (42)

ηe+1
∫

ηe

w4

{

h′′ + Pr fh′ + Pr EcA′2
}

dη = 0, (43)
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ηe+1
∫

ηe

w5{j
′′ + Sc fj′ − ScRexχj}dη = 0, (44)

wherew1, w2, w3, w4 andw5 are arbitrary test functions and may be viewed as the varia-
tion in f,A, h, j andg respectively.

4.2 Finite element formulation

The finite element method seeks an approximate solution to the differential equation over
each element. The polynomial approximation of the solutionwithin a two-noded element
is of the form:

f=

2
∑

j=1

fjψj , A=

2
∑

j=1

Ajψj , h=

2
∑

j=1

hjψj , j=

2
∑

j=1

jjψj , g=

2
∑

j=1

gjψj , (45)

wherefj , Aj , hj , jj andgj are the values of the solution at thej-th node of the element
andψi are the shape functions for a typical element(ηe, ηe+1) and are taken as:

ψ
(e)
1 =

ηe+1 − η

ηe+1 − ηe
, ψ

(e)
2 =

η − ηe

ηe+1 − ηe
, ηe ≤ η ≤ ηe+1. (46)

The coefficientsfj , Aj , hj , jj andgj are determined such that the equation (40)–(44)
are satisfied in the weighted integral sense.

Takingw1 = w2 = w3 = w4 = w5 = ψi (i = 1, 2), the finite element model of the
equations thus formed is given by













[K11] [K12] [K13] [K14] [K15]
[K21] [K22] [K23] [K24] [K25]
[K31] [K32] [K33] [K34] [K35]
[K41] [K42] [K43] [K44] [K45]
[K51] [K52] [K53] [K54] [K55]

























{f}
{A}
{h}
{j}
{g}













=













{b1}
{b2}
{b3}
{b4}
{b5}













, (47)

where[Kmn] and [bm] (m,n = 1, 2, 3, 4, 5) are the matrices of order2 × 2 and2 × 1
respectively. We define some of the above matrices as follows:

K11
ij =

ηe+1
∫

ηe

ψi
dψj

dη
dη, K12

ij =−

ηe+1
∫

ηe

ψiψjdη, K13
ij = K14

ij = K15
ij = 0, (48)

K21
ij = 0, (49)

K23
ij = GrxRex

ηe+1
∫

ηe

ψiψjdη, K24
ij = GmxRex

ηe+1
∫

ηe

ψiψjη, (50)
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K25
ij = B1

ηe+1
∫

ηe

ψi
dψj

dη
dη, (51)

K31
ij = 0, K32

ij = −
λ

G∗

ηe+1
∫

ηe

ψi
dψj

dη
dη, (52)

K35
ij = −λ

ηe+1
∫

ηe

dψi

dη

dψj

dη
dη −

2λ

G∗

ηe+1
∫

ηe

ψiψjdη −A1

ηe+1
∫

ηe

ψiψ1ψjdη

−A2

ηe+1
∫

ηe

ψiψ2ψjdη + f1

ηe+1
∫

ηe

ψiψ1
dψi

dη
dη + f2

ηe+1
∫

ηe

ψiψ2
dψi

dη
dη, (53)

K41
ij = 0, (54)

K42
ij = Pr EcA1

ηe+1
∫

ηe

ψi
dψ1

dη

dψj

dη
dη + Pr EcA2

ηe+1
∫

ηe

ψi
dψ2

dη

dψj

dη
dη, (55)

K43
ij = −

ηe+1
∫

ηe

dψi

dη

dψj

dη
dη + Pr f1

ηe+1
∫

ηe

ψiψ1
dψj

dη
dη,

+ Pr f2

ηe+1
∫

ηe

ψiψ2
dψj

dη
dη, (56)

K44
ij = K45

ij = 0, (57)

K51
ij = K52

ij = K53
ij = 0, (58)

K54
ij = −

ηe+1
∫

ηe

dψi

dη

dψj

dη
dη + Sc f1

ηe+1
∫

ηe

ψiψ1
dψj

dη
dη

+ Sc f2

ηe+1
∫

ηe

ψiψ2
dψj

dη
dη − ScRexχ

ηe+1
∫

ηe

ψiψjdη, (59)

K55
ij = 0, (60)

b1i = 0, b2i = −
(

ψi
dA

dη

)ηe+1

ηe

, b3i = −λ
(

ψi
dg

dη

)ηe+1

ηe

,

b4i = −
(

ψi
dh

dη

)ηe+1

ηe

, b5i = −
(

ψi
dj

dη

)ηe+1

ηe

,

(61)

where

f =

2
∑

i=1

fiψi, A =

2
∑

i=1

Aiψi. (62)

167



O. Anwar Bég, R. Bhargava, S. Rawat, H. S. Takhar, Tasweer A. Bég

Each element matrix is of the order10×10. Since the whole domain is divided into a
set of70 line elements, following assembly of all the element equations we obtain a matrix
of order355 × 355. This system is non-linear and hence dealing with it is facilitated by
a linearization procedure. The system is linearized by incorporating the functionsf and
A, which are assumed to be known. After this the linearized system is solved iteratively.
Applying the given boundary conditions only a system of346 equations remains to be
solved. At the beginning of the first iteration the velocity,temperature, concentration and
microrotation are taken to be zero and the system of equations is solved using a Gaussian
elimination method for the nodal velocity, temperature, concentration and microrotation.
Thus the values at the first iteration are obtained. This process is repeated until the desired
accuracy of0.0005 is obtained.

5 Results and discussion

In the present study we have adopted the following default parameter values for the finite
element computations:Grx = 1.0, Gmx = 1.0, χ = 1.0, Dax = 1.0, Rex = 1.0,
Pr = 0.7, Sc = 0.1, B1 = 0.01, G∗ = 1, λ = 1, s = 0.5 andEc = 0.02. These
values are used throughout the computations, unless otherwise indicated.Comparisons
have also been made with the finite difference method (details are not provided here for
brevity) and results are shown in Table 1. Excellent correlation is observed between both
methods for the special case ofDax = 1.0, for dimensionless translational velocity profile
(A) and also for dimensionless micro-rotation (g) profile.

Table 1. Comparison table of finite difference and finite element computations

s = 0.5, Sc = 0.1, P r = 0.7, Rex = 1, Grx = 1, Gmx = 1,

B1 = 0.01, G∗ = 1, λ = 1, Ec = 0.02, χ = 1

A (Da = 1.0) g ( Da = 1.0)
η FEM FDM FEM FDM
0 1 1 0.07887 0.07886

0.914286 0.743958 0.743956 0.114158 0.114157
1.94286 0.415178 0.415177 0.087409 0.087409
2.97143 0.217921 0.217920 0.048231 0.048231

4 0.115855 0.115855 0.025734 0.025734
5.02857 0.060083 0.060082 0.014358 0.014358
6.05714 0.027294 0.027292 0.007764 0.007763
7.08571 0.008198 0.008195 0.003153 0.003151

8 0 0 0 0

Fig. 2 illustrates the influence of themicropolar coupling constant B1 on the
velocity and micro-rotation (angular velocity) profiles. We note thatB1 = 0 implies
Newtonian flow and the vanishing of micropolarity. Equation(26) for this case reduces
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to:

d3f

dη3
+ f

d2f

dη2
−

( df

dη

)2

+GrxRexh+GmxRexj −
1

RexDax

df

dη
= 0.

η −→ η −→

(a) (b)

Fig. 2. (a)A versusη for variousB1 values; (b)g versusη for variousB1 values.
s = 0.5, Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1, Gmx = 1, Grx = 1, G∗ = 1,

λ = 1, Ec = 0.02, χ = 1.

The micro-rotation equation (27) also disappears. For low values ofB1 i.e. 0.1, there
is weak micropolar vortex viscosity. We observe that translational velocity (A) increases
markedly withB1 values as the latter increase from0.1 to 4.0 (strong vortex viscosity).
A peak velocity of1.3 occurs forB1 = 4 at approximatelyη = 0.5 i.e. very close to
the wall. This trend is maintained untilη ∼ 1.5 at which stageA values are depressed
by an increase in micropolar coupling constant. For the remainder of the domain velocity
is increased marginally with a rise inB1 values; all profiles converge asympotitically to
zero, far from the wall. Strongly micropolar fluid is thereforeacceleratedin the near-wall
regime whereas it is decelerated in the far-field regime. Fig. 2(b) indicates that magnitudes
of micro-rotation,g, are increased with higher values of the coupling parameter, B1.
For lower values ofB1 we observe that micro-rotation is actually reversed. The lowest
magnitude ofg corresponds toB1 = 0.1 and is approximately0.1; the peak magnitude
for B1 = 4.0 however is0.8 and occurs (as with all other profiles) at the wall i.e.η = 0.
All micro-rotation profiles have non-zero value at the wall and atη ∼ 1 they intersect
and decay smoothly to zero at the end of the regime. The graphsin Fig. 2 correspondsto
weakly buoyant Darcian flow with low viscous dissipation,the parameters having default
values, discussed earlier.

The influence of theEckert number i.e. viscous dissipation parameter (Ec) on
translational velocity, angular velocity and dimensionless temperature profiles is illus-
trated in Fig. 3.Ec expresses the relationship between the kinetic energy in the flow and
the enthalpy [24]. It embodies the conversion ofkinetic energyinto internal energyby
work done against the viscous fluid stresses. Although this parameter is often used in
high-speed compressible flow, for example in rocket aerodynamics at very high altitude,
it has significance in high temperature incompressible flows, which are encountered in
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chemical engineering systems, radioactive waste repositories, nuclear engineering sys-
tems etc. Positive Eckert number implies cooling of the walland therefore a transfer
of heat to the fluid. Convection is enhanced and we observe in consistency with for
example Schlichting [24], Soundalgekar and Takhar [19], Mansour and Gorla [20] etc.
that the fluid is accelerated i.e. translational velocity isincreased in the micropolar fluid.
Temperatures are also boosted as shown in Fig. 3(b) since internal energy is increased.
Micro-rotation however isreducedby a rise inEc values from0.02 through1, 2, 3 to
4, in the vicinity of the wall. Hence theminimumvalue of micro-rotation at the wall
corresponds toEc = 4, and this value is0.02 approximately. AsEc values decrease,
dissipation effects fall and the micro-rotation consistently increases over the near wall
regime,0 < η < 1.5 approximately. Atη = 1.5 all profiles converge and the reverse
effect is observed on micro-rotation,g, for the remainder of the domain. Hence for
1.5 < η < 8, we see that a rise inEc induces a slight increase in theg values. All
profiles descend smoothly to zero at the end of the range i.e. in the free stream.

η −→ η −→

(a) (b)

η −→

(c)

Fig. 3. (a)A versusη for variousEc values; (b)h versusη for variousEc values;
g versusη for variousEc values.s = 0.5, Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1,

Gmx = 1, Grx = 1, G∗ = 1, λ = 1, B1 = 0.01, χ = 1.

The effects of thePrandtl number on velocity, temperature and micro-rotation pro-
files are depicted in Fig. 4.Pr encapsulates the ratio of momentum diffusivity to thermal
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η −→ η −→

(a) (b)

η −→

(c)

Fig. 4. (a)A versusη for variousPr values; (b)h versusη for variousPr values;
g versusPr for variousEc values. s = 0.5, Sc = 0.1, Ec = 0.02, Rex = 1,

Dax = 1, Gmx = 1, Grx = 1, G∗ = 1, λ = 1, B1 = 0.01, χ = 1.

diffusivity. LargerPr values imply a thinner thermal boundary layer thickness andmore
uniform temperature distributions across the boundary layer. Hence the thermal boundary
layer will be much less in thickness than the hydrodynamic (translational velocity) bound-
ary layer.Pr = 1 implies that the thermal and velocity boundary layers are approximately
equal in extent [24]. Smaller Pr fluids have higher thermal conductivities so that heat can
diffuse away from the vertical surface faster than for higher Pr fluids (thicker boundary
layers). Physically the lower values ofPr correspond to liquid metals (Pr ∼ 0.02, 0.05),
Pr = 0.7 is accurate for air or hydrogen andPr = 1 for water. The computations show
that translational velocity,A, (Fig. 4(a)) is therefore reduced asPr rises from0.1, through
0.5, 0.7 to 1.0, 2.0 and10.0 since the fluid is increasingly viscous asPr rises. Hence the
micropolar fluid is decelerated with a rise inPr. Fig. 4(b) indicates that a rise inPr
substantially reduces the temperature,h, in the micropolar-fluid-saturated porous regime.
Our computations correlate well with the earlier study on coupled micropolar heat and
mass transfer in porous media by Kim [11]. The profiles becomeincreasingly parabolic
asPr increases above0.1, for which the profile is approximately a linear decay. For
all cases,h decays to zero asη → ∞, i.e. in the freestream. There is however a rapid
decay to zero for the maximumPr (= 10) where the temperature plummets to zero in
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the near-wall region. The influence ofPr on micro-rotation,g, however is positive;g
values increase both at and near the wall, asPr increases from0.1 to 10. Maximum
micro-rotation is observed forPr = 10 and has a value of0.22. With lower values ofPr
(0.2, 0.5, 0.7, 1) the profiles all rise from the wall toη ∼ 1; for Pr = 2, 10 however they
descend from the wall. In all cases profiles decay smoothly tozero asη → ∞.

Fig. 5 illustrates the profiles of translational velocity and micro-rotation versusη for
various local Darcy numbers, Dax. This parameter simulates the effects of the bulk
matrix impedance due to the porous medium fibers. Fig. 5(a) indicates that a rise inDax

(which implies a rise in permeability,kp) enhances considerably the translational velocity
of the micropolar fluid (Fig. 5(a)). Hence the micropolar fluid is accelerated with a rise
in Dax. With increasing permeability the porous matrix structurebecomes less and less
prominent and in the limit of infiniteDax values, the porous medium vanishes. Equation
(26) shows that the Darcian body force is inversely proportional toDax. Therefore higher
Dax values will reduce the porous bulk retarding force. These numerical computations
also indicate that the presence of a porous medium with low permeability (high solid
material presence) may be implemented successfully as a mechanism for controlling flow
velocities in chemical engineering applications since lower permeability media induce
a deceleration in transport. Micro-rotation values (Fig. 5(b)) however are substantially
decreased asDax increases from0.1 (low permeability) through1, 2, 5 and to20 (high
permeability) for the near-wall regime; however forη > 2 i.e. a quarter-distance along the
domain from the wall, increasing localDax enhances the micro-rotation values. We may
infer that close to the wall, micro-rotation is inhibited even for more permeable media as
the particles have difficulty in rotating due to the presenceof the wall; however further
from the wall, with a more permeable environment, the micropolar spin is less inhibited
and microelements can rotate more freely, as demonstrated by the slightly larger values
of g for Dax = 20 compared with lowerDax values for the regime2 < η < 8.

η −→ η −→

(a) (b)

Fig. 5. (a)A versusη for variousDax values; (b)g versusη for variousDax values.
s = 0.5, Sc = 0.1, Pr = 0.7, Rex = 1, Gmx = 1, Grx = 1, B1 = 0.01 G∗ = 1,

λ = 1, Ec = 0.02, χ = 1.

Fig. 6 shows the influence ofsurface parameter, s, on the flow regime. Micro-
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rotation is seen to increase substantially over the range0 < η < 1.5, ass increases
from 0 to 1.0. s = 0 implies that micro-rotation at the wall is prevented so thatmicro-
rotation vanishes at the wall for this case. Increasing s raises the degree of intensity
of microelement rotation generating the peak angular velocity of 0.16 for s = 1.0. At
approximatelyη = 1.5 all profiles merge and owing to the distance from the wall, the
surface parameter,s, no longer exerts an effect on micro-rotation field. Therefore all
profiles are superimposed and descend to zero smoothly in thefree stream.

η −→

Fig. 6. g versusη for variouss values. Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1,
Gmx = 1, Grx = 1, B1 = 0.01, G∗ = 1, λ = 1, Ec = 0.02, χ = 1.

Fig. 7 shows the effect of theSchmidt number, Sc, on the dimensionless concen-
tration (j) and the gradient of the dimensionless concentration (j′). We note thatSc
i.e. the Schmidt number, embodies the ratio of the momentum to the mass diffusivity.
Sc therefore quantifies the relative effectiveness of momentum and mass transport by
diffusion in the hydrodynamic (velocity) and concentration (species) boundary layers.
SmallerSc values can represent for example hydrogen gas as the speciesdiffusing (Sc=
0.1 to 0.2). Sc = 1.0 corresponds approximately to carbon dioxide diffusing in air,
Sc = 2.0 implies hydrocarbon diffusing in air, and higher values to petroleum derivatives
diffusing in fluids (e.g. ethylbenzene) as indicated by Gebhart et al. [27]. We have
presented the computations forPr = 0.7. In all profiles ofj versusη, for variousSc
values,Pr 6= Sc. The thermal and species diffusion regions are of differentextents. As
Sc increases, Fig. 7(a) shows thatj values are strongly decreased, as larger values ofSc
correspond to a decrease in the chemical molecular diffusivity i.e. less diffusion therefore
takes place bymasstransport. The dimensionless concentration profiles all decay from
a maximum concentration of1 at η = 0 (the wall boundary condition) to zero in the
freestream. A very steep decay is witnessed inj values for highSc, and these profiles
descend quickly to zero beforeη = 1. Species transfer is therefore considerably inhibited
only a short distance from the stretching surface for highSc values (5, 10), whereas for
lower Sc values (0.1, 0.5, 1, 2) a more gentle fall is observed;j values generally reach
zero quite far from the wall in these latter cases. Dimensionless concentration gradient
(j′) is also seen in Fig. 7(b) to fall with a rise in Schmidt number, in particular in the
vicinity of the wall.
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η −→ η −→

(a) (b)

Fig. 7. (a)j versusη for variousSc values; (b)j′ versusη for variousSc values.
s = 0.5, Pr = 0.7, Rex = 1, Dax = 1, Gmx = 1, Grx = 1, B1 = 0.01, G∗ = 1,

λ = 1, Ec = 0.02, χ = 1.

The influence oflocal Reynolds number, Rex, onA andg is shown in Fig. 8. As
Rex increases, the flow momentum increases and as expected the translational velocity
(Fig. 8(a)) increases considerably. The flow however is still Darcian as the Darcy model
is valid up toRex ∼ 10, as described by Bear [28]. The regime is still weakly buoyant
with dissipation and chemical reaction present. At very lowReynolds numbers, a sharp
decay from the wall value of unity (initial boundary condition) to very low values is
observed. ForRex = 0.5, 1, 1.5 and2, the profiles descend more gradually to zero from
unity value at the wall. Micro-rotation profiles are seen to be depressed by an increase
in local Reynolds number. The peak value ofg therefore occurs forRex = 0.1 (at the
wall), and the minimum value is−0.5 for Rex = 2, again at the wall. All theg profiles
converge at approximatelyη = 1.5 and after this micro-rotation is slightly increased by
larger Reynolds numbers. The distributions all decay to zero thereafter.

η −→ η −→

(a) (b)

Fig. 8. (a)A versusη for variousRex values; (b)g versusη for variousRex values.
s = 0.5, Sc = 0.1, Pr = 0.7, Dax = 1, Gmx = 1, Grx = 1, B1 = 0.01, G∗ = 1,

λ = 1, Ec = 0.02, χ = 1.
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The variation of translational velocity, temperature function, concentration function
and micro-rotation function withη, for various values of thechemical reaction number
(χ) are depicted in Fig. 9. An increase in theχ value induces a marked decrease in
the translational velocity (Fig. 9(a)),A, throughout the entire regime. In all cases, the
profiles decay from unity at the vertical stretching surfacewall (η = 0), gradually to
zero at the freestream (η → ∞). Chemical reaction rate clearly decelerates the flow of
the micropolar fluid. We note that the parameter values forB1, G

∗ andEc also imply
a weakly micropolar flow scenario with weak mechanical dissipation effects. Chemical
reaction stifles diffusive transport and thereby retards the flow momentum. As a result
maximumtranslational velocity occurs for the case of zero chemicalreaction i.e.χ= 0.
Fig. 9(b) shows that temperature function profiles i.e.h values are elevated with a rise in
chemical reaction parameter. The profiles are not as widely dispersed as for the trans-
lational velocity distributions; there is nevertheless a distinct rise in temperatures, in
particular at the locationη ∼ 3. The present computations concur well with earlier
studies of free convection with chemical reaction, such as those presented recently by
Afify [29]. Temperature profiles are seen to be minimized in the absence of chemical

η −→ η −→

(a) (b)

η −→ η −→

(c) (d)

Fig. 9. (a) A versusη for various χ values; (b)h versusη for various χ values;
(c) j versusη for variousχ values; (d)g versusη for variousχ values. s = 0.5,
Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1, Gmx = 1, Grx = 1, B1 = 0.01, G∗ = 1,

λ = 1, Ec = 0.02.
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reaction. The effect ofχ on the dimensionless concentration (j) distributions is illustrated
in Fig. 9(c), wherein it is clear that asχ rises from0 to 1, 5, 10 and 50 the j values
are strongly reduced. Asχ is increased the profiles become more monotonic in nature;
in particular the gradient of the profile becomes much steeper for χ values equal to or
greater than5 compared with lower values of the chemical reaction parameter. Chemical
reaction parameter therefore reduces magnitude of the dimensionless concentration,j,
but increases the rate of change of species (mass) transfer function, since higherχ values
imply a faster rate of reaction. Fig. 9(d) shows that micro-rotation (g) is noticeably
boosted at the wall with a rise in reaction parameter. This trend is sustained up toη ∼ 1.8
after which micro-rotation is depressed by a rise inχ. Our results agree generically with
those presented by Seddeek [30].

Finally the effects ofthermal and species Grashof numberi.e. Grx andGmx

are shown in Figs. 10, 11, for the velocity, temperature and species transfer distributions.
Fig. 10(a) indicates that an increase inGrx from 1 through2, 3, 5, to 10 strongly boosts
the translational velocity in particular over the zone0 < η < 2. There is a rapid rise in the
A value near the stretching surface (wall) especially for thecasesGrx = 5 and10. Peak
velocity forGrx = 10 is about1.8 occuring atη ∼ 0.5. At η ∼ 2 there is a switch in the
effect of the thermal Grashof number by increasing from1 to 10 is now seen to reduce the
translational velocity. The profiles generally descend smoothly towards zero although the
rate of descent is greater corresponding to higher thermal Grashof numbers.Grx defines
the ratio of the thermal buoyancy force to the viscous hydrodynamic force and as expected
does accelerate the flow. Temperature distributionh versusη is plotted in Fig. 10(b) and
is seen to decrease with a rise in thermal Grashof number, a result which agrees with
fundamental studies on free convection [24]. This decreaseis most pronounced atη ∼ 2.

η −→ η −→

(a) (b)

Fig. 10. (a)A versusη for variousGrx values; (b)h versusη for variousGrx values.
s = 0.5, Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1, Gmx = 1, B1 = 0.01, G∗ = 1,

λ = 1, Ec = 0.02, χ = 1.

The effects of thespecies Grashof numberon translational velocity, temperature
function, concentration function and micro-rotation are presented in Fig. 11. Translational
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η −→ η −→

(a) (b)

η −→ η −→

(c) (d)

Fig. 11. (a)A versusη for variousGmx values; (b)h versusη for variousGmx values;
(c) j versusη for variousGmx values; (d)g versusη for variousGmx values.s = 0.5,
Sc = 0.1, Pr = 0.7, Rex = 1, Dax = 1, Grx = 1, B1 = 0.01, G∗ = 1, λ = 1,

Ec = 0.02, χ = 1.

velocity,A, is observed to increase considerably with a rise inGmx from 0.1 to 7. Hence
species Grashof number boosts velocity of the micropolar fluid indicating that buoyancy
has an accelerating effect on the flow field. Temperature,h, undergoes a marked decrease
in value however with a rise in species Grashof number, as illustrated in Fig. 11(b). All
temperatures descend from unity at the wall to zero at the freestream. The depression
in temperatures is maximized by larger species Grashof numbers in the vicinityη ∼ 2,
indicating a similar trend to the influence of the thermal Grashof number (Fig. 10(b)).
Dimensionless concentration,j, as depicted in Fig. 11(c), is also seen to be reduced
by increasing the species Grashof number. All profiles decaysmoothly from unity at
the vertical stretching surface to zero asη → ∞. Hence mass transfer buoyancy has
a regulatory effect on the species (dimensionless concentration) field and such a trend
can be exploited in chemical reactor design. With regard to environmental contamination
flows, our results would indicate that buoyancy depresses the magnitudes of concentration
of contaminant in a porous regime e.g. geomaterial. Finallythe influence ofGmx

on micro-rotation profiles is shown in Fig. 11(d). The micro-rotation componentg is
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considerably reduced with a rise inGmx values at the wall. ForGmx = 0.1 the peak
value at the wall is0.35; this decreases to−1.3 for Gmx = 7. At η ∼ 1, the trend
is reversed and we observe that mass Grashof number now marginally boosts the micro-
rotation values. For allGmx values the profiles remain positive forη > 2 and decay
gradually to zero at the freestream.

6 Conclusions

Numerical solutions have been presented for the two-dimensional chemically-reactive,
dissipative free convective heat and mass transfer in an incompressible micropolar-fluid-
saturated Darcian porous medium adjacent to a vertical stretching surface. The results
indicate that:

1. Increasing the micropolar coupling parameter (ratio of the vortex and Newtonian
viscosities) induce a rise in translational velocity near the wall and increases micro-
rotation magnitudes near the wall.

2. Increasing the Eckert number (viscous heating parameter) increases both the trans-
lational velocity and temperature function throughout theregime; micro-rotation is
however decreased in the near-wall zone with a rise in Eckertnumber but increased
with Eckert number rising further from the vertical stretching surface.

3. Increasing the Prandtl number substantially decreases the translational velocity and
the temperature function. Micro-rotation is however increased at the wall with a rise
in Prandtl number but reduced further from the wall as we approach the free stream.

4. Increasing local Darcy number,Dax, accelerates the flow i.e. increases translational
velocities. However micro-rotation at the wall is reduced with a rise in local Darcy
number. Further from the wall however a rise in local Darcy number (i.e. increasing
permeability of the porous medium) increases slightly the values of micro-rotation.

5. Increasing the surface parameter substantially increases micro-rotation,g, particu-
larly at and near the wall.

6. Increasing Schmidt number generally decreases the concentrationj and also concen-
tration gradient,j′, in particular near the wall.

7. Increasing the local Reynolds number,Rex, strongly accelerates the flow i.e. in-
creases translational velocity; micro-rotation is however decreased in particular at
and near the stretching surface.

8. Increasing chemical reaction parameter decelerates theflow i.e. decreases transla-
tional velocity, increases temperature, decreases concentration, and boosts the micro-
rotation at and in the vicinity of the wall.

9. Increasing thermal Grashof number,Grx, boosts the translational velocity in the
near-wall regime and decreases temperature throughout theflow regime.
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10. Increasing the species Grashof number,Gmx, substantially increases the transla-
tional velocity throughout the micropolar fluid-saturateddomain, depresses tempe-
rature function throughout the regime, decreases dimensionless concentration and
also decreases micro-rotation values at the wall and in the near-wall regime.

11. The parameter value variation in practical flows does notdiffer significantly from
those utilized in the graphs and as such our computations provide a good description
of the effects of the thermophysical parameters on the heat,mass and momentum
transfer in the regime.
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