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Abstract. Performing risk analysis of systems, evaluating reliability of technological
objects, hazard of technological processes, we usually have to systems of network type
and distribution of various processes in such systems. A well-known mathematical
apparatus of diffusive processes example is dispersion in continuum medium (air, water,
etc.). Process distribution in network systems is simpler, however, it much depends on
network features. In this article theory of Markov chains is selected, distributions of
different processes in transitional regimes are analysed as well as issues of their stability.
Created models may be used in many different ways, for example, forthe analysis
or viruses in computer networks, hazard distribution in transport systems regarding
transportation of hazardous materials, etc.
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1 Introduction

Development and expansion of various networks and network structures create favourable
conditions for the spread of process through network channels. One of the most visible
examples of such phenomenon is the spread of computer viruses in the internet network.
It seems that a similar situation is developing in the networks of mobile connection as
well. It is also obvious that together with the improvement of means of transportation and
the increase in the quantity and size of the loads, the assessment of process distribution
becomes more prominent in the systems of transportation. Ithas to be noted that the ma-
jority of the scientific research articles and works on the process distribution assessment
in the network systems has been made during the last several decades [1–4] and this topic
is still under active investigation. Here mathematical modelling and process analysis of
process distribution through network channels at both transition periods and steady modes
are presented. The main aim of the article is the analysis of process distribution in the
network systems. Process can be distributed through the channels of various networks
and concentrated in the nodes of the networks. Process transmission through the channels
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that connect network nodes can take place in many ways: for example, process can be
transmitted to a single or to several nodes, as an undivided value or divided into parts.

2 Distribution of non-additive process in the network systems

In this section non-additive process that has a featureH1 + H2 = max{H1;H2} will
be analysed. Let’s suppose that our network hasN nodes. The network can be depicted
with an oriented graph and let’s also say that the degrees of all its nodes areS(i) ≥ 2,
i = 1, 2, . . . , N . In other words, process can access every node and spread further.

Let’s begin investigating a case, in which one network node (e.g., the first) is a point
source with processf1(0) = f .

Network flow matrix will be marked as follows:

Q = bqijc, where i, j = 1, 2, . . . , N.

Let’s hold that

`q j =

N∑

i=1,i6=j

qij > 0 and 0 < aq j =

N∑

k=1,k 6=j

qjk < 1, where j = 1, 2, . . . , N.

Zero step process distribution in the network nodes is as follows:

~f(0) =
[
f1(0), f2(0), . . . , fN (0)

]
= [f, 0, . . . , 0].

In the first cycle it will become:

~f(1) = [f, fq12, fq13, . . . , fq1N ] =
[
f1(1), f2(1), . . . , fN (1)

]
.

In the second cycle process in each node already has to be calculated separately:

f1(2) = max
{
f ; f2(1)q21; . . . ; fN (1)qN1

}
,

fN (2) = max
{
fN (1); f2(1)q2N ; . . . ; fN−1(1)qN−1N

}
.

Such expression for process determination in the nodes can be used after each cycle:

fi(n + 1) = max
{
fi(n); f1(n)q1i; . . . ; fN (n)qNi

}
, where i = 1, 2, . . . , N.

Now we shall prove that afterN cycle’s process in all the nodes stabilizes and does
not fluctuate, if the flow intensity of all the nodes of the network satisfies the following
inequalities:

0 < `q i < 1 and 0 < qij < 1, where i, j = 1, 2, . . . , N,

and one node has a point source of process, then

fi(N) = fi(N + 1), where i = 1, 2, . . . , N,
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hereN – a number of network nodes.
At first, we can note that process during every cycle varies according to the formula:

fi(n + 1) = max
{
fi(n); f1(n)q1i; . . . ; fN (n)qNi

}
, where i = 1, 2, . . . , N.

As the process is non-additive, i.e.f1 + f2 = max{f1; f2}, then

fi(n) ≥ fi(n − 1), for each i = 1, 2, . . . , N.

It is also obvious that if during then cycle process is brought back to the node from
which it has been transferred in the previous cycle, this processfi(n) does not change
and in this case

fi(n) = fi(n − 1) = max
{
fi(n − 1); fi(n − 1)qij

}
.

It is clear that processfi(n) will not increase, if it passes a closed way, i.e. a cycle
with k nodes and comes back because in this case:

fi(n + k)=max
{
fi(n); fi(n)qij1 ; fi(n)qij1qj1j2 ; . . . ; fi(n)qij1 . . . qjk−1i

}
=fi(n),

becauseqij < 1, for all i, j = 1, 2, . . . , N .
Therefore, all the network lines links from the source that can increase process in

the node have to be irreversible, i.e. not to produce cycles.However, in the graph that
hasN nodes the longest way that has no cycles is made up fromN − 1 links, and the
process from the source reaches it within steps (starting with zero). Thus, in theN + 1
step the processes in all the nodes will not increase and since they cannot be decreased,
from N + 1 cycle processes do not vary.

3 Distribution of additive process in networks and networkssystems

In this section the distribution of process that can be divided or added in the network
nodes will be analysed. Two process distribution methods inthe network will be analysed
separately. In the first case it will be assumed that process can be transferred from every
node only to one of the possible nodes, while in the second case, let’s allow the process
spreading through the entire network.

The analysis will be started with process distribution in Markov chain. Let’s suppose
that we have a network withN nodes. Process from the nodei can be transferred only
to one nodej, which is selected according to transfer probabilityPij . Thus, during each
cycle, process can occur in only one network node. In the paper an assumption will be
made that transfer probabilities have Markov feature. Thus, if the hazard that exists in
nodei after n cycles will be marked asX(n), so

Pij = P
(
X(n) = j |X(n − 1) = i

)

= P
(
X(n) = j |X(1) = i1; X(2) = i2; . . . ;X(n − 1) = in−1

)
.
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This way the processX(n) will be Markov chain with finite set of the states
{1; 2; . . . ;N}. The homogeneous Markov chain should also be discussed since Pij is
not dependent onn. Let’s mark hazard occurrence probability in thei node aftern cycles
πi(n). It is clear that

N∑

i=1

πi(n) = 1.

Now it can be returned to the process calculation in each nodeaftern cycles. Nat-
urally, it is possible to determine only average processf i(n) in each node since process
aftern steps is a random value. If we made an assumption that all the network line flows
are equal to1, the following would be obtained:

f i(n) =
1

n

n∑

i=1

fπi(k) =
f

n

n∑

i=1

πi(k),

heref – the process that has occurred in one of the network nodes during zero step, i.e.,
we hold that this node is a point source of the process.

From the theory of the Markov chains [5, 6] we know that state probabilities aftern
cycles are described using recursive formulas

[
π1(1), π2(1), . . . , πN (1)

]
=

[
π1(0), π2(0), . . . , πN (0)

]
bPijc,

or in matrix form

~π(1) = ~π(0)P,

hereP = [Pij ] – transfer probability matrix and~π(0) = [1, 0, . . . , 0], if we make an
assumption that the point source of the process is located inthe first node.

Then it follows:

~π(2) = ~π(1)P =
(
~π(0)P

)
P = ~π(0)P 2, i, j = 1, 2, . . . , N.

Given that~π(0) = [1, 0, . . . , 0], we receive:

~π(n) = ~π(n − 1)P = ~π(0)Pn = bP
(n)
11 , P

(n)
12 , . . . , P

(n)
1N c.

Thus, we can calculate the average hazard in the nodei aftern cyclesf i(n) recur-
sively, using the following formula:

f i(n) =
f

n

n∑

k=1

P
(k)
1i , (1)

hereP
(k)
1i is thei element of the first line of matrix.

According to the expression ofπ1(n) and [5] it is not difficult to prove the theorem
of the marginal distribution of the process average, whenn converge to infinity.

184



Process Distribution in the Network Systems

If Markov chain withN states and transfer probability matrixP = bPijc is ergodic,
i.e., limn→∞ πi(n) = πi, i = 1, 2, . . . , N , so marginal process average values in all the
nodes of the network exist as well.

When, in the equation (1) we reach the limit whenn converge to infinity we get:

lim
k→∞

f i(n) = lim
k→∞

f

n

n∑

k=1

πi(k).

As limk→∞ πi(k) = πi, so there is a vanishing functionε(k) which is πi(k) =
πi + εk(i), wherelimk→∞ εk(i) = 0, k = 1, 2, . . .. Then

lim
k→∞

f i(n) = lim
k→∞

f

n

n∑

k=1

(
πi + εk(i)

)
= lim

n→∞

(f

n
πi

)
n + lim

n→∞

f

n

n∑

k=1

εk(i).

Let’s selectε(n)(i) = max1≤i≤n{ε1(i); ε2(i); . . . ; εn(i)}. Then:

0 ≤ lim
n→∞

f

n

n∑

k=1

∣∣εk(i)
∣∣ ≤ lim

n→∞

f

n
· nε(n)(i) = 0.

Let limn→∞
f
n

∑n

k=1 εk(i) = 0, and, therefore,f i = fπi.
Thus, the marginal average process exists in every node, besides, it is equal to the

product of the initial processf and the marginal node probability.

4 The distribution of the additive process in the network nodes the
transitional period

We analyse a network system in which process from each node can be transferred to other
nodes during one cycle, by dividing processfi(n) of the node in proportion to the flows
qij , wheni = 1, 2, . . . , N and

∑N

j=1 qij ≤ 1.
First of all, let’s assume that one network node, for example, the first one, is a point

source of the additive process, in which processf1(0) occurs. Thus, at the zero step we
have the following process distribution in the nodes:

~f(0) =
[
f1(0), 0, . . . , 0

]
.

During the following cycles, process modification will occur in each node. From that
node process will be transferred to other nodes by flowsqij . The total transfer will be:

fi(n)(qi1 + qi2 + . . . + qii−1 + qii+1 + . . . + qiN ) = fi(n)aq i.

In the nodei it will remain

fi(n) − fi
aq i = fi(n)qii
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part of process. The process
∑N

j=1 fjqij will be respectively transferred from other nodes
to the nodei. Thus, aftern cycles, we will have the following process in the nodei:

fi(n + 1) = f1(n)qi1 + f2(n)qi2 + . . . + fN (n)qiN , where i = 1, 2, . . . , N. (2)

After defining network flowQ = bqijc, we can write the system of equations in the
form of matrix:

~f(n + 1) = ~f(n)Q.

Thus, we have received process distribution in the iterative process. As the process
is stationary, i.e. matrixQ is not dependent on the number of cycle’sn, so irrespective
of the initial process distribution, this process converges only when all matrixesQ own
values will be less than one. This is as well the obligatory and sufficient condition for the
marginal distribution of the additive process in the network systems [7].

The iterative process of process distribution~f(n) converges when the number of
cycles isn → ∞ and it is not dependent on the initial process distribution,if all the flows
0 < qij < 1. It is important to analyse risk distribution after certainnumber of iterations.

From the expression (2) we get:

~f(n + 1) = ~f(n)Q.

What follows is

~f(n + 1) = ~f (n − 1)QQ = ~f(n − 1)Q2 = . . . = ~f(0)Qn+1.

Therefore

~f(n + 1) = ~f(0)Q(n+1).

This equality allows employing the ideas that are used when proving the ergodic theorems
of Markov’s chain states [8].

We shall mark the elements of matrixQn this way: q
(n)
ij , andqij = q

(1)
ij , i, j =

1, 2, . . . , N . When we come to the limit ofn → ∞, we marklimn→∞
~f(n+1) = f , and

get:

lim
n→∞

~f(n + 1) = lim
n→∞

~f(0)Qn+1 = f(0)Q.

Or

~f = ~f(0)Q = [f, 0, . . . , 0]




q1 q2 . . . qN

q1 q2 . . . qN

. . . . . . . . . . . .
q1 q2 . . . qN


 .

Thus

~f = [f1, fq2, . . . , fqN ].

This distribution does not depend on initial conditions.
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5 Marginal distribution of the process in the network nodes with
immunity

In this section we will analyse only the marginal processes in different network systems
with the infinitive sources and node immunities. For example, in the computer networks,
antivirus systems that destroy the majority of viruses are implemented, human immune
system destroys disease viruses, customs does not allow free movement of prohibited
goods, etc. The immunity of the network nodei is considered the numberIi (0 ≤ Ii ≤ 1),
by which the processH that occurs in this node is multiplied. Thus, whenIi = 1, process
is fully transmitted, and whenIi = 0, all of the process, that makes way to the node
i, is destroyed. Let’s assume that the first node of the networkis the infinitive source
of process that increases process by the valueH during each new cycle. First we shall
make an assumption that a marginal process distribution exists under such conditions, i.e.
limn→∞ Hi(n) = Hi, wherei = 1, 2, . . . , N .

Then, if at the end of each cycle the process that is located inthe node is multiplied
by the immunity0 < Ii ≤ 1, and the node in which the source of process is located, does
not have immunity (let’s say it is the first one), in this case process in the first node will
not change, if it is reduced by the value H after each cycle, i.e.

H2q21 + H3q31 + . . . + HNqN1 = H1(q12 + q13 + . . . + q1N ) − H.

In the second node, the incoming process multiplied by the immunity I2 has to be
equal to the outgoing process. Thus,

I2(H2q12 + H3q32 + . . . + HNqN2) = H2(q21 + q23 + . . . + q2N ).

The case is analogous with the other nodes:

Ij

N∑

i=1,i6=j

Hiqij = Hj

N∑

i=1,i6=j

qji, j = 2, 3, . . . , N.

Joining those equations we get a system of linear equations which can be written in
the form of matrix:

Q̃H = B. (3)

The main matrix of this system is:

Q̃ =




−aq1 q21 q31 . . . qN1

q12 −aq2/I2 q32 . . . qN2

. . . . . . . . . . . . . . .

q1N q2N q3N . . . −aqN/IN


 ,

constants vectorB = [H, 0, . . . , 0]T , and unknowns vectorH = [H1,H2, . . . ,HN ]T .
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To investigate the existence of the marginal distribution,hazard distribution~H(n)
will be expressed as iterative equation. As there is the immunity, we shall introduce a
diagonal matrix

I =




I1 0 0 0
0 I2 0 0

. . . . . . . . . . . .
0 0 0 IN


 .

Now we can express the system of equations this way:
[
H1(n + 1),H2(n + 1), . . . ,HN (n + 1)

]

=
[
H1(n),H2(n), . . . ,HN (n)

]
× I × Q + [H, 0, . . . , 0],

hereQ = [qij ], i, j = 1, 2, . . . , N .

We mark ~H(n) =
[
H1(n),H2(n), . . . ,HN (n)

]T
, ~H(0) = [H, 0, . . . , 0]T and ob-

tain that

~H(n + 1) = ~H(n) IQ + ~H(0). (4)

In the paper the convergence conditions of the pro cess (4) were not fully set; how-
ever, for this process, general condition that is necessaryand sufficient for the convergence
of iterative processes applies: for the process (4) to converge, it is necessary and sufficient
that all the absolute values of theIQ matrix are not less than1 [9].

6 Conclusions

Distributions of processes of different types in network systems are analyzed in the paper.
In case of non-additive processes an algorithm is created for the evaluation of process after
each step. It is revealed that after infinite number of steps (coinciding with the number of
network nodes) the process settles.

Process stability conditions are determined in case of additive processes, when the
process, while spreading, during each step transfers only to one node and when the process
transfers to more than one node.
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