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Abstract. In this paper first it is shown for several geometries that classical sityila
solutions for particle growth exist if and only if the Stefan problem is wellggom
the sense of being mass conserving. The extension of the similarity sslidionulti-
component alloys, which makes the problem nonlinear, is illustrated bypiplecation
to a hypothetic alloy with realistic input values. The similarity solutions are based
the assumption of local equilibrium at the interface. In the second pargstmption
of local equilibrium is relaxed using a first-order interface reaction. ififieence of the
interface reaction on the movement of the interface and on the interfexeiatrations
is evaluated using Finite Difference calculations. A Newton scheme is usadv@ the
nonlinear problem.

Keywords: particle dissolution, Stefan problem, similarity solution, diffusion, moving
grid method, level-set method.

1 Introduction

In the thermal processing of both ferrous and non-ferrolaysl homogenization of the
as-cast microstructure by annealing at such a high tempertttat unwanted precipitates
are fully dissolved is required to obtain a microstructuriéexl to undergo heavy plastic
deformation. Such a homogenization treatment is appli¢ataolling of Al killed con-
struction steels, HSLA steels, all engineering steels,edlkas aluminum extrusion alloys.
Next to precipitate dissolution, which is often the mosticail of the occurring processes,
particles nucleate and grow from a supersaturated solufio@ minimum temperature at
which the annealing should take place can be determined thhermodynamic analysis
of the phases present. Another important quantity is thénmmuim annealing time at this
annealing temperature. This time, however, is not a cohbtadrdepends on particle size,
particle concentration, overall concentration, etc.
Due to the scientific and the industrial relevance of being &t predict the kine-

tics of particle dissolution and growth, many models of @asi complexity have been
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presented and experimentally validated. The early modelpasticle dissolution and
growth based on long-distance diffusion for binary allopagisted of analytic solutions
in an unbounded medium under the assumption of local equitibat the interface,
see Ham [1, 2], Zener [3], Whelan [4], Tayler [5] (and severarenreferences in these
proceedings edited by Ockendon and Hodgkins), Howisonr{6}aron and Kotler [7] to
mention a few. The model of Nolfi et al. [8] incorporates thieifacial reaction between
the dissolving particle and its surrounding phase. Parhisfgaper will be in the spirit
of their work, but here we will consider an extension to matimponent alloys. Nolfi et
al. [8] did not consider interface motion. Later modelingtjmde dissolution and growth
has been extended to the introduction of multi-componenighes by, among others,
Anderson and Agren [9], Agren [10], Agren and Vassilev [1Chates [12], Bourne et
al. [13], Thornton et al. [14], Reiso et al. [15], Hubert [1&]ftek et al. [17], Vusanovic
and Krane [18], Atkinson et al. [19] and Vermolen et al. [20). 2n these papers particle
dissolution and growth was viewed as a Stefan problem withaggsinterface separating
the adjacent phases. Several numerical methods existwe Stéfan problems related
to particle dissolution and growth and to solidification oeltimg problems. A survey
on numerical methods is given by Crank [22]. The most comsaosked methods are
the fixed grid and moving grid methods. Segal et al. [23] ed¢ehthe moving grid
method introduced for the Stefan problem by Murray & Lan@#]fto a two-dimensional
finite element framework. A state-of-the-art fixed grid nuathis the level set method
introduced by Osher & Sethian [25]. The method was desctiied in a general way
by Sethian [26] and by Osher & Fedkiw [27]. It was firstly agpglito a Stefan problem
with two spatial dimensions by Chen et al. [28]. A compastudy between the level
set method, moving grid method and phase field method is diavierre et al. [29] and
Kovatevic & Sarler [30]. In a parallel study the level set method is aplor three
spatial coordinates by Vermolen et al. [31] for binary atland by Javierre et al. [32] for
multi-component alloys. Further, in the last-mentionepgyahe method is extended to a
vector valued Stefan problem for a multi-component alloy.

Thornton et al. [14] present an extensive review paper onv#niwus models for
precipitate dissolution and growth. In that paper, nextigsving particle dissolution and
growth as a Stefan problem with a sharp interface, also s#finterface models, such
as the phase-field method, the Cahn-Hilliard equation, sesemted with the appropriate
references for the metallurgical literature. Vermolenlef38] give a literature review on
sharp-interface models for particle dissolution and ghowt

In this study we describe particle growth as a Stefan propleen a diffusion
equation with a moving sharp interface interface betweerptrticle and its surrounding
diffusive phase. In the first part, we assume that the part&chllowed to grow in an
infinite alloy, which enables us to get exact analytic solusi for a planar, cylindrical
and spherical particle. The solutions that we use here wenergted by Zener [3],
Coates [12], Howison [6] and Bourne et al. [13]. Subseqyente apply the solutions
to multi-component alloys, which gives a nonlinear probtersolve involving a coupled
system of diffusion equations.

We note that the solutions due to Howison [6] can be appliethéogrowth of
shape preserving ellipsoidal particles in binary alloysuie et al. [13] extended these
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solutions to ellipsoidal particles in multi component o Furthermore, particle growth
is known to give rise to a fingering behavior of the interfathkis fingering behavior also
occurs in two-phase flow where two adjacent immiscible phaééer in properties like

density or viscocity, and this fingering is known as a soechBaffmann-Taylor instability.
An example for two phase flow in subsurface oil reservoirgaated by, for instance,
Vermolen et al. [34]. For particle growth problems in solidte alloys, this fingering was
analyzed by, among many others, Mullins and Sekerka [3B86by Chadam et al. [37].
The interface energy, which gives rise to the Gibbs-Thonedfatt, is known to stabilize
the interface so that the fingering pattern disappears.

A second issue concerns the incorporation of interfacetiorer (such as the de-
composition of chemical compounds and crossing of the fexterby the atoms) into
multi-component alloys. For this problem no similaritysibns exist as far as we know,
and hence numerical solutions of this nonlinear problencareputed. In this paper we
propose a solution method and illustrate that the influericdbeninterface reactions on
the dissolution kinetics can be substantial.

The innovations in the present paper are the analysis ofiithiagty solutions and
a derivation of a criterion for their existence as a solutibrithe Stefan problem. This
has not yet been done for cylindrical and spherical pagjcks far as we know. The
similarity solutions that were found by Zener [3], Coate2g][Howison [6] and Bourne
et al. [13], are used for this purpose. For a planar parttblis,was done by Vermolen
& Vuik [38]. Further, we apply a first-order interface reactifor dissolution and growth
of particles in multi-component alloys, and present a nucaésolution of this nonlinear
problem, which is the second innovation of this paper. Thalarity solutions are used
as an initial guess for the numerical solution of the nordim@oblem.

2 The mathematical problem

The as-cast microstructure is simplified into a represaetatll containing a stoichio-
metric 3 particle with a given shape surrounded by amiffusive phase in which the
alloying element diffuses. The boundary between the pgariad diffusive phase is
referred to as the interface. Particle growth is assumeddtweed via the following steps:
decomposition of the particle, crossing of the interfacéhtgyatoms from the particle and
finally long-distance diffusion of the atoms in the diffusiphase. In the present paper
similarity solutions are considered where long-distaniffeigion is assumed to control
the interface motion, i.e. local thermodynamic equilibmiis assumed at the interface and
hence the interface concentration is the concentratiomezgted by the thermodynamic
phase diagram at the annealing temperature. Secondhsshengtion of thermodynamic
equilibrium is abandoned where numerical solutions aresicened for this nonlinear
problem. Further, it is assumed that the particle concBotras constant all over the
particle and at all stages of the dissolution process.

The interface, consisting of a point, curve or a surface égpectively a one-, two-
or three-dimensional domain of computation, is denotedsby S(¢). In the present
similarity solutions the effects of soft-impingement aeglected, i.e. the interparticle
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distance is assumed to be very large. This is an inaccurgr@xmation if the overall
composition is large, that is, the interparticle distarsceelatively small. It is known that
the nucleation stage should be modeled by approaches takly tiffer from the moving
boundary problem until the particle reaches the size oftitiea nucleus. An example of
such methods is the model of (heterogeneous) nucleatioaarhdgrowth due to Myhr &
Grong [39], where the statistical distribution of the peldisize is computed as a function
of time. Further, the domain of computation is split into ti#usive part (thex-diffusive
phase), denoted by) = {z € R: z > S(t)} and theg-particle 2, = {z € R:
0 < z < S(t)}. First, the binary problem is posed. Subsequently the roottiponent
model is described. This is done for both thermodynamicliisim and non equilib-
rium.

2.1 The binary model

The distribution of the alloying element is determined bifudiion in the diffusive phase
Q, which gives

dc 0%c  adc

9 _ DAc= D{— ade
ot ¢ or? + r Oor
Here D represents the diffusion coefficient andlenotes the spatial position within the
domain of computation. Furthet,= 0, a = 1, a = 2 respectively correspond to planar,
cylindrical and spherical symmetry. In the present stiidg treated as a constant. Within
the particle the concentration is equal to a given conskamtce

}, for r€ Q andt¢ > 0. Q)

c=cP" for reQ, andt > 0. 2

On the interfaceS(t), local equilibrium is assumed, that is. The concentrat®@as
predicted by the thermodynamic phase diagram, i.e.
lim c¢=c for ¢t > 0. ©)]
r—S*(t)
The initial concentration is denoted kY. Further, it is assumed that the concentration
did not change at infinity, hence
lim ¢=c", for ¢t > 0. (4)

T—00

Since the concentration satisfies a maximum principle, Hoy@relation implies a hori-
zontal asymptote at infinity. From a mass balance, the emuafimotion of the interface
can be derived, this equation is commonly referred to astidfaui$condition, and is given
by:

Jc
part _ _sol\ g/ _ .
(¢ ) S'(t) = DT lgrg(t) 5 for ¢ > 0. (5)

Here S’(t) represents the interface velocity. The problem is comgletith the initial
position of the interfac&'(0) = 0, i.e. there is no particle initially. The problem, con-
sisting of equations (1), (2), (3), (4) and (5), is referre@$ a Stefan problem for particle
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dissolution or particle growth. We also remark that the &tgsroblem is well-posed in
the sense of mass conservation if and onlyife (min{c*°!, cP¥*}, max{c®!, cPart}).
This result was proved in [38] for an unbounded domain aniifgita bounded domain.

For the above presented problem Zener-type analytic solitior various geome-
tries can be obtained using the Boltzmann transformation.

2.2 The multi-component model

In this section the same definitions for geometry as in theipus section are used.

However, now the simultaneous diffusion of several allgyétements and the interaction
from cross-diffusion are considered. Let be the total number of chemical elements
that are considered, then we have for each alloying eleient

Oc; = = 0%c; adc;
== DijchZZDij{aT;+——ﬂ}, for reQ andt>0.  (6)
i=1 =1

r Or

Jj=

The above equation with cross-diffusion creates a setafigly coupled equations, where
D;; represents the influence of specjemn the rate of diffusion of speciésThe particle
concentration is treated as a constant as before, i.e. ébraremical elemerit

ci=c™t, for reQ, andt > 0. )

On the interface, local equilibrium is assumed, hence therfarce concentrations are
determined by the phase diagram following from thermodyinanthat is

F(ct,...,c5 ) =0, (8)

ns

wherec? := lim, _, 5+ (4 ¢;- In general, this equation poses an essential nonlinednty
the ideal stoichiometric case, the above relation is hygarfresulting into

()™ (. )(eE )™ = K. ©

ns

To keep things general, the above functibris assumed to be known. Similarly as in
the binary model, the initial concentration is known andated byc? for all chemical
elements, and hence at infinity we have for each chemicaleziem

lim ¢; =, for ¢t > 0. (10)

T—00
From a mass balance, the equation of motion of the interfanebe derived, therewith
we get for each alloying element

(C§art _ cf)sf(t) = lim ZDU%, for t > 0. (11)

From the above set of equations, the interface concentgtamncentration profiles
and interface velocity and position are obtained. Notetthainterface concentration$
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have to be determined as part of the solution. First, thefatte velocity can be eliminated
since the above equation (11) has to hold for each alloyiageht. This gives

ns

1 dc; 1 c;
. lim D9 -~ gim Dy &5
Cg)art _ cf’ r— S+ (1) J; ¥ or Czart _ cg r—S+(t) J:Zl kj Or

ns

(12)
foreachi # k, for t > 0.

The concentrations at the interface’, satisfy the above equation and equation (8).
Equations (8) and (12) make the problem nonlinear. We reitteatthe well-known tie
line construction defines the final equilibrium concentnagi on the relation (8). Setting
the diffusion coefficients equal gives these equilibriumamntrations as well. Further,
the tie lines can be used to predict the final equilibrium iplertsize in the case of a
bounded domain of computation. This all does not play a rele hhence the tie line
construction is not used. The above problem is solved in@est3.

The unknowns in the problem as constituted by equationgX8)-are the interface
positionS(t), interface concentration$ and concentration profiles(r, t). To determine
the interface position, it is necessary to compyte, t) and hence alse;. To determine
7 one solves the nonlinear equations resulting from equai(ibd), (11) and (12). In the
first part analytic solutions are obtained fofr, t), which are substituted into expression
(12) and (11) to obtain a nonlinear equation for the intexfasncentration from which
the interface position is computed. In the second part opty@er, numerical solutions
are addressed for the case of interface reactions. Thepoi@iion of interface reactions
is described in the next section.

2.2.1 The interface reaction for the vector-Stefan problem

As mentioned in the previous section, equations (10), (bld for local thermodynamic
equilibrium, that is, the interface concentrations diseftillow from the phase diagram.
Physically, multi-component particle dissolution takésce by the following consecutive
steps: 1. decomposition of the chemical compound; 2. argssi the interface by the
atoms; and 3. long-distance diffusion through the diffagthase. Particle growth takes
place by the reverse of the above-mentioned steps. In cégsirticle dissolution/growth
models, diffusion is assumed to be the rate-determinirg $tethe solution of the second
part of the paper, this assumption is relaxed. The flow of atout of or into the particle
is assumed to satisfy a first order reaction, thakis ; (c; —c;(S(t),t)) for each species
1. This must be balanced by the diffusion of the spetiaso or out of the diffusive phase
and by the displacement of the interfagg): 7%, Dij%(S(t), t) + ¢ (S(t),t)S'(t).
This results into the following Robin condition at the irfeare

ns
80j

Kint,i (C?)l _ ci(S(t)7 t)) = Z Dij E + Ci(S(t)7 t)S/(t), (13)
j=1

The above equation holds for all chemical speciesThe above equation is derived
analogously to the case that the off-diagonal diffusiorffadents are zero. The equation
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of motion becomes

(cgart _ ci(S(t),t))S’(t) = Z D;; lim %, for t > 0. (14)
1

r—S+(t) Or

We note that the equilibrium concentrationgsatisfy the nonlinear relation (10), (11).
The interface concentrations(S(t),t) satisfy the above relation (14). As far as we
know, no analytic solutions in terms of similarity solut®exist for the problem with
interface reactions. Therefore, we present our prelirginamerical solutions for particle
dissolution/growth with the incorporation of interfacections. The idea is to incorporate
our approach into our three-dimensional code for particdealution in multi-component
alloys.

3 Analytic solutions

First the analytic solutions for the binary case, which dre backbone for the multi-
component case, are reviewed briefly. Subsequently, ¢ongifor the existence of
these analytic solutions are analyzed and subsequentlyg sgamples are given of the
extension to multi-component alloys. We note here that giiessmilar solutions were

derived in many earlier studies, due to Howison [6], Taylr Atkinson [19], Bourne et

al. [13], Ham [1, 2,41] and Zener [3], and the list is far froonplete. For the sake of
completeness, first we repeat the most important steps.

3.1 Solutions for the binary model

As anansatzsolutions in the form of:(r,¢) = u(n), wheren := 7 andS(t) = kv/t,
were obtained as similarity solutions due to Zener.
After some elementary algebra and use of the boundary ¢onsljitwhich are

lim w=¢*, and lim u=c°, (15)
n—k+ nN—00

one obtains for the concentration for> k:

n
CO _ Csol 1 2

z
= — — —)d soll 16
O e (-] =0 ap) oo

The equation of motion (5) is used to determine the value of
s _ kD _w(k
dt - 2\/{ - cpart _ csol \/i !

Differentiation of equation (31) and substitution of theuk into equation (17) gives the
following transcendental equation fér

7

k _ D . O _ ol _exp (- %) 18)

5 cpart _ psol fkoo Z% exp ( _ %)dz ka
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In the above expression the integral has to be evaluatetdorarious values af, that is
for the various geometries. Therefore, the intedyab defined by

oo

1 22
I, = / ~a OXP ( — E)dz (19)
k
First, by substitution ofy := 2\“"5, one obtains
1 [ exp(—4?)
I, = / dy. 20
(2vD)e-1 g €0
2vD

Now the casea = 0, a = 1 anda = 2 are treated consecutively. For= 0, which is the
planar particle, this gives

Iy =2VD 7 exp (—y*)dy = \/Eerfc(%), (21)

2vD

which is the familiar result for particle growth. Fer= 1, which is the cylindrical particle,
one obtains

o0 oo
exp (—1? 1 exp (—u 1./ k2
I = / #dyﬁ/%duzga(ﬁ), 22)

which is the exponential integral. Finally far= 2, which is the spherical particle, this
yields

1 7 exp (—y?) _eXp(—%) 1 /n k
IQQ@k/ oy = - - Derfc(Q\/E). (23)

2vD

These expressions (21), (22) and (23) are substituted mat®n (18) and, then a
solution for the interface velocity parameteris obtained after a zero-point method.
The above integrals can be classified as gamma-functiors sdllations that have been
derived here are the classical Zener solutions. We willyereethe existence of a solution.

3.2 Existence of similarity solutions

For convenience, first the nonlinear problem to be solvethwilre-written in terms of

the independent variable:= % andA := ﬁ which gives

00

T exp (—z?) _
A opa(®exp(=y?) g
A 2 N %dy

f(w;a). (24)
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To obtain the solution of the Stefan problem, the aboveimaidtas to be solved to obtain
x. Note, that since we consider particle growth, that we algiaterested in non-negative
solutionsz. Graphically, we need to determine the intersection oftimefions at the left-
and right hand side of the above equation (see Fig. 1). Subsdly, the interface speed
numberk can be obtained by usirig= 2v/Dz. This problem is solved using a zero-point
method. Further, we remark that the improper intedrabver the interval0, co) only
exists ifa = 0, that is

o0 9 VT T
/exp(ay)dy: 5 if a=0, (25)
, Y does not exist if a € {1,2}.
Further,
1 if a=0
li ja) =14 . 7 26
om0t f(z;a) {does not exist if a € {1,2}. (26)
It is observed thaf (z; a) is concave-upward on > 0 for a € {0, 1,2} and that
i L9 @27)
T—00 €T

for a € {1,2,3}. We also note thaf(z;a) > 0 strictly. Further it is observed that
f(z;0) < f(z;1) < f(x;2) forz > 0. Fora = 0 itis trivial to see thatf(0;0) = 1.
In the cases that € {1,2}, we have that for each > 0 there exists @ > 0 such that
0<z<d= f(z;a) > L. Sincelim,_, @ =1, there is a point of intersection
betweenf(z;a) andxz/Aforxz > 0ifand only if 0 < A < 1.

function

Fig. 1. The functionf(x; a) for various values of and & as a function ofc. From the
bottom to the top the curves correspondite- 0, 1,2. The intersection points are the
solution of the Stefan problem.

This implies that® must be betweer!' andcP** for a similarity solution to exist.
This is in agreement with the criterion for well-posed simins in the sense that these
solutions are mass conserving. Hence, we proved the fallpassertion:
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Theorem 1. Consider the Stefan problem as constituted by equafibr$5) with A > 0
(the particlegrowthcase). Then,

e The initial concentration satisfied € (min{c*°!, cPat} max{c*°!, cP¥}) iff the
Stefan problem is well-posed (see Theofeim Vermolen et al[33]).

e The Stefan problem for the unbounded domain is well-po$éakeife exists a simi-
larity solution in the forme = ¢(r/+/t) and S(t) = k+/t for the growth problem,
i.e. A > 0 of planar, cylindrical and spherical particles (i.e.= 0, 1, 2).

In [38] and [40] the assertion has been proved for unboundedganeral dimen-
sional bounded domains respectively, that there existsss emnserving solution for the
particle growth problem i) < A < 1. In the present work, it is demonstrated for the
particle growth problem in an unbounded domain that a siitjlaolution exists if and
only if 0 < A < 1, which is exactly the same condition needed for the exigt@ha mass
conserving solution.

For the unbounded case the similarity solution to the Stpfablem for the particle
growth problem as in equations (1)—(5) is unique if the abmwedition is satisfied. The
claim of uniqueness among the class of similarity solutisrgistained by the following
argument: Suppose that a similarity solution exists angesg@that it is not unique. Then
f(x;a) has more than one intersection with the line- . Since,

lim 7]8(‘%; @)

r—00 €T

:1’

it follows thatlim, ., f'(z;a) = 1 < % for 0 < A < 1. This implies that if the
intersection off (z; a) with % is not unique, theryf(z; a) is no longer concave-upward
onzx > 0. This contradicts the observation th&tr; ) is concave-upward faor > 0 for
a € {0, 1,2}, and hence the similarity solution is uniquéik A < 1.

For the sake of illustration, we plot the functiongA and f (z;a) for a € {0,1,2}
in Fig. 1 for A = 1/3. It can be seen that the particle growth velocities are exiéom
low to high: planar — cylindrical — spherical. This can be ersfood by0 < f(z;0) <
f(z;1) < f(x;2) forz > 0and the limitlim, . » @ = 1fora € {0,1,2}. Theresult
that we demonstrated here is needed to investigate thatyalichumerical solutions for
the multi-component setting.

3.3 Similarity solutions for the multi-component model

For completeness we repeat some of the principles outlimédimolen & Vuik [21].
First it is observed that the multi-component Stefan probtan be written in vector
form:

Jdc
— = DA 28
ot & (28)
whereD represents the diffusion matrix. Further, for the equatibmotion, we have
Jdc
P — S, = D— 29
(¢” = €")vn = D7~ (29)
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on the moving interface, wherg, and g—fl respectively denote the interface velocity and
directional derivative in the outward normal. As in [21] weagbnalize D (or use a
Jordan form if the matrix is not diagonalizable), to obtéin= PAP~!, whereP has the
eigenvectors oD as its columns and = diag(A; ... A, ), with A; as the eigenvalues of
D. Now the strong coupling in the diffusion equations has breamoved and the diffusion
equations and the equation of motion can be rewritten by

4 _ \Aw,

ot (30)

(u? — u’)v, = D%

= = on’
Note thatc = Pu and equation (8) has to be adjusted to have an expressioh in

The similarity solution is analogous to the one in Sectidn But now for all chemi-

cal species € {1,...,ng}:

2

UO — USOI "1 z
ui(n) = t t —exp| — dz + us°, 31
) flfciexp(— 4Z—i)dz z® p( 4)\i> ) (1)

2

k

As before, we obtain for the interface motion with the corragion profiles for all
chemical speciese {1,...,ng}:

k _ A _ ud —uf exp ( - fji) (32)
T T e (- ) R

Next to the above equation, equation (8) holds. Hence emps{B) and (32) constitute
a system of nonlinear algebraic equations to be solved-foand interface velocity
parametef. Note that fora = 0 the planar solution as in [42] is retrieved. Note further
that equations (21), (22) and (23) can be substituted itintiegral in the above equation
to be solved by a zero-point method for a system of algebrpiations. We note that the
above expression is similar to the one in Bourne et al. [18] @pnates [12], although
its derivation is different here. The results of this settwe used to validate numerical
solutions and to have an initial guess for the interface entrations which have to be
obtained from numerical solution of the nonlinearly coulgbeoblem.

3.4 Examples of calculations with the similarity solutions

In the simulations of this section, we set the off-diagoriilgion coefficients equal to
zero and we set for conveniengy; =: D;.

3.4.1 The influence of the ratiﬁi

As a basic configuration a hypothetic case with

A =50=c"" d=2=¢), D=1, cfc§=K=1, (33)

279



F.J. Vermolen

is dealt with, though the numbers have the same order of matgas aluminum alloys
under the conditions of a heat treatment. Here the diffusimefficient of the second
alloying element is varied for the several geometries. H®seilts have been plotted in
Fig. 1 wherek is displayed as a function dp, for the three geometries. From Fig. 2 it
is clear that also in the multi-component case the sphepindicles grow fastest and that
the planar particle are the slowest. Further, from Fig. ait be seen that fab; — 0
and Dy — oo the derivative of the dissolution speed with respedbtobecomes smaller.
This holds for all cases.

0.35

03

o
N
il

spherical particle

o
~
T

cylindrical particle

o
ol

growth rate parameter k

o
=
&

planar particle 1

In(DZID(:)Hn(Z) ‘1 é é 4
Fig. 2. The growth rate parametkras a function of the logarithm of the ratio of the
diffusivities for a spherical, cylindrical and spherical particle.

4 Numerical solutions for multi-component simulations wih an in-
terface reaction

4.1 The numerical procedure

In the numerical literature there is a vast jungle of methodsolve Stefan problems and
moving boundary problems. Among many other methods, suchrégional inequalities
and the enthalpy method, the level-set method, phase-fietdad and the moving grid
method are the most popular ones. The level-set method wasliced by Osher and
Sethian [25] and was applied for the first time to a Stefan lpralby Chen et al. [28].
Nowadays, we are applying the level-set method to Stefablgmts in three spatial
dimensions in some other studies [33] and [32] for both lyirerd multi-component
alloys.

For some metallic systems, especially with strongly statdenplicated chemical
compounds (with a very high activation energy to decompabe) interface reactions
proceed slowly in relation to long-distance diffusion. hnplies that a Robin condition
at the interface is to be used. In this section we propose eericah method to deal
with this issue and this method will be implemented into computer code for multi-
component particle dissolution in three spatial dimersidn this paper the calculations

280



On Similarity Solutions and Interface Reactions for a Veatalued Stefan Problem

with the interface reaction for a vector-Stefan problemehlagen done by the use of the
moving grid method. The moving grid method for a Stefan peoblwas introduced by
Murray and Landis [24] for one spatial dimension. It was agtl in a finite element
framework for our class of Stefan problems by Segal et al. [ZBe extension involved
a conservative discretization at the moving boundary fitially non-smooth interfaces,
such as disk-like particles.

More details about the presently used numerical schemeh&miulti-component
problem can be found in [33] in Section 3.2.1. The only addito the numerical scheme
in the present paper is the Robin boundary condition fronirttegface reaction, which is
discretized by

ns

—3c.
sol _ 7,0
Kinei(6 = ci0) = Y _ Dy

Jj=1

+dcj1—¢

»2 U
LG S (1), (34)

wherec; ,, denotes the concentration of tfi¢h species on thé-th gridnode ¢; o hence
denotes the interface concentration of speg¢)edo obtain the interface velocity, we do
not discretize the equation of motion equation (14) but wessact equation (14) from
the Robin boundary condition, to obtain

Kint,i

S/(t> = part (C?Ol — Ci,0)~ (35)

C

Here we do not have the trouble of computing a numerical agymiation of the gradient
of the concentration after having obtained the conceptnatrofile. Note that the interface
velocity must be the same for all chemical species, hence

Kinti o sol Kintk | sol
I:Zrtl (CEO - Ci,O) = ]lJr;rt (c?ﬂo - Ck,o), (36)
c; c

wherei # k. Further the nonlinear equation (8) has to hold. Equati8ds, ((8), (36)
pose a sufficient number of equations to determine the unkn@luescs®! andc; o for
i € {1,...,ng}. The interface position is subsequently determined by tamué&35).

The problem is nonlinear due to equation (8). Several methtike Broyden’s
method, Picard’s fixed point method and a Newton scheme wiite fdifferences for
the entries of the Jacobian matrix (referred to as the “ghiagiton method”) can be
used. In this study we compared Picard’s method with theiguaston scheme. The
quasi-Newton scheme appeared to be more efficient and dnerttfe description of the
numerical method to solve the equations will be devoted irttethod. For illustrative
purposes we present the description for two species, that is 2.

At each time step we carry out an iterative procedure to nhtiiandcs and the
interface positionS, att"*!. The interface concentratiors, andcs o follow from the
solution of the diffusion equations with the Robin boundeoydition. We have to solve
the following set of equations:

-Kint 1, 9 Kint 2,8
(€7 —c10) — (cg —c20) =0
Cll)art ( 1 ) ) Cgart ( 2 ) ) ’ (37)

fa(cf 5 e10,c00) = (¢7)™ (c5)™ — K = 0.

fl(CfaC§»C1,0702,0) =
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The above set of equations is solved by Newton’s method, evaeeach step the con-
centration profile on the entire domain of computation isuiexf, with the use of the
boundary conditions at the interface

ns
King, (¢ —c10) = ZDU —36i0 —;iC;,l — %2 c1,05'(t),

T (38)
Kint, (cg —c290) = ZDQj —3¢0 —’_2207{’1 — %2 + 205’ (1),

j=1
by which¢; o andcy o are determined. We note that at a boundary not being a moving
interface, a homogeneous Neumann condition is imposed. W bear in mind that
the interfacial positior5(t"*1) and interface velocitys’ (" 1) are also required using
expression (35). Therefore, coinciding with each Newtenaition-step, the interface
position is updated using expression . This gives an array @fcs o, ¢f, c5 andS(¢"+1)
at the new time-step”*!. At each Newton stepp, the interface position is updated
according to

Syt = S(7) + 2L 1) + sy} (39)

where S/ (t"1) is computed withe; o, ¢z, ¢f andcy and the corresponding concen-
tration profilesc; (r, t) andeq(r, t) (computed with these numbers) at each iteration step.

Letz? := (70", e *")T, wherep denotes the iteration number, then, the complete

algorithm can be summarized by
Enter initial concentration profile
Enter initial interface position
t=0,n=0
do until t>tend

t=t+ At

1_ /.Sn Sn\T
r = (61,7;)’62,71))

p=1
do until convergence
Sol ve concentration profiles for z?f
Conpute the entries of the Jacobian by finite
di fferences
£p+1 =aP — J*l@p)[@p)

p=p+1
S,(t™ ) = S(t™) + % {5'(t") + S, (")}

end do
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St = S, (")
n=n+1
end do

This formulation allows a straightforward applicationstg species. As initial estimate
for the concentrations; andc; we use the results from the similarity solutions for local
equilibrium as described in the previous part. Note thattier case of particle growth
one can use the similarity solution for each geometry. Haweor particle dissolution,
we only have a similarity solution for the planar case. Thhis, is the only possibility to
use as initial values fary andcs.

Since the interface concentrations, and cs g, for each value of7 andcj, for
each value ot andc5 the complete concentration profiles must be computed. Hance
major disadvantage of the Newton method is the need of therioat computation of the
Jacobian entries. So at each Newton step we need three timaduaf the concentration
profiles. Whereas the fixed point algorithm just requires aaduation of the concentra-
tion profiles at each step. On the other hand, Newton consepgedratically and Picard’s
fixed point algorithm converges linearly if the object fupatis a contraction. Picard’s
scheme could be accelerated by choosing an appropriai@tiela parametes in

2Pt = 2P — §f(a”), wheref(z) = (f1(z), fo(z))". (40)

At the first time-step Picard’s scheme typically requiredenthhan 40 iterations to reach
the same an error. As time proceeds the number of iteratiecredses for both methods,
and the difference of the required number of iterations elexes. For the simulation,
shown in Fig. 3 and 4 foK,,; = 1 and K, 2o = 1 the ratio between the computation
times for both methods was 0.88. For a three dimensionakimehtation of this problem,

Picard may be an interesting alternative, since the nualetgtermination of the Jacobian
will become very expensive then. This will be studied in aifatstudy.

4.2 Numerical results

To illustrate the influence of the interface reaction rateapeeter, we consider a plate-
like particle with initial size of 0.1Jum which dissolves in a computational cell ofdn.
We consider two chemical species with diffusion coeffigelt; = 1um?/s, Dy =
21m? /s, D13 = 0 = Do;. The solubility product is chosen to one, that is

cicy = 1. (41)

The interface reaction rate parametéis, ; and Ki, » are taken equal and values have
been assigned of 1, 10, 100 and infinite. As to be expectedahe wf 100 is very
close to the local equilibrium solutions as the limit cdsg; 1 and K, 2 — oo in which
ci(S(t),t) = ¢ InFig. 3 it can be seen clearly that lower values of the fatar reaction
rate parameter delay the dissolution process considerbiysically, this means that the
reactions at the interface, which are the decompositiohethemical compounds in the
particle and the subsequent crossing of the interface bwtibras, are so slow that the
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atoms are not supplied sufficiently fast to match with theletggn of the atoms from the

interface by long-distance diffusion. From Fig. 3 it can bersthat interface controlled
dissolution is far more sluggish than diffusion controléidsolution. In Fig. 4 it can be

seen that the interface reaction parameter also influeheesdlid solubilities and the

interface concentrations. This gives smaller concemtnagradients for the cases of low
values ofKj, ;. Hence the dissolution speed is lowered.

0.105

0.1

0,095

Interface position
o
8

0.085F

K = infinite = K
intl int,2

0 D‘l U‘Z 0‘3 0‘4 D‘S D‘E 0‘7 U‘S 0‘9 1
Time

Fig. 3. The interface position as a function of time for various values ofriteeface

reaction paramete&i,s,1 and King,1-

= 100=
int,2 K = infinite = K
intL int2 |

Concentration of element
\
\
v

Time

Fig. 4. The interface concentrations and solubilities of the first elememnfuasction of

time for various values of the interface reaction paramekggs 1 and Ki,¢,1. The solid

lines indicate the solubility of the first chemical element and the dashed binesspond
to the interface concentrations.

5 Discussion and conclusions

Since metallic alloys often contain secondary particlethaform of plates, needles and
spherical particles, analytic solutions for several getoie® have been constructed for
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the growth of particles. These particles grow as a resuthfnoucleation and diffusion.
The earliest nucleation stage proceeds by steps that cherdalt with by the present
model since the particle has to grow larger than a criticaleus size due to the surface
tension effects. This process is modeled in the nucleatiodets, such as the (hete-
rogeneous) model due to Myhr and Grong [39], in the Avraryliestmodels, or in the
spirit of Monte-Carlo simulations. The present similastutions neglect this behavior
and are constructed as a mathematical exercise that caretigauisalibrate the results
of numerical models for the case that the Gibbs-Thomsorcte#fied nucleation issues
have been disregarded. Nevertheless the present solamnbe used to gain insight
into the influence of the geometry of the growing particlectsas that the spherical
particles grow faster than the cylindrical- and planaripkss. The planar particles grow
slowest. Further, a criterion for the existence of simiyasiolutions for growth of planar,
cylindrical and spherical particles is given. This critericoincides with the one of the
existence of mass conserving solutions. Herewith, it fefldhat for multi-component
particles the computed solutions are always mass congervhese results are of course
for the case that the Gibbs-Thomson effect has been distegaiThe paper should be
considered in the spirit of the existing Zener nucleatiordei® where an extension has
been made to a vector Stefan problem for particle growth inutiscomponent alloy.
The case of dissolution of a planar particle can be tackieilaily. For the dissolution
of spherical and cylindrical (needle-shaped) particles can use approximate analytic
solutions.

Further, a formalism has been developed for interfaceimein diffusional particle
dissolution and growth for multi-component alloys, for winia numerical method has
been presented to deal with the nonlinear problem. A Picard Mewton approach
for the solution of the nonlinear problem were compared, relthe Newton method
was more efficient. As an initial guess for the equilibriunmcentrations, the interface
concentrations from the similarity solution are used. Tterface reaction rate parameter
has a large impact on the dissolution or growth kinetics.
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