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Abstract. In this paper first it is shown for several geometries that classical similarity
solutions for particle growth exist if and only if the Stefan problem is well-posed in
the sense of being mass conserving. The extension of the similarity solutions to multi-
component alloys, which makes the problem nonlinear, is illustrated by the application
to a hypothetic alloy with realistic input values. The similarity solutions are basedon
the assumption of local equilibrium at the interface. In the second part, theassumption
of local equilibrium is relaxed using a first-order interface reaction. Theinfluence of the
interface reaction on the movement of the interface and on the interface concentrations
is evaluated using Finite Difference calculations. A Newton scheme is used tosolve the
nonlinear problem.

Keywords: particle dissolution, Stefan problem, similarity solution, diffusion, moving
grid method, level-set method.

1 Introduction

In the thermal processing of both ferrous and non-ferrous alloys, homogenization of the
as-cast microstructure by annealing at such a high temperature that unwanted precipitates
are fully dissolved is required to obtain a microstructure suited to undergo heavy plastic
deformation. Such a homogenization treatment is applied tohot-rolling of Al killed con-
struction steels, HSLA steels, all engineering steels, as well as aluminum extrusion alloys.
Next to precipitate dissolution, which is often the most critical of the occurring processes,
particles nucleate and grow from a supersaturated solution. The minimum temperature at
which the annealing should take place can be determined fromthermodynamic analysis
of the phases present. Another important quantity is the minimum annealing time at this
annealing temperature. This time, however, is not a constant but depends on particle size,
particle concentration, overall concentration, etc.

Due to the scientific and the industrial relevance of being able to predict the kine-
tics of particle dissolution and growth, many models of various complexity have been
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presented and experimentally validated. The early models on particle dissolution and
growth based on long-distance diffusion for binary alloys consisted of analytic solutions
in an unbounded medium under the assumption of local equilibrium at the interface,
see Ham [1, 2], Zener [3], Whelan [4], Tayler [5] (and several more references in these
proceedings edited by Ockendon and Hodgkins), Howison [6] and Aaron and Kotler [7] to
mention a few. The model of Nolfi et al. [8] incorporates the interfacial reaction between
the dissolving particle and its surrounding phase. Part of this paper will be in the spirit
of their work, but here we will consider an extension to multi-component alloys. Nolfi et
al. [8] did not consider interface motion. Later modeling particle dissolution and growth
has been extended to the introduction of multi-component particles by, among others,
Anderson and Ågren [9], Ågren [10], Ågren and Vassilev [11],Coates [12], Bourne et
al. [13], Thornton et al. [14], Reiso et al. [15], Hubert [16], Vitek et al. [17], Vusanovic
and Krane [18], Atkinson et al. [19] and Vermolen et al. [20,21]. In these papers particle
dissolution and growth was viewed as a Stefan problem with a sharp interface separating
the adjacent phases. Several numerical methods exist to solve Stefan problems related
to particle dissolution and growth and to solidification or melting problems. A survey
on numerical methods is given by Crank [22]. The most commonly used methods are
the fixed grid and moving grid methods. Segal et al. [23] extended the moving grid
method introduced for the Stefan problem by Murray & Landis [24] to a two-dimensional
finite element framework. A state-of-the-art fixed grid method is the level set method
introduced by Osher & Sethian [25]. The method was describedlater in a general way
by Sethian [26] and by Osher & Fedkiw [27]. It was firstly applied to a Stefan problem
with two spatial dimensions by Chen et al. [28]. A comparative study between the level
set method, moving grid method and phase field method is due toJavierre et al. [29] and
Kovac̆evíc & S̆arler [30]. In a parallel study the level set method is applied for three
spatial coordinates by Vermolen et al. [31] for binary alloys and by Javierre et al. [32] for
multi-component alloys. Further, in the last-mentioned paper the method is extended to a
vector valued Stefan problem for a multi-component alloy.

Thornton et al. [14] present an extensive review paper on thevarious models for
precipitate dissolution and growth. In that paper, next to viewing particle dissolution and
growth as a Stefan problem with a sharp interface, also diffuse-interface models, such
as the phase-field method, the Cahn-Hilliard equation, are presented with the appropriate
references for the metallurgical literature. Vermolen et al. [33] give a literature review on
sharp-interface models for particle dissolution and growth.

In this study we describe particle growth as a Stefan problem, i.e. a diffusion
equation with a moving sharp interface interface between the particle and its surrounding
diffusive phase. In the first part, we assume that the particle is allowed to grow in an
infinite alloy, which enables us to get exact analytic solutions for a planar, cylindrical
and spherical particle. The solutions that we use here were generated by Zener [3],
Coates [12], Howison [6] and Bourne et al. [13]. Subsequently, we apply the solutions
to multi-component alloys, which gives a nonlinear problemto solve involving a coupled
system of diffusion equations.

We note that the solutions due to Howison [6] can be applied tothe growth of
shape preserving ellipsoidal particles in binary alloys. Bourne et al. [13] extended these
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solutions to ellipsoidal particles in multi component alloys. Furthermore, particle growth
is known to give rise to a fingering behavior of the interface.This fingering behavior also
occurs in two-phase flow where two adjacent immiscible phases differ in properties like
density or viscocity, and this fingering is known as a so-called Saffmann-Taylor instability.
An example for two phase flow in subsurface oil reservoirs is treated by, for instance,
Vermolen et al. [34]. For particle growth problems in solid state alloys, this fingering was
analyzed by, among many others, Mullins and Sekerka [35,36]and by Chadam et al. [37].
The interface energy, which gives rise to the Gibbs-Thomsoneffect, is known to stabilize
the interface so that the fingering pattern disappears.

A second issue concerns the incorporation of interface reactions (such as the de-
composition of chemical compounds and crossing of the interface by the atoms) into
multi-component alloys. For this problem no similarity solutions exist as far as we know,
and hence numerical solutions of this nonlinear problem arecomputed. In this paper we
propose a solution method and illustrate that the influence of the interface reactions on
the dissolution kinetics can be substantial.

The innovations in the present paper are the analysis of the similarity solutions and
a derivation of a criterion for their existence as a solutionof the Stefan problem. This
has not yet been done for cylindrical and spherical particles, as far as we know. The
similarity solutions that were found by Zener [3], Coates [12], Howison [6] and Bourne
et al. [13], are used for this purpose. For a planar particle,this was done by Vermolen
& Vuik [38]. Further, we apply a first-order interface reaction for dissolution and growth
of particles in multi-component alloys, and present a numerical solution of this nonlinear
problem, which is the second innovation of this paper. The similarity solutions are used
as an initial guess for the numerical solution of the nonlinear problem.

2 The mathematical problem

The as-cast microstructure is simplified into a representative cell containing a stoichio-
metric β particle with a given shape surrounded by anα diffusive phase in which the
alloying element diffuses. The boundary between the particle and diffusive phase is
referred to as the interface. Particle growth is assumed to proceed via the following steps:
decomposition of the particle, crossing of the interface bythe atoms from the particle and
finally long-distance diffusion of the atoms in the diffusive phase. In the present paper
similarity solutions are considered where long-distance diffusion is assumed to control
the interface motion, i.e. local thermodynamic equilibrium is assumed at the interface and
hence the interface concentration is the concentration as predicted by the thermodynamic
phase diagram at the annealing temperature. Secondly, the assumption of thermodynamic
equilibrium is abandoned where numerical solutions are considered for this nonlinear
problem. Further, it is assumed that the particle concentration is constant all over the
particle and at all stages of the dissolution process.

The interface, consisting of a point, curve or a surface for respectively a one-, two-
or three-dimensional domain of computation, is denoted byS = S(t). In the present
similarity solutions the effects of soft-impingement are neglected, i.e. the interparticle
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distance is assumed to be very large. This is an inaccurate approximation if the overall
composition is large, that is, the interparticle distance is relatively small. It is known that
the nucleation stage should be modeled by approaches that totally differ from the moving
boundary problem until the particle reaches the size of the critical nucleus. An example of
such methods is the model of (heterogeneous) nucleation andearly growth due to Myhr &
Grong [39], where the statistical distribution of the particle size is computed as a function
of time. Further, the domain of computation is split into thediffusive part (theα-diffusive
phase), denoted byΩ = {x ∈ R : x > S(t)} and theβ-particle Ωp = {x ∈ R :
0 < x < S(t)}. First, the binary problem is posed. Subsequently the multi-component
model is described. This is done for both thermodynamic equilibrium and non equilib-
rium.

2.1 The binary model

The distribution of the alloying element is determined by diffusion in the diffusive phase
Ω, which gives

∂c

∂t
= D∆c = D

{∂2c

∂r2
+

a

r

∂c

∂r

}

, for r ∈ Ω and t > 0. (1)

HereD represents the diffusion coefficient andr denotes the spatial position within the
domain of computation. Further,a = 0, a = 1, a = 2 respectively correspond to planar,
cylindrical and spherical symmetry. In the present studyD is treated as a constant. Within
the particle the concentration is equal to a given constant,hence

c = cpart, for r ∈ Ωp and t ≥ 0. (2)

On the interface,S(t), local equilibrium is assumed, that is. The concentration is as
predicted by the thermodynamic phase diagram, i.e.

lim
r→S+(t)

c = csol, for t > 0. (3)

The initial concentration is denoted byc0. Further, it is assumed that the concentration
did not change at infinity, hence

lim
r→∞

c = c0, for t > 0. (4)

Since the concentration satisfies a maximum principle, the above relation implies a hori-
zontal asymptote at infinity. From a mass balance, the equation of motion of the interface
can be derived, this equation is commonly referred to as the Stefan condition, and is given
by:

(cpart − csol)S′(t) = D lim
r→S+(t)

∂c

∂r
, for t > 0. (5)

HereS′(t) represents the interface velocity. The problem is completed with the initial
position of the interfaceS(0) = 0, i.e. there is no particle initially. The problem, con-
sisting of equations (1), (2), (3), (4) and (5), is referred to as a Stefan problem for particle
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dissolution or particle growth. We also remark that the Stefan problem is well-posed in
the sense of mass conservation if and only ifc0 ∈ (min{csol, cpart},max{csol, cpart}).
This result was proved in [38] for an unbounded domain and [40] for a bounded domain.

For the above presented problem Zener-type analytic solutions for various geome-
tries can be obtained using the Boltzmann transformation.

2.2 The multi-component model

In this section the same definitions for geometry as in the previous section are used.
However, now the simultaneous diffusion of several alloying elements and the interaction
from cross-diffusion are considered. LetnS be the total number of chemical elements
that are considered, then we have for each alloying elementi:

∂ci

∂t
=

nS
∑

j=1

Dij∆cj =

nS
∑

j=1

Dij

{∂2cj

∂r2
+

a

r

∂cj

∂r

}

, for r ∈ Ω and t > 0. (6)

The above equation with cross-diffusion creates a set of strongly coupled equations, where
Dij represents the influence of speciesj on the rate of diffusion of speciesi. The particle
concentration is treated as a constant as before, i.e. for each chemical elementi:

ci = cpart
i , for r ∈ Ωp and t ≥ 0. (7)

On the interface, local equilibrium is assumed, hence the interface concentrations are
determined by the phase diagram following from thermodynamics, that is

F (cS
1 , . . . , cS

nS
) = 0, (8)

wherecS
i := limr→S+(t) ci. In general, this equation poses an essential nonlinearity. In

the ideal stoichiometric case, the above relation is hyperbolic, resulting into

(cS
1 )m1(. . .)(cS

nS
)mnS = K. (9)

To keep things general, the above functionF is assumed to be known. Similarly as in
the binary model, the initial concentration is known and denoted byc0

i for all chemical
elements, and hence at infinity we have for each chemical elementi:

lim
r→∞

ci = c0
i , for t > 0. (10)

From a mass balance, the equation of motion of the interface can be derived, therewith
we get for each alloying elementi:

(cpart
i − cS

i )S′(t) = lim
r→S+(t)

nS
∑

j=1

Dij

∂cj

∂r
, for t > 0. (11)

From the above set of equations, the interface concentrations, concentration profiles inΩ
and interface velocity and position are obtained. Note thatthe interface concentrationscS

i
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have to be determined as part of the solution. First, the interface velocity can be eliminated
since the above equation (11) has to hold for each alloying element. This gives

1

cpart
i − cS

i

lim
r→S+(t)

nS
∑

j=1

Dij

∂cj

∂r
=

1

cpart
k − cS

k

lim
r→S+(t)

nS
∑

j=1

Dkj

∂cj

∂r
,

for each i 6= k, for t > 0.

(12)

The concentrations at the interface,cS
i , satisfy the above equation and equation (8).

Equations (8) and (12) make the problem nonlinear. We remarkthat the well-known tie
line construction defines the final equilibrium concentrations on the relation (8). Setting
the diffusion coefficients equal gives these equilibrium concentrations as well. Further,
the tie lines can be used to predict the final equilibrium particle size in the case of a
bounded domain of computation. This all does not play a role here, hence the tie line
construction is not used. The above problem is solved in Section 3.3.

The unknowns in the problem as constituted by equations (8)–(12) are the interface
positionS(t), interface concentrationscS

i and concentration profilesci(r, t). To determine
the interface position, it is necessary to computeci(r, t) and hence alsocS

i . To determine
cS
i one solves the nonlinear equations resulting from equations (10), (11) and (12). In the

first part analytic solutions are obtained forci(r, t), which are substituted into expression
(12) and (11) to obtain a nonlinear equation for the interface concentration from which
the interface position is computed. In the second part of thepaper, numerical solutions
are addressed for the case of interface reactions. The incorporation of interface reactions
is described in the next section.

2.2.1 The interface reaction for the vector-Stefan problem

As mentioned in the previous section, equations (10), (11) hold for local thermodynamic
equilibrium, that is, the interface concentrations directly follow from the phase diagram.
Physically, multi-component particle dissolution takes place by the following consecutive
steps: 1. decomposition of the chemical compound; 2. crossing of the interface by the
atoms; and 3. long-distance diffusion through the diffusive phase. Particle growth takes
place by the reverse of the above-mentioned steps. In classical particle dissolution/growth
models, diffusion is assumed to be the rate-determining step. In the solution of the second
part of the paper, this assumption is relaxed. The flow of atoms out of or into the particle
is assumed to satisfy a first order reaction, that is,Kint,i(c

S
i −ci(S(t), t)) for each species

i. This must be balanced by the diffusion of the speciesi into or out of the diffusive phase
and by the displacement of the interfaceS(t):

∑nS

j=1 Dij
∂cj

∂r
(S(t), t) + ci(S(t), t)S′(t).

This results into the following Robin condition at the interface

Kint,i

(

csol
i − ci(S(t), t)

)

=

nS
∑

j=1

Dij

∂cj

∂r
+ ci(S(t), t)S′(t). (13)

The above equation holds for all chemical speciesi. The above equation is derived
analogously to the case that the off-diagonal diffusion coefficients are zero. The equation
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of motion becomes

(

cpart
i − ci(S(t), t)

)

S′(t) =

nS
∑

j=1

Dij lim
r→S+(t)

∂cj

∂r
, for t > 0. (14)

We note that the equilibrium concentrationscS
i satisfy the nonlinear relation (10), (11).

The interface concentrationsci(S(t), t) satisfy the above relation (14). As far as we
know, no analytic solutions in terms of similarity solutions exist for the problem with
interface reactions. Therefore, we present our preliminary numerical solutions for particle
dissolution/growth with the incorporation of interface reactions. The idea is to incorporate
our approach into our three-dimensional code for particle dissolution in multi-component
alloys.

3 Analytic solutions

First the analytic solutions for the binary case, which are the backbone for the multi-
component case, are reviewed briefly. Subsequently, conditions for the existence of
these analytic solutions are analyzed and subsequently some examples are given of the
extension to multi-component alloys. We note here that the self similar solutions were
derived in many earlier studies, due to Howison [6], Tayler [5], Atkinson [19], Bourne et
al. [13], Ham [1, 2, 41] and Zener [3], and the list is far from complete. For the sake of
completeness, first we repeat the most important steps.

3.1 Solutions for the binary model

As anansatzsolutions in the form ofc(r, t) = u(η), whereη := r√
t

andS(t) = k
√

t,
were obtained as similarity solutions due to Zener.

After some elementary algebra and use of the boundary conditions, which are

lim
η→k+

u = csol, and lim
η→∞

u = c0, (15)

one obtains for the concentration forx > k:

u(η) =
c0 − csol

∫ ∞
k

1
za exp

(

− z2

4D

)

dz

η
∫

k

1

za
exp

(

− z2

4D

)

dz + csol. (16)

The equation of motion (5) is used to determine the value ofk

dS

dt
=

k

2
√

t
=

D

cpart − csol

u′(k)√
t

. (17)

Differentiation of equation (31) and substitution of the result into equation (17) gives the
following transcendental equation fork

k

2
=

D

cpart − csol
· c0 − csol

∫ ∞
k

1
za exp

(

− z2

4D

)

dz
· exp

(

− k2

4D

)

ka
. (18)
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In the above expression the integral has to be evaluated for the various values ofa, that is
for the various geometries. Therefore, the integralIa is defined by

Ia :=

∞
∫

k

1

za
exp

(

− z2

4D

)

dz. (19)

First, by substitution ofy := x

2
√

D
, one obtains

Ia =
1

(2
√

D)a−1

∞
∫

k

2
√

D

exp (−y2)

ya
dy. (20)

Now the casesa = 0, a = 1 anda = 2 are treated consecutively. Fora = 0, which is the
planar particle, this gives

I0 = 2
√

D

∞
∫

k

2
√

D

exp (−y2)dy =
√

πD erfc
( k

2
√

D

)

, (21)

which is the familiar result for particle growth. Fora = 1, which is the cylindrical particle,
one obtains

I1 =

∞
∫

k

2
√

D

exp (−y2)

y
dy =

1

2

∞
∫

k2

4D

exp (−u)

u
du =

1

2
Ei

( k2

4D

)

, (22)

which is the exponential integral. Finally fora = 2, which is the spherical particle, this
yields

I2 =
1

2
√

D

∞
∫

k

2
√

D

exp (−y2)

y2
dy =

exp
(

− k2

4D

)

k
− 1

2

√

π

D
erfc

( k

2
√

D

)

. (23)

These expressions (21), (22) and (23) are substituted into equation (18) and, then a
solution for the interface velocity parameterk is obtained after a zero-point method.
The above integrals can be classified as gamma-functions. The solutions that have been
derived here are the classical Zener solutions. We will analyze the existence of a solution.

3.2 Existence of similarity solutions

For convenience, first the nonlinear problem to be solved will be re-written in terms of
the independent variablex := k

2
√

D
andA := c0−csol

cpart−csol , which gives

x

A
=

exp (−x2)

2xa
∫ ∞

x

exp (−y2)
ya dy

=: f(x; a). (24)
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To obtain the solution of the Stefan problem, the above relation has to be solved to obtain
x. Note, that since we consider particle growth, that we are only interested in non-negative
solutionsx. Graphically, we need to determine the intersection of the functions at the left-
and right hand side of the above equation (see Fig. 1). Subsequently, the interface speed
numberk can be obtained by usingk = 2

√
Dx. This problem is solved using a zero-point

method. Further, we remark that the improper integralIa over the interval(0,∞) only
exists ifa = 0, that is

∞
∫

0

exp (−y2)

ya
dy =







√
π

2
, if a = 0,

does not exist, if a ∈ {1, 2}.
(25)

Further,

lim
x→0+

f(x; a) =

{

1, if a = 0,

does not exist, if a ∈ {1, 2}.
(26)

It is observed thatf(x; a) is concave-upward onx > 0 for a ∈ {0, 1, 2} and that

lim
x→∞

f(x; a)

x
= 1, (27)

for a ∈ {1, 2, 3}. We also note thatf(x; a) > 0 strictly. Further it is observed that
f(x; 0) < f(x; 1) < f(x; 2) for x > 0. For a = 0 it is trivial to see thatf(0; 0) = 1.
In the cases thata ∈ {1, 2}, we have that for eachL > 0 there exists aδ > 0 such that
0 < x < δ ⇒ f(x; a) > L. Sincelimx→∞

f(x;a)
x

= 1, there is a point of intersection
betweenf(x; a) andx/A for x ≥ 0 if and only if 0 < A < 1.
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f(x;0) 

3 x 

Fig. 1. The functionf(x; a) for various values ofa and x
A

as a function ofx. From the
bottom to the top the curves correspond toa = 0, 1, 2. The intersection points are the

solution of the Stefan problem.

This implies thatc0 must be betweencsol andcpart for a similarity solution to exist.
This is in agreement with the criterion for well-posed solutions in the sense that these
solutions are mass conserving. Hence, we proved the following assertion:
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Theorem 1. Consider the Stefan problem as constituted by equations(1)–(5) with A > 0
(the particlegrowthcase). Then,

• The initial concentration satisfiesc0 ∈ (min{csol, cpart},max{csol, cpart}) iff the
Stefan problem is well-posed (see Theorem1 in Vermolen et al.[33]).

• The Stefan problem for the unbounded domain is well-posed iff there exists a simi-
larity solution in the formc = c(r/

√
t) andS(t) = k

√
t for thegrowth problem,

i.e. A > 0 of planar, cylindrical and spherical particles (i.e.a = 0, 1, 2).

In [38] and [40] the assertion has been proved for unbounded and general dimen-
sional bounded domains respectively, that there exists a mass conserving solution for the
particle growth problem if0 < A < 1. In the present work, it is demonstrated for the
particle growth problem in an unbounded domain that a similarity solution exists if and
only if 0 < A < 1, which is exactly the same condition needed for the existence of a mass
conserving solution.

For the unbounded case the similarity solution to the Stefanproblem for the particle
growth problem as in equations (1)–(5) is unique if the abovecondition is satisfied. The
claim of uniqueness among the class of similarity solutionsis sustained by the following
argument: Suppose that a similarity solution exists and suppose that it is not unique. Then
f(x; a) has more than one intersection with the liney = x

A
. Since,

lim
x→∞

f(x; a)

x
= 1,

it follows that limx→∞ f ′(x; a) = 1 < 1
A

for 0 < A < 1. This implies that if the
intersection off(x; a) with x

A
is not unique, thenf(x; a) is no longer concave-upward

on x > 0. This contradicts the observation thatf(x; a) is concave-upward forx > 0 for
a ∈ {0, 1, 2}, and hence the similarity solution is unique if0 < A < 1.

For the sake of illustration, we plot the functionsx/A andf(x; a) for a ∈ {0, 1, 2}
in Fig. 1 forA = 1/3. It can be seen that the particle growth velocities are ordered from
low to high: planar – cylindrical – spherical. This can be understood by0 < f(x; 0) <

f(x; 1) < f(x; 2) for x > 0 and the limitlimx→∞
f(x;a)

x
= 1 for a ∈ {0, 1, 2}. The result

that we demonstrated here is needed to investigate the validity of numerical solutions for
the multi-component setting.

3.3 Similarity solutions for the multi-component model

For completeness we repeat some of the principles outlined in Vermolen & Vuik [21].
First it is observed that the multi-component Stefan problem can be written in vector
form:

∂c

∂t
= D∆c, (28)

whereD represents the diffusion matrix. Further, for the equationof motion, we have

(cp − cs)vn = D
∂c

∂n
(29)
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on the moving interface, wherevn and ∂c
∂n

respectively denote the interface velocity and
directional derivative in the outward normal. As in [21] we diagonalizeD (or use a
Jordan form if the matrix is not diagonalizable), to obtainD = PΛP−1, whereP has the
eigenvectors ofD as its columns andΛ = diag(λ1 . . . λnS

), with λi as the eigenvalues of
D. Now the strong coupling in the diffusion equations has beenremoved and the diffusion
equations and the equation of motion can be rewritten by

∂u

∂t
= Λ∆u,

(up − us)vn = D
∂u

∂n
.

(30)

Note thatc = Pu and equation (8) has to be adjusted to have an expression inuS .
The similarity solution is analogous to the one in Section 3.1, but now for all chemi-

cal speciesi ∈ {1, . . . , nS}:

ui(η) =
u0

i − usol
i

∫ ∞
k

1
za exp

(

− z2

4λi

)

dz

η
∫

k

1

za
exp

(

− z2

4λi

)

dz + usol
i . (31)

As before, we obtain for the interface motion with the concentration profiles for all
chemical speciesi ∈ {1, . . . , nS}:

k

2
=

λi

upart
i − uS

i

· u0
i − uS

i
∫ ∞

k
1
za exp

(

− z2

4λi

)

dz
·
exp

(

− k2

4λi

)

ka
. (32)

Next to the above equation, equation (8) holds. Hence equations (8) and (32) constitute
a system of nonlinear algebraic equations to be solved forcS

i and interface velocity
parameterk. Note that fora = 0 the planar solution as in [42] is retrieved. Note further
that equations (21), (22) and (23) can be substituted into the integral in the above equation
to be solved by a zero-point method for a system of algebraic equations. We note that the
above expression is similar to the one in Bourne et al. [13] and Coates [12], although
its derivation is different here. The results of this section are used to validate numerical
solutions and to have an initial guess for the interface concentrations which have to be
obtained from numerical solution of the nonlinearly coupled problem.

3.4 Examples of calculations with the similarity solutions

In the simulations of this section, we set the off-diagonal diffusion coefficients equal to
zero and we set for convenienceDii =: Di.

3.4.1 The influence of the ratioD1

D2

As a basic configuration a hypothetic case with

cpart
1 = 50 = cpart

2 , c0
1 = 2 = c0

2, D1 = 1, cS
1 cS

2 = K = 1, (33)
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is dealt with, though the numbers have the same order of magnitude as aluminum alloys
under the conditions of a heat treatment. Here the diffusioncoefficient of the second
alloying element is varied for the several geometries. The results have been plotted in
Fig. 1 wherek is displayed as a function ofD2 for the three geometries. From Fig. 2 it
is clear that also in the multi-component case the sphericalparticles grow fastest and that
the planar particle are the slowest. Further, from Fig. 2 it can be seen that forD2 → 0
andD2 → ∞ the derivative of the dissolution speed with respect toD2 becomes smaller.
This holds for all cases.
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Fig. 2. The growth rate parameterk as a function of the logarithm of the ratio of the
diffusivities for a spherical, cylindrical and spherical particle.

4 Numerical solutions for multi-component simulations with an in-
terface reaction

4.1 The numerical procedure

In the numerical literature there is a vast jungle of methodsto solve Stefan problems and
moving boundary problems. Among many other methods, such asvariational inequalities
and the enthalpy method, the level-set method, phase-field method and the moving grid
method are the most popular ones. The level-set method was introduced by Osher and
Sethian [25] and was applied for the first time to a Stefan problem by Chen et al. [28].
Nowadays, we are applying the level-set method to Stefan problems in three spatial
dimensions in some other studies [33] and [32] for both binary and multi-component
alloys.

For some metallic systems, especially with strongly stable, complicated chemical
compounds (with a very high activation energy to decompose), the interface reactions
proceed slowly in relation to long-distance diffusion. This implies that a Robin condition
at the interface is to be used. In this section we propose a numerical method to deal
with this issue and this method will be implemented into our computer code for multi-
component particle dissolution in three spatial dimensions. In this paper the calculations
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with the interface reaction for a vector-Stefan problem have been done by the use of the
moving grid method. The moving grid method for a Stefan problem was introduced by
Murray and Landis [24] for one spatial dimension. It was extended in a finite element
framework for our class of Stefan problems by Segal et al. [23]. The extension involved
a conservative discretization at the moving boundary for initially non-smooth interfaces,
such as disk-like particles.

More details about the presently used numerical scheme for the multi-component
problem can be found in [33] in Section 3.2.1. The only addition to the numerical scheme
in the present paper is the Robin boundary condition from theinterface reaction, which is
discretized by

Kint,i(c
sol
i − ci,0) =

nS
∑

j=1

Dij

−3cj,0 + 4cj,1 − cj,2

2∆r
+ ci,0S

′(t), (34)

wherecj,k denotes the concentration of thej-th species on thek-th gridnode (cj,0 hence
denotes the interface concentration of speciesj). To obtain the interface velocity, we do
not discretize the equation of motion equation (14) but we substract equation (14) from
the Robin boundary condition, to obtain

S′(t) =
Kint,i

cpart
i

(csol
i − ci,0). (35)

Here we do not have the trouble of computing a numerical approximation of the gradient
of the concentration after having obtained the concentration profile. Note that the interface
velocity must be the same for all chemical species, hence

Kint,i

cpart
i

(csol
i − ci,0) =

Kint,k

cpart
k

(csol
k − ck,0), (36)

wherei 6= k. Further the nonlinear equation (8) has to hold. Equations (34), (8), (36)
pose a sufficient number of equations to determine the unknown valuescsol

i andci,0 for
i ∈ {1, . . . , nS}. The interface position is subsequently determined by equation (35).

The problem is nonlinear due to equation (8). Several methods, like Broyden’s
method, Picard’s fixed point method and a Newton scheme with finite differences for
the entries of the Jacobian matrix (referred to as the “quasi-Newton method”) can be
used. In this study we compared Picard’s method with the quasi-Newton scheme. The
quasi-Newton scheme appeared to be more efficient and therefore the description of the
numerical method to solve the equations will be devoted to this method. For illustrative
purposes we present the description for two species, that isnS = 2.

At each time step we carry out an iterative procedure to obtain cS
1 andcS

2 and the
interface position,S, at tn+1. The interface concentrationsc1,0 andc2,0 follow from the
solution of the diffusion equations with the Robin boundarycondition. We have to solve
the following set of equations:

f1(c
S
1 , cS

2 , c1,0, c2,0) =
Kint,1

cpart
1

(cS
1 − c1,0) −

Kint,2

cpart
2

(cS
2 − c2,0) = 0,

f2(c
S
1 , cS

2 , c1,0, c2,0) = (cS
1 )m1(cS

2 )m2 − K = 0.

(37)
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The above set of equations is solved by Newton’s method, where at each step the con-
centration profile on the entire domain of computation is required, with the use of the
boundary conditions at the interface

Kint1(c
S
1 − c1,0) =

nS
∑

j=1

D1j

−3cj,0 + 4cj,1 − cj,2

2∆r
+ c1,0S

′(t),

Kint2(c
S
2 − c2,0) =

nS
∑

j=1

D2j

−3cj,0 + 4cj,1 − cj,2

2∆r
+ c2,0S

′(t),

(38)

by which c1,0 andc2,0 are determined. We note that at a boundary not being a moving
interface, a homogeneous Neumann condition is imposed. We must bear in mind that
the interfacial positionS(tn+1) and interface velocityS′(tn+1) are also required using
expression (35). Therefore, coinciding with each Newton iteration-step, the interface
position is updated using expression . This gives an array ofc1,0, c2,0, cS

1 , cS
2 andS(tn+1)

at the new time-steptn+1. At each Newton step,p, the interface position is updated
according to

Sp(t
n+1) = S(tn) +

∆t

2

{

S′(tn) + S′
p(t

n+1)
}

, (39)

whereS′
p(t

n+1) is computed withc1,0, c2,0, cS
1 andcS

2 and the corresponding concen-
tration profilesc1(r, t) andc2(r, t) (computed with these numbers) at each iteration step.
Let xp := (cS,n+1

1,p , cS,n+1
2,p )T , wherep denotes the iteration number, then, the complete

algorithm can be summarized by

Enter initial concentration profile

Enter initial interface position

t = 0, n = 0

do until t > tend

t = t + ∆t

x1 = (cS,n
1,p , cS,n

2,p )T

p = 1

do until convergence

Solve concentration profiles for xp

Compute the entries of the Jacobian by finite

differences

xp+1 = xp − J−1(xp)f(xp)

p = p + 1

Sp(t
n+1) = S(tn) +

∆t

2

{

S′(tn) + S′
p(t

n+1)
}

end do
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S(tn+1) = Sp(t
n+1)

n = n + 1

end do

This formulation allows a straightforward application tonS species. As initial estimate
for the concentrationscS

1 andcS
2 we use the results from the similarity solutions for local

equilibrium as described in the previous part. Note that forthe case of particle growth
one can use the similarity solution for each geometry. However, for particle dissolution,
we only have a similarity solution for the planar case. Then,this is the only possibility to
use as initial values forcS

1 andcS
2 .

Since the interface concentrationsc1,0 and c2,0, for each value ofcS
1 and cS

2 , for
each value ofcS

1 andcS
2 the complete concentration profiles must be computed. Hencea

major disadvantage of the Newton method is the need of the numerical computation of the
Jacobian entries. So at each Newton step we need three evaluations of the concentration
profiles. Whereas the fixed point algorithm just requires one evaluation of the concentra-
tion profiles at each step. On the other hand, Newton converges quadratically and Picard’s
fixed point algorithm converges linearly if the object function is a contraction. Picard’s
scheme could be accelerated by choosing an appropriate relaxation parameterδ in

xp+1 = xp − δf(xp), wheref(x) =
(

f1(x), f2(x)
)T

. (40)

At the first time-step Picard’s scheme typically required more than 40 iterations to reach
the same an error. As time proceeds the number of iterations decreases for both methods,
and the difference of the required number of iterations decreases. For the simulation,
shown in Fig. 3 and 4 forKint,1 = 1 andKint,2 = 1 the ratio between the computation
times for both methods was 0.88. For a three dimensional implementation of this problem,
Picard may be an interesting alternative, since the numerical determination of the Jacobian
will become very expensive then. This will be studied in a future study.

4.2 Numerical results

To illustrate the influence of the interface reaction rate parameter, we consider a plate-
like particle with initial size of 0.1µm which dissolves in a computational cell of 1µm.
We consider two chemical species with diffusion coefficients D11 = 1µm2/s, D22 =
2µm2/s, D12 = 0 = D21. The solubility product is chosen to one, that is

cS
1cS

2 = 1. (41)

The interface reaction rate parametersKint,1 andKint,2 are taken equal and values have
been assigned of 1, 10, 100 and infinite. As to be expected the value of 100 is very
close to the local equilibrium solutions as the limit caseKint,1 andKint,2 → ∞ in which
ci(S(t), t) = cS

i . In Fig. 3 it can be seen clearly that lower values of the interface reaction
rate parameter delay the dissolution process considerably. Physically, this means that the
reactions at the interface, which are the decomposition of the chemical compounds in the
particle and the subsequent crossing of the interface by theatoms, are so slow that the
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atoms are not supplied sufficiently fast to match with the depletion of the atoms from the
interface by long-distance diffusion. From Fig. 3 it can be seen that interface controlled
dissolution is far more sluggish than diffusion controlleddissolution. In Fig. 4 it can be
seen that the interface reaction parameter also influences the solid solubilities and the
interface concentrations. This gives smaller concentration gradients for the cases of low
values ofKint,i. Hence the dissolution speed is lowered.
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Fig. 3. The interface position as a function of time for various values of theinterface
reaction parametersKint,1 andKint,1.
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Fig. 4. The interface concentrations and solubilities of the first element asa function of
time for various values of the interface reaction parametersKint,1 andKint,1. The solid
lines indicate the solubility of the first chemical element and the dashed lines correspond

to the interface concentrations.

5 Discussion and conclusions

Since metallic alloys often contain secondary particles inthe form of plates, needles and
spherical particles, analytic solutions for several geometries have been constructed for
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the growth of particles. These particles grow as a result from nucleation and diffusion.
The earliest nucleation stage proceeds by steps that cannotbe dealt with by the present
model since the particle has to grow larger than a critical nucleus size due to the surface
tension effects. This process is modeled in the nucleation models, such as the (hete-
rogeneous) model due to Myhr and Grong [39], in the Avrami-style models, or in the
spirit of Monte-Carlo simulations. The present similaritysolutions neglect this behavior
and are constructed as a mathematical exercise that can be used to calibrate the results
of numerical models for the case that the Gibbs-Thomson effect and nucleation issues
have been disregarded. Nevertheless the present solutionscan be used to gain insight
into the influence of the geometry of the growing particle, such as that the spherical
particles grow faster than the cylindrical- and planar particles. The planar particles grow
slowest. Further, a criterion for the existence of similarity solutions for growth of planar,
cylindrical and spherical particles is given. This criterion coincides with the one of the
existence of mass conserving solutions. Herewith, it follows that for multi-component
particles the computed solutions are always mass conserving. These results are of course
for the case that the Gibbs-Thomson effect has been disregarded. The paper should be
considered in the spirit of the existing Zener nucleation models where an extension has
been made to a vector Stefan problem for particle growth in a multi-component alloy.
The case of dissolution of a planar particle can be tackled similarly. For the dissolution
of spherical and cylindrical (needle-shaped) particles one can use approximate analytic
solutions.

Further, a formalism has been developed for interface reactions in diffusional particle
dissolution and growth for multi-component alloys, for which a numerical method has
been presented to deal with the nonlinear problem. A Picard and Newton approach
for the solution of the nonlinear problem were compared, where the Newton method
was more efficient. As an initial guess for the equilibrium concentrations, the interface
concentrations from the similarity solution are used. The interface reaction rate parameter
has a large impact on the dissolution or growth kinetics.
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