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Abstract. Performing risk analysis of systems, evaluating reliability of technological
objects, hazard of technological processes, we usually have to sysfamtwork type
and distribution of various processes in such systems. A well-known emettical
apparatus of diffusive processes example is dispersion in contintedium (air, water,
etc.). Process distribution in network systems is simpler, however, ihrdapends on
network features. In this article theory of Markov chains is selected,ilmisiins of
different processes in transitional regimes are analysed as well&s igktheir stability.
Created models may be used in many different ways, for examplethéoanalysis

or viruses in computer networks, hazard distribution in transport sgstegarding
transportation of hazardous materials, etc.
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1 Introduction

Development and expansion of various networks and netwnrktsires create favourable
conditions for the spread of process through network cHanr@ne of the most visible
examples of such phenomenon is the spread of computer sinusiee internet network.
It seems that a similar situation is developing in the neksaf mobile connection as
well. It is also obvious that together with the improvemefiiheans of transportation and
the increase in the quantity and size of the loads, the assesof process distribution
becomes more prominent in the systems of transportatidvasito be noted that the ma-
jority of the scientific research articles and works on thecpss distribution assessment
in the network systems has been made during the last sewmadles [1-4] and this topic
is still under active investigation. Here mathematical eltidg and process analysis of
process distribution through network channels at bottstt@m periods and steady modes
are presented. The main aim of the article is the analysisafgss distribution in the
network systems. Process can be distributed through thenelgof various networks
and concentrated in the nodes of the networks. Processriissien through the channels
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that connect network nodes can take place in many ways: fimple, process can be
transmitted to a single or to several nodes, as an undivideetor divided into parts.

2 Distribution of non-additive process in the network systens

In this section non-additive process that has a feafiiret Ho = max{H;; H} will
be analysed. Let’'s suppose that our network Nasodes. The network can be depicted
with an oriented graph and let’s also say that the degreeB i aodes areS(i) > 2,
1=1,2,..., N. In other words, process can access every node and spréaerfur

Let’s begin investigating a case, in which one network n&dg.( the first) is a point
source with procesg (0) = f.

Network flow matrix will be marked as follows:

Q= lqij], wherei,j=1,2,...,N.

Let’s hold that

N N
q; = Z gi; >0 and0< q; = Z gjr <1, wherej=1,2,...,N.
i=1,i%] k=1,k#£]

Zero step process distribution in the network nodes is davist

F0) = [£1(0), f2(0), ..., fn(0)] = [£,0,...,0].

In the first cycle it will become:

—

fQ) =1[f, faz, fars, -, fan] = [f1(1), f2(1), ..., fn(1)].

In the second cycle process in each node already has to hdatatt separately:

f1(2) = max { f; fa(1)ga1; - - -5 fv(Dgna
fn(2) = max { fn(1); fa(Dgan; -5 fv—1(D)an—1n }-

Such expression for process determination in the nodesecanrdd after each cycle:
filn+1) = max { f;(n); fi(n)qus;...; fn(n)gni}, wherei=1,2,...,N.

Now we shall prove that afte¥ cycle’s process in all the nodes stabilizes and does
not fluctuate, if the flow intensity of all the nodes of the netlsatisfies the following
inequalities:

0<g;,<land0<gq;; <1, wherei,j=1,2,...,N,
and one node has a point source of process, then

filN)= fi(N+1), wherei=1,2,..., N,
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hereN — a number of network nodes.
At first, we can note that process during every cycle variesaing to the formula:

filn+1) =max {fi(n); fi(n)qui;...; fn(n)ani}, wherei=1,2,... N.
As the process is non-additive, i.8. + fo = max{ f1; f2}, then
filn) > fi(n—1), foreachi=1,2,...,N.

It is also obvious that if during the cycle process is brought back to the node from
which it has been transferred in the previous cycle, thisgsef;(n) does not change
and in this case

fi(n) = fi(n — 1) = max {fz(n —1); fi(n — 1)%‘}-

It is clear that procesg;(n) will not increase, if it passes a closed way, i.e. a cycle
with & nodes and comes back because in this case:

filn + k) =max{ fi(n); fi(n)qij,; fi(0) iy Gngos - - -3 (M) ijy - - @ju_yi } = fi(n),

because;; < 1,foralli,j =1,2,...,N.

Therefore, all the network lines links from the source thert increase process in
the node have to be irreversible, i.e. not to produce cydiesvever, in the graph that
has N nodes the longest way that has no cycles is made up fifom 1 links, and the
process from the source reaches it within steps (startitly zéro). Thus, in théV + 1
step the processes in all the nodes will not increase ane #iy cannot be decreased,
from N + 1 cycle processes do not vary.

3 Distribution of additive process in networks and networkssystems

In this section the distribution of process that can be @gidr added in the network
nodes will be analysed. Two process distribution methodsametwork will be analysed
separately. In the first case it will be assumed that procasde transferred from every
node only to one of the possible nodes, while in the seconel, ¢etss allow the process
spreading through the entire network.

The analysis will be started with process distribution inrkée chain. Let’s suppose
that we have a network witiV nodes. Process from the nodean be transferred only
to one nodegj, which is selected according to transfer probabilty. Thus, during each
cycle, process can occur in only one network node. In thermpapassumption will be
made that transfer probabilities have Markov feature. Tifube hazard that exists in
node: after n cycles will be marked ak (n), so

Py = P(X(n)=j| X(n—1) =)
= P(X(n) = j| X(1) = ix; X(2) = in5...; X(n— 1) = i)

183



J. Augutis, E. USpuras, R. KrikStolaitis, V. Matuzas

This way the process{(n) will be Markov chain with finite set of the states
{1;2;...; N}. The homogeneous Markov chain should also be discussed Bjnds
not dependent on. Let’'s mark hazard occurrence probability in theode aftem cycles
m;(n). Itis clear that

N
Zm(n) =1.

Now it can be returned to the process calculation in each afiden cycles. Nat-
urally, it is possible to determine only average procggs) in each node since process
aftern steps is a random value. If we made an assumption that alktiweork line flows
are equal td, the following would be obtained:

Tim) = =3 frith) = LS mh,
=1 i=1

here f — the process that has occurred in one of the network nod@sydzero step, i.e.,
we hold that this node is a point source of the process.

From the theory of the Markov chains [5, 6] we know that statsbpbilities aftem
cycles are described using recursive formulas

[771(1)771'2(1)7 s 77TN(1)} = [771(0)’ 7T2(0)7 S 77TN(0)] I_PijJ’
or in matrix form
7(1) = 7(0) P,

hereP = [P;;] — transfer probability matrix and(0) = [1,0,...,0], if we make an
assumption that the point source of the process is locatéifirst node.
Then it follows:

7(2) = #(1)P = (7#(0) P)P = #(0) P*, i,j=1,2,...,N.
Given that7(0) = [1,0,...,0], we receive:
#(n) =#(n—1)P=70)P" = P PP, . ... P

Thus, we can calculate the average hazard in the naftern cyclesf,(n) recur-
sively, using the following formula:

T =Ly p, @
k=1

herePl(f) is thes element of the first line of matrix.
According to the expression af, (n) and [5] it is not difficult to prove the theorem
of the marginal distribution of the process average, wiaeonverge to infinity.
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If Markov chain withV states and transfer probability maték= | P;; | is ergodic,
i.e.,lim, . m(n) = m, i = 1,2,..., N, so marginal process average values in all the
nodes of the network exist as well.

When, in the equation (1) we reach the limit whenonverge to infinity we get:

n

hm fi(n hm —Z

k—oo N
k=1

As limy_,o, m;(k) = m;, so there is a vanishing functiar{k) which is 7;(k) =
m; + € (3), wherelimy, o €5 (i) =0, k= 1,2,.... Then

lim T = lim —Z T+ ex (i —nlim (fm)n—i— hn;oEZEk

k—oo k—oo N

Let's select™ (i) = max;<;<n{1(i);€2(i);...;e,(7)}. Then:

0< lim % ; lex(i)] < lim / -ne™ (i) = 0.

n—oo N

Letlim, . £ 3°7_, x(i) = 0, and, thereforef; = fr;.
Thus, the marginal average process exists in every nodeldsedt is equal to the
product of the initial procesg and the marginal node probability.

4 The distribution of the additive process in the network node the
transitional period

We analyse a network system in which process from each naodescansferred to other
nodes during one cycle, by dividing proce&én) of the node in proportion to the flows
gij, wheni = 1,2,...,Nand2§.\/:1 gi; < 1.

First of all, let's assume that one network node, for exantpiefirst one, is a point
source of the additive process, in which procgg®)) occurs. Thus, at the zero step we
have the following process distribution in the nodes:

£(0) = [£1(0),0,...,0].

During the following cycles, process modification will océn each node. From that
node process will be transferred to other nodes by flgwsThe total transfer will be:

fim) (g + g+ oo+ Gic1 + Giivr + -+ ain) = fi(n) Qs

In the node it will remain

fz(n) - [iqi = fi(n)fhi
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part of process. The procegé\’: 1 [5a:; will be respectively transferred from other nodes
to the node. Thus, aftem cycles, we will have the following process in the nade

f’b(n—"_ 1) = fl(n)qll —f—fQ(n)qu +... +fN(n)q’LNa where i = 17277N (2)

After defining network flonQ = |g¢;; |, we can write the system of equations in the
form of matrix:

fln+1)=f(n)Q.

Thus, we have received process distribution in the itezgtiwcess. As the process
is stationary, i.e. matrix) is not dependent on the number of cyclesso irrespective
of the initial process distribution, this process convergaly when all matrixes) own
values will be less than one. This is as well the obligatory surfficient condition for the
marginal distribution of the additive process in the netngystems [7].

The iterative process of process distributiffn) converges when the number of
cycles isn — oo and it is not dependent on the initial process distributibal) the flows
0 < g;; < 1. Itisimportant to analyse risk distribution after certaimber of iterations.

From the expression (2) we get:

fln+1)=fn) Q.
What follows is

fn+1)=fn-1)QQ=fln-1)Q*=...= f(0)Q"*".

Therefore
fln+1) = F0) QU+,

This equality allows employing the ideas that are used whewipg the ergodic theorems
of Markov’s chain states [8].
We shall mark the elements of matrX® this way: ng), andg;; = qg), i,j =

— —

1,2,..., N. When we come to the limit of — oo, we marklim,,,», f(n+1) = f, and
get:

lim f(n+1)= lim f(0)Q"*' = f(0)Q.

Or
a 492 ... 4N
F=F0Q=1[f.0....0 |? ®
qQ q ... 4N
Thus
fz[fthm---anN]-

This distribution does not depend on initial conditions.
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5 Marginal distribution of the process in the network nodes wth
immunity

In this section we will analyse only the marginal processedifferent network systems
with the infinitive sources and node immunities. For examipl¢he computer networks,
antivirus systems that destroy the majority of viruses amglémented, human immune
system destroys disease viruses, customs does not allewrfozement of prohibited
goods, etc. The immunity of the network nade considered the numbér (0 < I; < 1),
by which the proces# that occurs in this node is multiplied. Thus, whin= 1, process
is fully transmitted, and whei; = 0, all of the process, that makes way to the node
1, is destroyed. Let's assume that the first node of the netigtke infinitive source
of process that increases process by the valuguring each new cycle. First we shall
make an assumption that a marginal process distributieissander such conditions, i.e.
lim,, o H;(n) = H;, wherei = 1,2, ... N.

Then, if at the end of each cycle the process that is locatéteinode is multiplied
by the immunity0 < I; < 1, and the node in which the source of process is located, does
not have immunity (let's say it is the first one), in this casegess in the first node will
not change, if it is reduced by the value H after each cyde, i.

Hogor + H3gs1 + ...+ Hyvgnvi = Hi(qa +quis + ...+ quv) — H.

In the second node, the incoming process multiplied by thaumity 7, has to be
equal to the outgoing process. Thus,

I)(Haquz + H3qzo + ... + Hygne) = Ha(go1 + o3 + ... + qon).
The case is analogous with the other nodes:
N N
Ij Z qu”:Hj Z jS; j:273,,N
i=1,i#] 1=1,i#j

Joining those equations we get a system of linear equatibichwean be written in
the form of matrix:

QH=B. (3)

The main matrix of this system is:

—q1 q21 qs1 - gN1
Q= |1 —q2/I2 gz ... qn2
QN Q2N gsN .- —qn/In
constants vectoB = [H,0, .. .,0]T, and unknowns vectall = [Hy, Ha, ..., Hy|T.
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To investigate the existence of the marginal distributioazard distributiond (n)
will be expressed as iterative equation. As there is the initpuwe shall introduce a
diagonal matrix

Now we can express the system of equations this way:

[Hi(n+1),Ha(n+1),...,Hy(n+1)]
= [Hi(n),H2(n),...,Hy(n)] x I x Q + [H,0,...,0],

hereQ = [¢;5], i, =1,2,...,N.

We markf (n) = [Hy(n), Ha(n), ..., Hx(n)]", H(0) = [H,0,...,0]” and ob-
tain that
H(n+1)=H(n)IQ + H(0). 4

In the paper the convergence conditions of the pro cess (/8 mat fully set; how-
ever, for this process, general condition that is necessatgufficient for the convergence
of iterative processes applies: for the process (4) to ageyé is necessary and sufficient
that all the absolute values of ti€) matrix are not less thah[9].

6 Conclusions

Distributions of processes of different types in networktsyns are analyzed in the paper.
In case of non-additive processes an algorithm is createtddavaluation of process after
each step. It is revealed that after infinite number of stepm¢iding with the number of
network nodes) the process settles.

Process stability conditions are determined in case oftimddirocesses, when the
process, while spreading, during each step transfers oolye node and when the process
transfers to more than one node.
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