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Abstract.  Eigenvalue problems of the form” = —\f(z) + pg(z), (@,
z(0) = 0, z(1) = 0 (ii) are considered. We are looking foA, 1) such that the
problem (i), (ii) has a nontrivial solution. This problem generalizes tieofas Fuchik
problem for piece-wise linear equations. In our considerations furgifoend g may
be super-, sub- and quasi-linear in various combinations. The spitaimed under the
normalization condition (otherwise problems may have continuous spsttuaturally
are similar to usual Fuchik spectrum for the Dirichlet problem. We proexigicit
formulas for Fuchik spectra for super and super, super and sbkarsd super, sub and
sub cases, where superlinear and sublinear parts of equationstaegfaim|z|>* = and

|| 7577 respectively ¢ > 0, 8> 0.)
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1 Introduction

In this paper we consider boundary value problems of the form
2" = =Af(z) + pg(z), @)
z(0)=0, «(1)=0, 2

where\ and . are non-negative parameters ahdndg are continuous functions such
that f(z) > 0 forx > 0 andf = 0 for z < 0 and, respectivelyy(z) > 0 for 2 < 0 and
g = 0forx > 0. It can be written also as

v J=Af(x), i 2>0,
v _{ ug(z), if x<O0. )

Any nontrivial solutionz(t) of equation (1) (or, which is the same, of (3)) satisfies the
conditionz(¢)z” (t) < 0 for anyt. Therefore behavior of solutions is rather oscillatory.
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In our research we are motivated by the Fuchik equation
2 =Xt +px, (4)

wherezt = max{z,0}, = = max{—=z,0}.
This equation may be written also as

" Az, if x>0,
€T =
—pzx, if x<O0.

®)

Equation (4) contains a piece-wise linear function in tlghtiside which possesses
some important properties of the linear functions. For gxafnthe positive homogeneity
property holds, that i$'(ax) = oF(x), a > 0, whereF(x) stands for the right side
in (4). Formally equation (4) is nonlinear and the addiyiproperty fails to hold, that is
the sum of two solutions; (¢t) andz2(t) of (4) need not to be a solution. It was the idea
of Fuchik [1] to modify a linear equation in this way and to sa@er nonlinear (“almost”
linear) equations of the form (4).

The Fuchik spectrum for the problem (4), (2) is defined as afall pairs (A, u),
for which the problem has a nontrivial solution. This speswtris well known [2, § 35]
and is depicted in Fig. 1.

A
Fig. 1. Fuchik spectrum for the Dirichlet problem (4), (2).

The Fuchik spectrum is useful in the study of the so callethfjing nonlinearities”.
Imagine equation of the type

2" +g(z) = f(t,z,2'), (6)

whereg(z) is a “principal” nonlinearity which behaves like a lineanftiion at infinity
and f is bounded (nonlinear) function. More preciously,dét) satisfy the conditions

glx)/z — X as x — 400,

)

g(x)/x —pu as x — —oo.
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It appears that “large amplitude” solutions of (6) behake liespective solutions of the
Fuchik equation (4). It is supposed, of course, thahdu are the same in (4) and (6).
Nonlinearitiesg of this kind often are referred to as “asymptotically asyrtnog
ones.
Asymmetric equations of the form (6) were studied interlgitegether with the
Dirichlet boundary conditions and others. Consider algditiear equation

2 + Az =0 (8)

along with the boundary conditions (2). L&, Ao, ... be the eigenvalues. It is used to
say that nonlinearity(z) “crosses several eigenvalues” of the problem (8), (2) ifsain
A; fall within the interval(, A). One may consult [3-5] for more details.

Another (practical) motivation to study asymptoticallyasnetric equations is that
these equations appear in the theory of suspension bridges.

Suspension bridges have a roadway that hangs from steelscalgbported by two
high towers. Suspension bridge cables are not directlyected to the towers. The cables
of a suspension bridge are not connected to the bridge - thlescpass through holes in
the top of the towers. A suspension bridge has at least two oahles. These cables
extend from one end of the bridge to the other. Suspendeesdlaing from these main
cables. The other end of the suspender attaches to the rpaBeleematically suspension

bridge is depicted in Fig. 2.
/ \\MAINCABLE// \

=t I e, =
ROAD-BED

AAMOL

\
TAIMOL

Fig. 2. One-dimensional model of a suspension bridge.

The largest suspension bridges in the world, accordinggavigb information (Au-
gust 2006), are

1. Akashi-Kaikyo Bridge (Japan) 1991 m (length of the cespan) — 1998;
. Great Belt Bridge (Denmark) 1624 m — 1998;
. Runyang Bridge (China) 1490 m — 2005;

2
3
4. Humber Bridge (England) 1410 m — 1981 (the largest froni188il 1998);
5. Jiangyin Suspension Bridge (China) 1385 m — 1997;

6

. Tsing Ma Bridge (Hong Kong) 1377 m — 1997,
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7. Verrazano Narrows Bridge (USA) 1298 m — 1964 (the largeshfL964 until 1981);
8. Golden Gate Bridge (USA) 1280 m — 1937 (the largest fronV188il 1964);
9. Hoga Kusten Bridge (Sweden) 1210 m — 1997;

10. Mackinac Bridge (USA) 1158 m — 1958.

However, the most famous is the Tacoma Narrows suspensigebmhich collapsed in
1940 as a result of dramatic large-scale oscillations. Tdredsird explanation of the large
oscillations of the bridge attribute the bridge’s collaps¢he phenomenon of resonance.
In the case of so the explanation goes, a suspension bridgatEs at its own natural
frequency. The wind blowing past the bridge generated a thvortexes that produced
a fluctuating force in tune with the bridge’s natural freqeersteadily increasing the
amplitude of its oscillations until the structure finallyllepsed.

Further research showed that this explanation, howevéncamplete and flawed.
R.H. Scanlan of Johns Hopkins University in Baltimore andésuf of Princeton Univer-
sity presented their own engineering report in the arti@le They focused on the idea that
mechanism responsible for large oscillations is selftaxicin-an interaction between the
bridge’s motion and the vortexes produced by that motiortherahan forced resonance.

P.J. McKenna of the University of Connecticut provided hishaexplanation after
spending significant time developing alternative mathé@ahbimodels to account for the
undulations and gyrations shown by the Tacoma bridge. His mdga is that “what
distinguishes suspension bridges . .. is their fundamentainearity”. This nonlinearity
is like “jumping nonlinearity” and it appears in a respeetimathematical model because
“the restoring force due to a cable is such that it strongbjste expansion, but does not
resist compression. Thus, the simplest function to moderéistoring force of the stays
in the bridge would be a constant timesthe expansion, if is positive, but zero, if is
negative, corresponding to compression.” McKenna askettat one of the reasons,
explaining strange behavior of suspension bridges undeiirthuence of slow wind,
lies in the behavior of the vertical strands of wire, or stag@nnecting the roadbed to
a bridge’s main cable. Civil engineers usually assume tmatstays always remain in
tension under a bridge’s weight, in effect acting as stiffregs. That allows them to use
relatively simple, linear differential equations to mode¢ bridge’s behavior. When a
bridge starts to oscillate, however, the stays begin altety loosening and tightening.
That produces a nonlinear effect, changing the nature ofattoe acting on the bridge.
When the stays are loose, they exert no force, and only gragi/on the roadbed. When
the stays are tight, they pull on the bridge, countering fifieceof gravity. Solutions
of the nonlinear differential equations that corresponduoh an asymmetric situation
suggest that, for a wide range of initial conditions, a gipesh can produce either small
or large oscillations. Lazer and McKenna went on to arguettie@alternate slackening
and tightening of cables might also explain the large twistscillations experienced by
a suspension bridge.

The whole story of mathematical explanation of behaviorusipension bridges can
be traced by the following references [4, 7-11].
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2 One parameter problems
Due to definition of equation (1) one have to consider theineal eigenvalue problem
2 = -Af(z), =x(0)=0, z(1) =0, 9)

looking for positive solutions of (1), (2) (similarly, oneas to consider the problem
2" = pg(x), x(0) =0, z(1) = 0, looking for negative solutions of (1), (2)).

The problem (9) was considered in [12, 13]. It is known that positive solution
z(t) of (9) is symmetric with respect to the middle point %7 where the maximal value
is attained.

We assume that(z) satisfies the following condition:

(A1) Afirst zerot, () of a solution to the Cauchy problem
W' =—f(u), w(0)=0,u(0)="y (10)

exists for anyy > 0.
Similar property can be assignedgi). We assume that(x) satisfies the condition:

(A2) A first zeror () of a solution to the Cauchy problem
v =g(v), v(0)=0,v'(0)=-d 11)

exists for anyy > 0.

Simple examples of (z) possessing the propert1) are the functiong (z) = 3
(t1(~) decreases from-oo to zero asy increases from zero te-cc) and f(z) = %
(t1(vy) increases from zero too as~y increases from zero t§oo). This can be verified
by direct calculation.

Proposition 1. Suppose thaf (x) satisfies the conditiofA1) and¢; () maps(0, +o00)
onto (0, +00) continuously. Then the problef®) has a continuous spectrum.

Proof. Fix A > 0 and consider a solution(¢; ) of the Cauchy problem (10). This
solution has its first positive zero &t(y). Consider a functiorX (t) := u(v/At;~). This
function solves the equation in (9). Moreovéf(0) = 0 andX(L\/})) = 0. In view of

properties of the functioty () for fixed A a valuey, > 0 exists such thaﬁl\%") =1 04

Example 1. Consider the boundary value problerh = —\z3, z(0) =0, x(1) = 0,
x(t) > 0, vt € (0,1).
The valuemaxjy ;) 2(t) := ||z| andX relate as

1
dz
~)\:2\/§«/ :
lz ) Vi=at
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The problem has continuous spectrum therefore, that igrgipositive) there exists a
unique positive solution of the problem.
Similarly the problem

2" =pg(z), x(0)=0, z(1)=0, =2(t)<0in(0,1) 12)

also has continuous spectrum.

A solution of the problem (9) under the conditiphl) (and (12) under the condition
(A2)) is unique however, if the normalization conditief{(0) = 1 (resp.:2’(0) = —1) is
imposed.

3 Two-parameter problems

3.1 Nonlinear spectra for Fuchik type problems

Consider

v J=Af(x), i 2>0, B B
x —{ (@), iz <0, z(0) = z(1) =0, (13)

wheref(x) andg(x) are positive valued continuous functions described irothiction.
Suppose thaf andg satisfy the condition§A1) and(A2) respectively.

Example 2. Consider the eigenvalue problem

—\2 i >
o { )\x4, !f x>0, (14)
px*, if x <0,
z(0) =x(1) =0, z(t) has exactly one zero if0, 1). (15)

Let us show that this problem has a continuous spectrumethdet us look for nontrivial
solutions which vanish exactly once in the inter¢@l1). Let 7 € (0,1). There exists a
continuum of solutiong:(¢; A, 7), which are positive if0, 7) and vanish at the ends of
the interval(0, 7). The derivativer’(7; A, 7) is @ monotonic continuous function @fwith
the range of value§—oo, 0). Similarly there exists a continuum of solution§&; i, 7) of
the equations” = px?, which are negative iir, 1) and vanish at the ends of the interval
(7,1). The derivativer’ (7; u, T) is @ monotonic continuous function pfwith the range
of values(—co, 0). Thus for anyr € (0, 1) and for any\ > 0 there existg:()) such that
a solutionz(t) of the problem (14) has exactly one zero and'issmooth (it follows that
in fact it is C2-smooth).

One is led thus to the conclusion that in order to have reddemanlinear eigenvalue
problems normalized solutions should be considered.

Consider

" _ _Af(f), if >0, B 7 , B
v _{ o), it <o HO=2)=0 O] =1 (16)

Let us state our main result.
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Theorem 1. Let the condition§A1) and(A2) hold with the functions; (v) andr (¢).
The Fuchik spectrum for the problgi16) is given by the relationsi (= 1,2, .. .):

Ff = {(/\;u): A is a solution of% tl(%) =1, u> o}, 17)
Fy = { A >0, uis a solution of\/lﬁ ﬁ(iﬂ) - 1}, (18)
o () o)1) =
Fira= 0w ion () ik () 1) =
i fon G ()] @
Fy = {0 (i+1)%n<%)+i%tl(%) =1}. (22)

Proof. Consider first solutions of (16), which are positive(ih 1). These solutions, if
any, are solutions of the problem (9). Let us find appropriat€onsider a solution
u(t; ) of the Cauchy problem (10). A functio (t) := u(v/At;7) solves equation
X" = —Af(X) and satisfies the condition(0) = 0, %X[_o = & [V =
WA ThenX[(0) = 1if y = % Sinceu(t;y) has its first positive zero at (v) the

fulnctioni((t) = u(v/\t;7) has the first zero a% ti(y) = \/1_ t1(f) If Xis such that

—t1(—=) = 1, thenX (¢) is a solution to the problem (9) and to the problem (16) also.
7 1( ﬁ) (t) p ) p (16)

Hence (17).

Similarly a solutionY'(¢) := v(\/ﬁt; d) with § = ﬁ solves equatioy™’ = ug(Y)

and satisfies the conditiot5(0) = 0, |t —o = —1. This solution has its first zero at

1 . .
t= \} 7-1( =)- If pis such that—ﬂ 71( u) = 1, thenY () is a solution to the problem

(12) and to the problem (16) also. Hence (18).

Consider now solutions of (16) (if any), which have exactheaero in(0,1).
We have to distinguish between solutions which are firsttpesand then negative,
and solutions, which are first negative and then positivensitter the first case. Let
X (t) = u(vV/\t;v), wherey = % This solution is positive in the intervéﬂ),TA),where

T\ = }tl(f) vanishes at the end pomts and satigfy(0) = 1, X'(T)) = —1.
Similarly Y(t) = v(\/nt; ), whereé = —=, is negative in the interval0, 7,), where
T, = ﬁ Tl(f) vanishes at the end pomts and satigfy0) = —1, Y’(7),) = 1. Since

equation (12) is autonomous, a functibrit — T)) solves it also, and can be combined
with X (¢) in order to get a solution of equation in (16). By construetibe function

| x@), it tel0,Ty,
Z(t)_{Y(t—TA), it te[hTh+T,) (23)
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satisfies the conditions
Z(O) :Oa Z(Tk) :O, Z(TA‘FTM) :0’
Z'0)=1, Z'(Ty) = -1, Z'(Tx+T,) =1.

If the condition
1 1 1 1
4T, = —t(—=)+—n(—)=1
A ﬁ1<ﬁ> \/ﬁﬁ(\/ﬁ)

holds thenZ(t) is a solution of the problem (16). Hence (19) for 1.

Similarly (20) fori = 1 can be obtained from the relatidfy + T = 1, considering
firstY'(t) and combining it withX (¢t — T},).

The rest of (19) and (20) (far = 2,3, ...) can be obtained using respectively the
relations

(Ih+Ty) + ...+ T\ +Tp), i pairs (T +1),)
and
(T +T\)+...+ (T, + 1), i pairs (T, + Ty).

Then the case of solutions of the problem (16), which havemuidber zeros iri0, 1), is
exhausted.

The relations (19) and (20) define the same seti(fxed).

This is not the case for solutions of (16), which have evenlremof zeros in(0, 1).
Fori fixed the relations (21) and (22) generally define differentss

3.2 Samples
3.2.1 Superlinear+superlinear
Consider the boundary value problem

. {—)\|:c|2a33, Tr20 o =e) =0, [0)]=1, (24)

—plz|?Pz, if z <0,

wherea > 0 andg > 0. Both “positive” and “negative” parts of equation are sujperar.
Computations show that the Fuchik spectrum for the probBth¢onsists of two straight
lines

Fy = {((QAQ)Q‘“Z(O& + 1)) > 0},
Fr = {(A; (245)2(B41)): A > o},

and a set of curves

1 1
AZat2 u2[~}+2

24, (a+ 1) 2A4(8 + 1)
F£1:{(A;u):z G L Ch) =1},
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1 1
_ 2458+ 1) 2A,(a+ 1)%
FQi—l{(A;,u’): 4 ﬁ( 1 ) +1 (#) = }7
M25+2 A2a+2
L 24n(a+ 1) 2448+ 1T
Fi = { s ()2 DEE 2RO TR
A2a+2 2B+2
24 )T 24(a+ 1)7r3
P ={ s ) 2RCEDTE 2O DER
M2,3+2 AZat2
where
1 1
/\/17520‘+27 /\/1—825+2
0 0

The respective Fuchik spectrum is depicted in Fig. 3.

Remark 1. The even-numbered branches of the spectrum cannot intatstbe bisectrix
unlessa = 3. Indeed, consider the branchég’ and F,;. Suppose thak = y, that is,
the branches intersect at the bisectrix. Then

2Aala + 1) | 245(5 +1)77

AZat2 2(‘4+2 A\2B+2 2[f+2

(i+1)

and

24, (a+ )= 245(8+ 1)

Z%‘F(Z—Fl)u =1.
AZat2 A28+2

Therefore one gets comparing the above two lines that

2A,(a+ 1) 2453+ 1)77

1 1
\Zatz A2B8+2

(25)

The left (resp.: right) side of (25) is a value(«) (resp.: t1(3)) of the first zero of a
solution to the Cauchy problem

" = Nz[**z (resp.z” = —\z[#z), z(0)=0, 2/(0) =1.
Since the functiown, (z) is monotone, equalit; (o) = ¢1(3) impliesa = .

3.2.2 Superlinear+sublinear

Consider the boundary value problem

/I:{_>\|x|2ocx7 if >0, 2(0) = z(1) = 0, |x/(0)‘:17 (26)

u\x|2ﬁlﬁ, if <0,
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wherea > 0 and( > 0. “Negative” part of equation is now sublinear. Computations
show that the Fuchik spectrum for the problem (26) consistw@ straight lines

F§={«%h9”%a+ﬂm% u2®7

E;:{me%ﬁ%%ﬁ+l);Azo}

20+ 1
and curves
B+1 2551
24, (a+ 1)2aF2 ,2Aﬂ(2 +1)25+2
F2J'z?71 (A;U): ? 1 +1 §ﬂ+1 =1,
AZat2 252

2A5(

Fj_l{()\;u): ) B +1 pp 1},
e =

2Aa(a+1)Tl+2 2Aﬁ(2ﬁ+1)2ﬁ+2 1}

(>‘ :LL) (Z =+ 1) T +i 26+1 =

A2a+2 2At2
_ . 2Aﬁ( Qﬂ_:}l ) 2{“—2 2A,(a+1) Tat2
F2i_{(>‘;,u'): (Z+1) §5+1 +1 1 _1}a
1125+2 A2a+2

where meaning ofl,, and Az is the same as above.
The respective Fuchik spectrum is depicted in Fig. 4.

HSuper (a=0.1) + Super (B3=0.2) M Super (a=0.1) + Sub (B=0.2)

1000 500

800 400

600 300

400 200

200 100
200 400 600 800 1000)\ 100 200 300 400 500 A

Fig. 3. Fuchik spectrum for the case
super+super, the first six pairs of
branches.

Fig. 4. Fuchik spectrum for the case
super+sub, the first six pairs of
branches.
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3.2.3 Sublinear+superlinear

Consider the boundary value problem

“Ne|=T, i 2>
ac”z{ Mz|z+1, if x>0, 2(0) = (1) = 0, ’x’(0)|=1, 27)

—plz|?P ez, if z<O0,

wherea > 0 andg > 0. “Positive” part of equation is sublinear. Computationswlthat
the Fuchik spectrum for the problem (26) consists of twagitdines

a+2 +1
F+={ 24,) 5 ST >0}
0 (( ) 20[4—].’/1) w = )

Fy = {()\; (245)2072(8 +1)): A > 0},

and curves
2041
(2(1;~rk11)2(’+ 245(8+1) =2
2’L 1= 2at1 + 2 T =1 s
AzZo+2 [L25+2
2a+1
Fy 2458+ N7 2Aa(gth)eE 1
21— _1 +1 2a+41 - )
J2P+2 \2a+2
92 a(za—:ll)gZil 2A5(/8 + 1)2[-}+2
FQt { 1 + 1) §a+l i T =1,
Za+2 [125+2
- \ 2A5(0+ 1) 24, (255
= i) (e+1 ) =1
2% {( 7#) (Z+ ) l},ﬁ +1 )\giié )

whereA, andAg are as above.
The respective Fuchik spectrum is depicted in Fig. 5.

3.2.4 Sublinear+sublinear

Consider the boundary value problem

Alelzr i >
x,,:{ Mz|za1, if 2 >0, 2(0) =2(1) =0, |7(0)|=1, (28)

u\x|ﬁ, if <0,
wherea > 0 and( > 0. Both “positive” and “negative” parts of equation are subin

Computations show that the Fuchik spectrum for the probR8h¢onsists of two straight
lines

Ff = {(244)5H 0‘11 w)i w0},

B 2[1'+2 ﬂ
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and curves
2a+1 1\ 28+1
24 (2+ly3ar 245( S+ )25+2
Fyiy = {(A;m: el | Aolapel) T 1},
A2a+2 'u2ﬁ+2
2B8+1 2a+1
2A5(5) B 24q (gt BH
_ . B+1 . a\2q+1
FQi—l = {()‘a/‘) ? 26+1 +1 ga+1 = 1}a
J26+2 A2a+2
2a+1 1\ 28+1
24 (2t V353 2A5( B+ )2ﬁ+2
I e
A2a+2 Iu25+2
28+1 2a+1
2A45( 2L )25+ 24 (Lotlyzats
I =
Mm 2a+2
whereA, andAg are as above.
The respective Fuchik spectrum is depicted in Fig. 6.
H Sub (a=0.1) + Super (B=0.2) H Sub (a=0.1) + Sub (B=0.2)
300
800
250
600
200
400 150
100
200
50
200 400 600 goo 50 100 150 200 250 300
Fig. 5. Fuchik spectrum for the case Fig. 6. Fuchik spectrum for the case
sub+super, the first six pairs of branches. sub+sub, the first six pairs of branches.

Remark 2. The even-numbered branches of the spectrum cannot intattbe bisectrix
unlessae = 3 (see SubsectiaB.2.1for explanation).

4 Semilinear spectra for Fuchik type problems

Consider semilinear problems, where equation is lineat. foositive, and superlinear for
x negative. Let equation be of the form

o {—)\x, if >0,

0) = 2(1) =0, 29
—plz|*Pz, if 2 <0, ©(0) =2(1) (29)
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whereX > 0andp > 0, 5 > 0.
Let us look for solutions, normalized by the conditipri(0)] = 1. Computations
show that the Fuchik spectrum for the problem (29) consistwm straight lines

Fr={@*p: w=0},

Fy = {(%(2472(8+ 1)): A= 0},

1
whereAg / \/HW and curves
0
2A 1)z5+2
F;gl—{ i—Jri s+ 1) —1},
M26+2
1
.24 1)
:{ 245(8 + 1) +¢7T:1},
M2;3+2 \/X
24 1)7572
F+:{ SR Ch) =1}7
VA TR
24 )7
By = { (i 1) 2B+ D +ii=1}
11252 \&
u
1000
800
600
400
200
200 400 600 800 1000A

Fig. 7. The first branches of the Fuchik spectrum for the problem (29) 0.1.

4.1 Semilinear boundary value problems

At the end we consider the boundary value problem for eqnatio

#" +g(x) = f(t,z,2"), g€ O [, fu, fr €CY (30)
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whereyg is the principal (semilinear) term, arfdis bounded.
Suppose thag(z) satisfies the conditions:
(C1) g(z)/z — w? asx — +oo (g(x) is “almost linear” at+oo);

(C2) g(z) < K|z|Pz, 2z < —N,whereK > 0, N > 0 andp > 0 are constants.
A sample equation might be

o —w?z, if x>0,
| =K23, if xz<o.

In the related literature often the linear eigenvalue probl

2+ k% =0, (31)
z(0)=0, z(1)=0 (32)

is considered for comparison. The interyaloco,w) is compared with the eigenvalues
k1 = m, ko = 2m, ... of the problem (31), (32). If

—c0o <k <... <k <w<kijyq, (33)

theng(x) is referred to as “nonlinearity crossing several eigeraglu

The conditiongC1) and(C2) are insufficient to make conclusions on the number of
solutions to the problem (30), (32). An extra condition ieded.

Introduce the additional condition in the spirit of the wdild], where motivation
and reasoning can be found:

(C3) there exists the trivial solutiom = 0 to the problem (30), (32) and a solutigi)
of the respective equation of variations

Y+ 92(0)y = fo(t,0,0)y + fur(£,0,0)y', (34)
y(0) =0, ¥'(0)=1 (35)

has exactlyn zeros in(0, 1) andy(1) # 0.

Theorem 2. Let the conditiongC1) to (C3) hold. Suppose that the conditi¢83) holds
for some; = 1,2,..., wherek; are eigenvalues of the linear problef®1), (32). Then
the problem(30), (32) has at leastm — 2i| + |m — (2i + 1)| solutions.

The proof is not simple, but analogous to that of the mainltésu14]. It can be
carried out considering solutiongt; ) of the Cauchy problem (30)(0) = 0, 2/(0) =
~. For -« small in modulus solutiong(t;v) behave likey(t). For v positive and large
x(t;y) behave like solutions of” + w?z = 0, 2(0) = 0, 2/(0) = 1. For v negative
and largez(t; v) behave like solutions of superlinear equation wittry) (the first zero)
tending to zero as tends to—oo. “Behaves like” means here “has the same number of
zeros in(0,1).” We omit the proof.
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