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Abstract. Laminar free convection from a vertical permeable circular cone ningdaat
non-uniform surface temperature with pressure work term is coregld®on-similarity
solutions for boundary layer equations are found to exist when thacgutémperature
follows the power law variations with the distance measured from the leadigg. e
The numerical solutions of the transformed non-similar boundary lagieations are
obtained by using two methodologies, namely, (i) a finite difference medndd(ii) a
series solution or perturbation method for small valueg,ahe dimensionless suction
parameter. Solutions obtained in terms of skin-friction coefficient, loatd of heat
transfer, velocity and temperature profiles for the values of Prandtbey pressure work
parameter and temperature gradient are displayed in both graphit#launar forms.
Finite difference solutions are compared with the solutions obtained byrbpatinn
technique and found to be in excellent agreement near the leading edge.
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Nomenclature

Nu, local Nusselt number

specific heat at constant pressure ¢,, surface heat flux
local skin friction T temperature of the fluid
dimensionless stream function T, temperature at the surface
acceleration due to gravity T, temperature of the ambient fluid
local Grashof number u  velocity component in the-direction
thermal conductivity of the fluid v  velocity component in thg-direction
temperature gradient parameter V'  transpiration velocity

x  measured from the leading edge
Prandtl number y  distance normal to the surface

fluid pressure
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Greek symbols

a thermal diffusivity u Viscosity of the fluid

0 coefficient of volume expansion 6 dimensionless temperature

~ the cone apex half-angle p density of the fluid inside the boundary
¢ the dimensionless suction parameter layer

n the pseudo-similarity variable 1 stream function

v kinematic viscosity € pressure work parameter

1 Introduction

Theoretical studies on laminar free convection flow on axisyetric bodies have received
wider attention, especially in case of non-uniform surferaperature and surface heat
flux distributions. Mark and Prins [1] developed the genegkdtions for similar solutions
on isothermal axisymmetric forms and showed that for the ffast a vertical cone has
such a solution. Approximate boundary layer techniquesewatitized to arrive at an
expression for the dimensionless heat transfer. Braun. §RJatontributed two more
isothermal axisymmetric bodies for which similar solugoexist, and used an integral
method to provide heat transfer results for these and the coer a wide range of Prandtl
number. In the above investigation, the authors obtaineddhlults by numerical inte-
gration of the differential equations for fluid having Prmtumber 0.72. The similarity
solutions for free convection from the vertical cone haverbexhausted by Hering and
Grosh [3]. They showed that the similarity solutions to thedary layer equations for a
cone exist when the wall temperature distribution is a pdwection of distance along a
cone ray. In their paper they presented the results forésothl surface as well as for the
surface maintained at the temperature varying linearli wie distance measured from
the apex of the cone for Prandtl number 0.7. Latter, Hering¥dended the analysis to
investigate for low Prandtl number fluids. On the other haRdy [5] has studied the
same problem for the high values of the Prandtl number. NaGindu [6] studied the
effect of slenderness on the natural convection flow oveeraddr frustum of a cone. The
problem of natural convection flow over a frustum of a conéaiitt transverse curvature
effect (i.e., large cone angles when the boundary layekileiss is small compared with
the local radius of the cone) has been treated in the literagven though the problem
for a full cone has been considered quite extensively byrSwaand Guinle [7], Lin [8],
Kuiken [9] and Oosthuizen and Donaldson [10]. Latter, Na &mibu [6] studied the
laminar natural convection flow over a frustum of a cone. mabove investigations the
wall temperature as well as the wall heat flux had been coregideonstant. On the other
hand, Alamgir [11] investigated the overall heat transfetaminar natural convection
flow from vertical cones by using the integral method. Hassaid Paul [12] investigate
the non-uniform surface temperature over a free convedtmm a vertical permeable
circular cone.

In the present analysis, we propose to investigate the kEnfiee convection flow
from a vertical permeable circular cone maintained at noifeum surface temperature
with pressure work term that follows the power law variasiovith the distance measured
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from the apex of the cone. Under the usual Boussinesq appadixin, the governing par-
tial differential equations are reduced to locally nonitampartial differential equations.
The transformed equations are solved numerically by usmitgfdifference with Keller
Box method. The solutions are obtained in terms of skirtifnccoefficient and rate of
heat transfer for various values of Prandtl numbet, pressure work parameterand
temperature gradient parameterare displayed in tabular form as well as graphically.
Also the effect of varying the Prandtl numbgr, the surface temperature gradierand
the suction parametgr on velocity and temperature distributions are shown geaily.

2 Mathematical formalism

A steady two-dimensional laminar free convection flow pasipa-isothermal vertical
porous cone with variable surface temperature is congidef@e physical coordinates
(z,y) are chosen such thatis measured from the leading edge, O, in the stream wise
direction andy is measured normal to the surface of the cone. The coordigatem and

the flow configuration are shown in Fig. 1.

Fig. 1. Physical model and coordinates system.

The boundary layer equations for steady, axisymmetric;dissipative and constant
property flow is

A(ur) n d(vr)
or dy
ou Ov 8%v

I s /(T — Too), 2
uax+vay Vay2+gﬂcoyy( ) (2)

8£+ or _ 0T  TpBu dp ©)
“or Uay_a(“)yQ pC, Oz’

=0, 1)

whereu, v are the fluid velocity components in thedirections and;-directions respec-
tively, v is the kinematics coefficient of viscosity,is the acceleration due to gravity,
is the coefficient of volume expansion,is the thermal diffusivity,y is the cone apex
half-angle and" is the temperature of the fluid.
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The boundary conditions are as follows

=0, v=-V, T=T,(x) at y=0,

(4)
u=0 T=T, at y— oo,

whereV represent the transpiration velocity of the fluid through slarface of the cone,
T is the ambient fluid temperaturg,, is the surface temperature with), > T.,. When
V is positive, it stands for suction or withdrawal avids negative for injection or blowing
of fluid through the surface of the cone. In the present cadlg, suction is considered
and thereforeV is taken as positive throughout.

Since near the apex of the cone, the boundary layer is mudlasithat the free-
convection boundary layer in the absence of suction, we oanduce the following
transformations

b= vr(Gr) A (FEm) + 5€), T T = (T~ T)A(E ),

1%
n= %(G’Pz>1/4, 6 = Tx(er)l/4a r= xSin% (5)
sy (T — T )2
Gr. — g3 cosy( i 0 )T T, T ~an,
1%

whereGr,, is the local Grashof numbef,is the dimensionless suction parametgs the
pseudo-similarity variable and is the stream function defined by

_lop __loy
u_ray and v = .

Finally, the functionsf (£, 0) andé(¢, 0) are, respectively, the dimensionless stream func-
tion and the temperature function of the fluid in the boundaygr region. Hence

(Gry)? 0f  Ou B (Gry)3* 8%f  0%u Gy o3 f

VS o s a o o T e o
o= "0 G g - 0D oy

- =D gl 0D L
e e S

HeregBxz/C, = ¢, is pressure work parameter which is first used by Gebhaft443
dissipation parameter. Therefore the modified momenturatezucan be re-written as

" n+1 12 _n+7 /8f/ //af "
F5" =TT 0= (1 e~ e~ 1) (6)

n+7
4

f//l +

whereT,, — T = ™.

24



Free Convection From a Vertical Permeable Circular Cone

Also the energy equation can be written as

i// n+7 o /_n'i_7 /%_ /g
S0+ 0 — (n o = T 5( 5 935)' @)

The corresponding boundary conditions to be satisfied are:
f=f =0 6=1 at n=0, (8)
ff=0, =0 as n— oo, 9)

wherePr = v/« is PrandIt number and primes denoting differentiation weétbpect to;
For the flow from an impermeable surface (i&e= 0), the equations (6) and (7) subjected
to the boundary conditions (8) and (9) have been solved bingland Grosh [3] for non-
isothermal surface. Solutions of the local non-similatiphdifferential equations (6) to
(7) subjected to the boundary conditions (8) and (9) areimbtiby using the implicit
finite difference method, which has been used, by Hossairedd Hossain et al. [15].

Once we know the values of the functiorfsand # and also their derivaties, it
becomes important to calculate the values of the local Bldtien coefficient,Cy, and
the local Nusselt numbe¥u,,, from the following relations.

Tw quT
Cro= % and Nu, = —— ¥
fe = 502 Y (T — Too)
wherer,, = M(%) andq, = —n(%) are, respectively, the shear stress and
y=0 y=0

rate of heat-flux at the surface abid= v(Gr)'/2/x is the reference velocity. Now

_(Ou _(Gr)Pt 2 f(6,0)
Tw = M(a_y>y:0 TR om?

_ (9T _ a"(Gry)'* 9n(&, 0)
quw = _K(a_y)y:o =K " o

Therefore, we have

C Tw  (Gre)dt92f(E,0) s prPGr, 92 F(£,0) 1/4

Cro = pU2 A on? / 2 On? /(er) '

Which implies that
P f(£,0)

(Gra)! 40 = =5 5 (10)
Again

_ quwT _ xn(GTI)1/4 89(570) - _ 1/4 89(530)
Ny = ot = . o / (T =Toe) = ~(Gre) V4 S0
Therefore,

(GTI)1/4NU$ — _69(570) (11)

an
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3 Perturbation solutionsfor small £

Since near apex of the cong,is small for smallz or smallV' or both, series solution
of the equations (6) to (7) may be obtained by using pertighahethod treating as a
perturbation parameter. Hence, we expand the functfiéfs;) andé(0, £) in powers of
&, yield expansions of

= &f() and 6(¢n) = }j&w (12)
1=0

Substituting the above expansion (12) into equations (6)Y@hand equating the various
power of¢ up toO(£2), we get the following sets of equation:

50+ 00+ gy = M gy =0 (13)
1 n+7
ﬁeo//—i— fobo" —nfo'00 — efo'0o =0 (14)

and the boundary conditions
fo(0) = fo'(0) =0, 60(0) =1, fo'(00) =8 (c0) =0,

n+7 5n—|—11

flm n+7ff,,+ ff//_ ffl n+7f0//+(91_0 (15)

1, n+7 , n+7

ﬁ91 + 1 01 f0+ f190 - (n+e)(90f1 +61fo')— fo'61 =0 (16)
and the boundary conditions
f1(0) = f1'(0) =0, 61(0) =0, fi'(c0) =6:1'(c0) =0,
n+7 n+7 3n+21 3n+9
L+ fofo" + AR+ fafo" — 1 f1/2
7
- (3n+9)fo L'+ I =0, (17)
1 n+7 n+7 3n+21
P792N + 65" fo + 101" + f260'
T 4
n—|—7 n—|—7
—(n+e)(Oof2' + 01 £ +02f") — fo'02 — f'6,=0 (18)

and the boundary conditions

f2(0) = £2'(0) =0, 62(0) =0, fo(00) = 02'(00) =0.

The coupled equations (13) and (14) are non-linear, whefEasto (18) are linear,
and these may be solved pair-wise one after another. ThécitriRlinge-Kutta-Butcher
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(Butcher [16]) initial value solver together with the Nasieim-Swigert iteration scheme
of Nachtsheim and Swigert [17] is employed to solve the alBaygations pair-wise up
to O(£?). Thus solutions are obtained f@y andé; for i = 0,1,2 and their derivatives.

The local skin-friction coefficient and the local Nusseltmher are calculated from the
following expressions

2
(/105 = TLED — fi10) + 61100+ €10) + 0(€) (19
()18, = =20 —(010) + €010 + £050) 4 0(€Y). (20)

4 Resultsand discussion

In this paper we have investigated the problem of laminag é@nvective flow and heat
transfer from a vertical permeable circular cone with puessvork and non-uniform
surface temperature. The solutions of the momentum andygregjuations with the
appropriate boundary condition are obtained by the finifeerdince method together
with the Keller-Box scheme and by perturbation methods.uRgare obtained in terms
the local skin-friction, the rate of heat transfer, velpcind temperature profiles and
presented in graphical as well as in tabular form.

The effects of varying Prandtl numbg&r (Pr = 0.72, 1.0, 3.0, 5.0, 7.0), pressure
work parametet (¢ = —0.6, 0.1, 0.3, 0.6, 0.9) and temperature gradient parameter
(n = —-0.45, —0.1, 0.5, 0.9, 1.20) on the dimensionless velocity profifé(¢, n) and the
dimensionless temperature profilgg, n) are shown in Figs. 2—4. The skin friction and
the surface heat transfer coefficients are shown in Figs. 5-7

Fig. 2(a), (b) shows the velocity and temperature profilepfessure work param-
etere (¢ = —0.6, 0.1, 0.3, 0.6, 0.9) with temperature gradient parameter= 0.5 and
Prandtl numbePr = 0.72, we see that in Fig. 2(a), (b), the velocity and temperature
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Fig. 2. (a) Velocity and (b) temperature profiles agaipfatr different values of pressure
work parametee with n = 0.5, Pr = 0.72.

27



Md. M. Alam, M. A. Alim, Md. M. K. Chowdhury

profiles are decreases with the effect of pressure work peamFrom Fig. 3(a), (b),
we observe that the velocity and temperature profiles areedses with the increasing
of temperature gradient parameter(n = —0.45, —0.1, 0.5, 0.9, 1.20) with other
controlling parametePr = 0.72 ande = 0.2. The effects of varying Prandtl number
Pr (Pr = 0.72, 1.0, 3.0, 5.0, 7.0) on the dimensionless velocity,'(¢,n) and the
dimensionless temperatutd¢, ) distributions againsi for the pressure work parameter
e = 0.5 and the temperature gradient parameter 0.4 are shown in Fig. 4(a),(b). From
these figures, it is seen that the velocity and temperatwigs are decreases with the
increasing values aPr. In case of water &20° C (Pr = 7.0), the free laminar boundary
shows a sharp decrease compared to the effects in eleetsulitition such as salt water
(Pr = 1.0) and air (Pr = 0.72) at20° C andPr = 3.0, 5.0 have been used theoretically.
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Fig. 3. (a) Velocity and (b) temperature profiles againsfor different values of
temperature gradient parametewith e = 0.2, Pr = 0.72.
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Fig. 4. (a) Velocity and (b) temperature profiles agaipgir different values of Prandtl
numberPr with e = 0.5, temperature gradient parametet= 0.4.

In Figs. 5—7 numerical values of local skin-friction coeffict and the local heat
transfer coefficients obtained by finite difference as welparturbation methods have
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been presented for different values of pressure work pasaraetemperature gradient
parametern. and Prandtl numbePr. In all these figures we observe that there are
excellent agreements between perturbation solutions aitd flifference solutions for

0 < ¢ < 1asexpected. We also observed that the values of local s&ifiofr coefficients
increase with the increase fnnear the apex of the cone and its values decrease to the
asymptotic value a&increase.

In Fig. 5(a), (b) the effects of the pressure work parameterthe local skin-friction
coefficient and the local heat transfer coefficient are ateskbr From this Fig. 5(a), it
can be seen that an increase in the values(ef= —0.6, 0.1, 0.3, 0.6, 0.9) leads to a
decrease in the values of skin-friction coefficient forcadind smalk. Also in Fig. 5(b) we
see that the heat transfer coefficient decrease with thedserof pressure work parameter
e. Perturbation solutions are in very good agreement witkefidifference solution.

The numerical values of local skin-friction coefficierjIM(Grm)l/4 and local heat

Skin friction coefficients
Heat transfer coefficients

8.0 0.0 1.0 2.0 3.0 4.0 5.0

3

. 5. (a) Skin friction and (b) heat transfer coefficients agajrfstr different values
of pressure work parametewith n = 0.5, Pr = 0.72.

Fi

Q

Skin friction coefficients
Heat transfer coefficients

8.0 0.0 0.5 1.0 15 20 25 3.0

Fi

g. 6. Skin friction and (b) heat transfer coefficients againfr different values of
temperature gradient parametewith ¢ = 0.2, Pr = 0.72.
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transfer coefficientNu, /Gri/ 4 against suction parametgfor different values of tem-
perature gradient parameter(n = 0.0, 0.5, 1.0) with Prandtl number = 0.72 and
the pressure work parameter= 0.2 are displaced in Fig. 6(a), (b) respectively. From
Fig. 6(a) we observe that the value of local skin frictionfioeents decreases with the
increase of temperature gradient parametexgainst suction parametér Also from
the Fig. 6(b), here we observed that the heat transfer cefficare increasing with the
increase of temperature gradient This indicates that the heat transfer coefficient does
wholly depend on temperature gradient parameter.

In Fig. 7(a), (b), itis depicted that the local skin frictiand local heat transfer coeffi-
cient are decreasing with the increasing values of Prandiimber Pr
(Pr = 0.72, 1.0, 3.0, 5.0, 7.0) against suction parameter x and other controlling pa-
rameters = 0.3 andn = 0.4.

10 40}

Skin friction coefficients
Heat transfer coefficients

Fi

g. 7. (a) Skin friction and (b) heat transfer coefficients agajrfstr different values
of Prandtl numbePr with e = 0.3, temperature gradient parameter= 0.4.

Tabulated values of the skin friction and heat transferfaments agains§ are shown
in Table 1 for different values of temperature gradieift = 0.0, 0.5, 1.0). In this table,
we see that the values of skin friction coefficients decredtethe increasing values of
temperature gradient parameteand the local heat transfer coefficients increases with
the increasing values of the temperature gradient paramete

Table 1. Numerical values of skin-friction and heat transfer coefficégainst¢ for
the different values of temperature gradienfn = 0.0, 0.5, 1.0) while Pr = 0.72,
e =0.6

n 0.0 0.5 1.0

f”(570) _9,(510) f”(f,O) _9/(570) f”(gao) _0/(570)
0.0 | 0.891936 0.42050§ 0.7313878 0.520629 0.642194 0.600726
0.5 | 0.896407 0.620748 0.735054  0.720871 0.645413 0.800968
1.0 | 0.856963 0.848025 0.702710  0.938134 0.617013 1.018231
15| 0.779210 1.129365 0.639025 1.196444 0.561095 1.276543
2.0 | 0.674111 1.441742 0.552771 1.501815 0.485351 1.576906
3.0 | 0.434152 2.202662 0.356004  2.212674 0.312589 2.242712

7823
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5

Conclusions

The present paper deals with the effect of transpirationoigl on laminar free convection
boundary layer flow from a vertical non-isothermal cone. Nuocal solutions of the
equations governing the flow in the dlland small¢ (the scaled stream wise variable
for the transpiration velocity) have been obtained by ushgimplicit finite difference
method together with Keller-Box scheme and by perturbati@thod. From the present
investigation, the following conclusions may be drawn:

The value of skin friction coefficients increase with thergase in¢ near the apex
of the cone and its values decrease to the asymptotic valfi;masease.

The local rate of heat transfer coefficient increases dueetanicreasing values gt

For increasing values of temperature gradienthe skin friction coefficients de-
crease but the rate of heat transfer coefficients increageeaglue of the tempera-
ture gradient parameter increases.

An increase in the value of Prandtl numbé&¥;, leads to decrease in the values of
skin-friction coefficient and the local rate of heat tramséspectively.

For increase values of pressure work parametigre skin friction coefficient and the
rate of heat transfer are decreases.

Due to the increase in temperature gradient paramgtire velocity as well as the
surface temperature decreases.

The velocity and temperature distribution decreases \kighincreasing values the
dissipation parameter

The fluid velocity as well as the temperature profiles de@gasving to the increase
in the values of Prandtl numbePry.

There are excellent agreements between perturbatioricgwdiand finite difference
solutions for) < £ < 1 as expected.
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