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Abstract. This paper presents computational modeling of response kinetics of
bioelectroanalytical system based on the interfacial action of enzyme lipase. The
model also assumes that the substrate of enzyme is located on the surface of micelles
which are spread in the solution under study. Two distinct mathematical models
have been developed and evaluated through computational simulation series. The
results of simulation demonstrate that diffusion is important factor for the sensitivity of
bioelectroanalytical system, and it is important to take this process of masstransfer into
account in all system areas.
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1 Introduction

Recently, the amperometric detection method ofThermomyces lanuginosus lipase acti-
vity has been published [1]. Lipases, triacylglycerol hydrolases (EC 3.1.1.3) that cleave
triacylglycerols at the oil/water interface, have extensive applications in the food, paper,
pharmaceutical, cosmetic, detergent, leather, and textile industries [2, 3]. Widespread
practical use of these enzymes requires fast and reliable analytical routines to assess their
activity. The electrochemical technique, described in [1], presents the method of this kind.

In the work under discussion, a lipid-like synthetic compound O-palmitoyl-2,3-di-
cyanohydroquinone (PDCHQ), that contains both the ester and the electroactive hydroqui-
none-based groups, was used as a lipase substrate. The PDCHQmolecules were solubi-
lized in the Triton X-100 micelles, while the product of enzymatic hydrolysis,
2,3-dicyanohydroquinone, was readily oxidized on the electrode in a diffusion-controlled
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process. Under the diffusion control, the magnitude of the electrode current is determined
solely by the concentration and diffusion coefficient of theelectroactive species (in the
case of work [1], 2,3-dicyanohydroquinone) and the effective thickness of the diffusion
layer [4].

The authors of the paper [1] have performed experiments under the steady-state
conditions. The aim of the present work is computational modeling of response kinetics
of this bioelectroanalytical system.

2 Model

In a simplified one-dimension model (Fig. 1), the working space of bioelectroanalytical
system described in [1] could be divided into two parts: the first one – wide area, where
enzymatic reaction and molecular/particle (convective-)diffusion occur, the second one
- narrow area of a diffusion layer, where the diffusion of hydrolysis product occurs.
The latter model assumes that area 2 experimentally could bemade inaccessible (e.g.,
by covering the electrode surface with dialysis membrane) for other components of the
system.

0 r1 r2 x

12

Fig. 1. Scheme of the model used in the present study: 1 – area, wherereaction and
diffusion and/or convection occur, 2 – area, where reaction productdiffusion occurs,

x = 0 – the electrode surface,x = r1 – outer surface of area 2.

The processes in area 1 could be written in the following schematic form which is
most commonly used for the description of lipase interfacial activation [5]:

E
kp

←→
kd

E∗, (1)

E∗ + S
k1←→

k−1

E∗S
kcat−−→ E∗ + P, (2)

whereE is the enzyme in solution,E∗ is the enzyme penetrated in the surface of micelle,
S is the substrate on the micelle surface,E∗S is the enzyme-substrate complex, andP
represents the reaction product. According to the model, only P diffusion takes place
in area 2, generating amperometric response of the system. The electrical signal is
proportional to the derivative of reaction product concentration ∂P

∂x
|x=0. The change of

this parameter with time is the object of our computational simulations.
The system under discussion can be described by two different mathematical models:

1. Assuming that area 1 is large enough and substances are distributed evenly, e.g., by
convection process. Thus, it may be inferred that the concentrations of all substances
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are uniform across all area, and reaction equations can be solved in single space
point without taking diffusion into account. Also it is assumed that there is no
special separation between areas 1 and 2, therefore all substances (except the reaction
productP ) are uniformly distributed across area 2;

2. It is assumed that substances are distributed non-uniformly in area 1 and diffusion
should be taken into account. It is also assumed that there isspecial separation
between areas 1 and 2 (e.g., area 2 represents dialysis membrane of thicknessr1 on
the electrode surface), so only reaction product diffusionoccurs in area 2.

For both models it is true that beyond zone 1 (x > r2), there is large volume uniformly
filled with the same substances and where the same reactions occur. All these substances
and reaction product flow to zone 1 through boundaryx = r2.

First model is described by the following system of non-linear differential equations
for single area 1 space point [5]:

dE

dt
= −kp

I

V
E + kd

I

V
E∗, (3)

dE∗S

dt
= k1E

∗ × S − (kcat + k−1)E
∗S, (4)

dE∗

dt
= kpE + (kcat + k−1)E

∗S − (kd + k1S)E∗, (5)

dS

dt
= k−1E

∗S − k1E
∗ × S, (6)

where symbolsE, E∗, E∗S andS represent concentrations;I is the total interfacial area
of micelles;V is the total volume;kp, kd, k1, kcat, k−1 are the rate constants shown in
equations (1) and (2);t – time. The following initial conditions (t = 0) were applied:

E(0) = E0,

E∗(0) = 0, E∗S(0) = 0,

S(0) = S0.

(7)

Additional equation for area 2 (product diffusion plus gainfrom reactions in this area):

∂P

∂t
= dP

∂2P

∂x2
+ kcat

I

V
E∗S, x ∈ (0, r1), (8)

where symbolP represents reaction product concentration;dp is the diffusion coefficient
of P ; x – distance,E∗S is calculated from solution of equation system (3)–(6). Initial
condition (t = 0) for the second part of calculations:

P (0, x) = 0, x ∈ [0, r1], (9)

whereas boundary conditions:

P (t, 0) = 0, t > 0 (10)
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and

∂P

∂t
= kcat

I

V
E∗S, x = r1, t > 0, (11)

which is calculated from solution of equation system (3)–(6).
The second model is described by the system of non-linear partial differential equa-

tions [5]:

∂E

∂t
= −kp

I

V
E + kd

I

V
E∗ + dE

∂2E

∂x2
, (12)

∂E∗S

∂t
= k1E

∗ × S − (kcat + k−1)E
∗S + dE∗S

∂2E∗S

∂x2
, (13)

∂E∗

∂t
= kpE + (kcat + k−1)E

∗S − (kd + k1S)E∗ + dE∗

∂2E∗

∂x2
, (14)

∂S

∂t
= k−1E

∗S − k1E
∗ × S + dS

∂2S

∂x2
, (15)

for areax ∈ (r1, r2). Definitions are the same as for the first model, anddE , dE∗S , dE∗ ,
dS are the diffusion coefficients of free enzyme, micellar enzyme-substrate complex, mi-
celle with penetrated enzyme (in fact,dE∗S = dE∗), and substrate, respectively. Reaction
product generation and diffusion equation is as follows:

∂P

∂t
= qkcat

I

V
E∗S + dP

∂2P

∂x2
, x ∈ (0, r2),

q =

{

0, x ∈ (0, r1];

1, x ∈ (r1, r2).

(16)

Initial conditions (t = 0):

E∗(0, x) = 0, E∗S(0, x) = 0,

E(0, x) = E0, S(0, x) = S0, x ∈ [r1, r2];

P (0, x) = 0, x ∈ [0, r2].

(17)

Boundary conditions:

P (t, 0) = 0, t > 0; (18)

no flow condition for subregions boundary pointx = r1, t > 0:

∂E

∂x

∣

∣

∣

x=r1

(t) = 0,
∂S

∂x

∣

∣

∣

x=r1

(t) = 0,
∂E∗S

∂x

∣

∣

∣

x=r1

(t) = 0,
∂E∗

∂x

∣

∣

∣

x=r1

(t) = 0 (19)

and boundary condition for pointx = r2, t > 0:

P |x=r2
(t) = Pr2

(t), E|x=r2
(t) = Er2

(t),

S|x=r2
(t) = Sr2

(t), E∗S|x=r2
(t) = E∗Sr2

(t),

E∗|x=r2
(t) = E∗

r2
(t).

(20)

Pr2
, Er2

, E∗

r2
andE∗Sr2

are calculated from solution of equation system (3)–(6).

248



Computational Modeling of the Amperometric Bioanalytical System for Lipase Activity Assay

3 Computer simulation setup and results

The series of computational simulations were performed to investigate how electrode
readings would differ if bioelectroanalytical system worked under the first or second
model.

The first simulation experiment was designed according to the first model of bioelec-
troanalytical system. Calculations were divided into two steps: in the first step, calcula-
tions were performed according to equations (3)–(6), and insecond step, the diffusion of
P was calculated for area 2 according to Eq. (8). The following values were used in calcu-
lations (all parameters, except kinetic constants, are from [1]): dP = 5.49 ·10−5 cm2s−1,
r1 = 4 · 10−3 cm, I = 7.5 · 105 cm2, V = 10 cm3, E0 = 2.35 · 10−8 mol cm−3,
kcat = 75 s−1, k1 = 1.12 · 109 cm2mol−1s−1, k−1 = 10 s−1, kp = 100 cm s−1,
kd = 0.025 s−1, S0 = 6.7 · 10−12 mol cm−2. The system of differential equations was
discretized using the implicit finite difference scheme andnon-linear equation system,
corresponding to this scheme, was solved using simple iterations method [6]. Integration
steps in space and time were as follows:hx = 5 · 10−6 cm,ht = 1 s; integration in time
interval wasT = [0..3000]. The results of computational experiment are presented in
Fig. 2.
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Fig. 2. 4 – recalculated experimental data points from [1] (∂P

∂x
|x=0 (in mol cm−4)

dependency on time); solid line – computed∂P

∂x
|x=0 (in mol cm−4) dependency on

time (in seconds) according to the first model of bioelectroanalytical system.

Fig. 2 also contains the recalculated data points from ref. [1]. For the rotating disk
electrode employed in [1],∂P

∂x
|x=0 = I/(nFAdP ) [4], where I is the experimental

current values,n = 2 is the number of electrons transferred during the oxidationof
P , F is the Faraday constant, andA = 0.07 cm2 is the electrode surface area. As can
be seen from Fig. 2, the mathematical model (model 1) and a setof kinetic constants
used in the computational experiment enabled us to attain good agreement between the
experimental and modeling results. It is believed that systematically slightly higher values
of experimental data points in Fig. 2 result from imperfect subtraction of background
current in work [1]. Unfortunately, because of complexity of interfacial lipase action (see
Equations (1) and (2)), individual kinetic constants for this enzyme are not reported in the
literature. This fact presents difficulties to check the validity of the kinetic constants used
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in our calculations.
The second experiment was designed according to the second model of amperomet-

ric system. Constant values were the same as for the first experiment, additionally the
second stagnant diffusion layer was defined:r2 = 8 · 10−3 cm; dE∗S = 10−7 cm2s−1,
dE∗ = 10−7 cm2s−1, dE = 10−6 cm2s−1, dS = 10−6 cm2s−1, whenr1 ≤ x ≤ r2

and, for the diffusion coefficients, zero in other cases. Differential equation system
was transformed into implicit finite differences scheme andnon-linear equation system
corresponding to this scheme was solved using simple iterations method [6]. The re-
sults are presented in Fig. 3 (continuous line). The same experiment was repeated two
more times with following boundary location pairs a)r1 = 8 · 10−4, r2 = 4.8 · 10−3;
b) r1 = 4 · 10−4, r2 = 4.4 · 10−3 (all values in cm).
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Fig. 3. Solid line –∂P

∂x
|x=0 (in mol cm−4) dependency on time (in seconds) according

to the second model of analytical system and assumingr1 = 4 · 10
−3 cm andr2 =

8 · 10
−3 cm; dashed line –r1 = 8 · 10

−4 cm andr2 = 4.8 · 10
−3 cm; and dotted

line – r1 = 4 · 10
−4 cm andr2 = 4.4 · 10

−3 cm.

4 Conclusions

The results of foregoing computational experiments enableus to make the following
conclusions:

1. Assuming a simple model of single stagnant diffusion layer at the electrode surface
as well as three-step interfacial activation and action of enzyme, we were able to
compute the performance of electroanalytical system for the determination ofTher-
momyces lanuginosus lipase activity described by Ignatjev et al. [1].

2. A set of individual kinetic constants forThermomyces lanuginosus lipase with re-
spect to the synthetic substrate, O-palmitoyl-2,3-dicyanohydroquinone, is suggested
in the computational experiments.

3. As expected, modeling of the analytical system with additional stagnant diffusion
layer (the diffusion layer in model 1 is replaced by the dialysis membrane of the
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same thickness, and the second diffusion layer of constant thickness in model 2 is
formed, for instance, by electrode rotation) demonstratesa decreased initial rate of
system response (i.e., rate of current increase upon enzymeinjection in the system).
Computational experiments also show that significant decrease of dialysis membrane
thickness and increase of electrode rotation rate (leads tothe decreased thickness of
the second diffusion layer) should improve the performanceof the analytical system.
Electrochemical experiments along these lines are in progress.
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