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Abstract. Laminar free convection from a vertical permeable circular cone maintained at
non-uniform surface temperature with pressure work term is considered. Non-similarity
solutions for boundary layer equations are found to exist when the surface temperature
follows the power law variations with the distance measured from the leading edge.
The numerical solutions of the transformed non-similar boundary layerequations are
obtained by using two methodologies, namely, (i) a finite difference methodand (ii) a
series solution or perturbation method for small values ofξ, the dimensionless suction
parameter. Solutions obtained in terms of skin-friction coefficient, local rate of heat
transfer, velocity and temperature profiles for the values of Prandtl number, pressure work
parameter and temperature gradient are displayed in both graphical and tabular forms.
Finite difference solutions are compared with the solutions obtained by perturbation
technique and found to be in excellent agreement near the leading edge.
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Nomenclature

Cp specific heat at constant pressure qw surface heat flux
Cfx local skin friction T temperature of the fluid
f dimensionless stream function Tw temperature at the surface
g acceleration due to gravity T∞ temperature of the ambient fluid
Grx local Grashof number u velocity component in thex-direction
k thermal conductivity of the fluid v velocity component in they-direction
n temperature gradient parameter V transpiration velocity
Nux local Nusselt number x measured from the leading edge
Pr Prandtl number y distance normal to the surface
p fluid pressure
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Greek symbols

α thermal diffusivity µ viscosity of the fluid
β coefficient of volume expansion θ dimensionless temperature
γ the cone apex half-angle ρ density of the fluid inside the boundary
ξ the dimensionless suction parameter layer
η the pseudo-similarity variable ψ stream function
ν kinematic viscosity ǫ pressure work parameter

1 Introduction

Theoretical studies on laminar free convection flow on axisymmetric bodies have received
wider attention, especially in case of non-uniform surfacetemperature and surface heat
flux distributions. Mark and Prins [1] developed the generalrelations for similar solutions
on isothermal axisymmetric forms and showed that for the flowpast a vertical cone has
such a solution. Approximate boundary layer techniques were utilized to arrive at an
expression for the dimensionless heat transfer. Braun et al. [2] contributed two more
isothermal axisymmetric bodies for which similar solutions exist, and used an integral
method to provide heat transfer results for these and the cone over a wide range of Prandtl
number. In the above investigation, the authors obtained the results by numerical inte-
gration of the differential equations for fluid having Prandtl number 0.72. The similarity
solutions for free convection from the vertical cone have been exhausted by Hering and
Grosh [3]. They showed that the similarity solutions to the boundary layer equations for a
cone exist when the wall temperature distribution is a powerfunction of distance along a
cone ray. In their paper they presented the results for isothermal surface as well as for the
surface maintained at the temperature varying linearly with the distance measured from
the apex of the cone for Prandtl number 0.7. Latter, Hering [4] extended the analysis to
investigate for low Prandtl number fluids. On the other hand,Roy [5] has studied the
same problem for the high values of the Prandtl number. Na andChiou [6] studied the
effect of slenderness on the natural convection flow over a slender frustum of a cone. The
problem of natural convection flow over a frustum of a cone without transverse curvature
effect (i.e., large cone angles when the boundary layer thickness is small compared with
the local radius of the cone) has been treated in the literature, even though the problem
for a full cone has been considered quite extensively by Sparrow and Guinle [7], Lin [8],
Kuiken [9] and Oosthuizen and Donaldson [10]. Latter, Na andChiou [6] studied the
laminar natural convection flow over a frustum of a cone. In the above investigations the
wall temperature as well as the wall heat flux had been considered constant. On the other
hand, Alamgir [11] investigated the overall heat transfer in laminar natural convection
flow from vertical cones by using the integral method. Hassain and Paul [12] investigate
the non-uniform surface temperature over a free convectionfrom a vertical permeable
circular cone.

In the present analysis, we propose to investigate the laminar free convection flow
from a vertical permeable circular cone maintained at non-uniform surface temperature
with pressure work term that follows the power law variations with the distance measured
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from the apex of the cone. Under the usual Boussinesq approximation, the governing par-
tial differential equations are reduced to locally non-similar partial differential equations.
The transformed equations are solved numerically by using finite difference with Keller
Box method. The solutions are obtained in terms of skin-friction coefficient and rate of
heat transfer for various values of Prandtl numberPr, pressure work parameterǫ and
temperature gradient parametern, are displayed in tabular form as well as graphically.
Also the effect of varying the Prandtl numberPr, the surface temperature gradientn and
the suction parameterξ, on velocity and temperature distributions are shown graphically.

2 Mathematical formalism

A steady two-dimensional laminar free convection flow past anon-isothermal vertical
porous cone with variable surface temperature is considered. The physical coordinates
(x, y) are chosen such thatx is measured from the leading edge, O, in the stream wise
direction andy is measured normal to the surface of the cone. The coordinatesystem and
the flow configuration are shown in Fig. 1.

Fig. 1. Physical model and coordinates system.

The boundary layer equations for steady, axisymmetric, non-dissipative and constant
property flow is

∂(ur)

∂x
+
∂(vr)

∂y
= 0, (1)

u
∂u

∂x
+ v

∂v

∂y
= ν

∂2v

∂y2
+ gβ cos γ(T − T∞), (2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+
Tβu

ρCp

∂p

∂x
, (3)

whereu, v are the fluid velocity components in thex-directions andy-directions respec-
tively, ν is the kinematics coefficient of viscosity,g is the acceleration due to gravity,β
is the coefficient of volume expansion,α is the thermal diffusivity,γ is the cone apex
half-angle andT is the temperature of the fluid.
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The boundary conditions are as follows

u = 0, v = −V, T = Tw(x) at y = 0,

u = 0, T = T∞ at y → ∞,
(4)

whereV represent the transpiration velocity of the fluid through the surface of the cone,
T∞ is the ambient fluid temperature,Tw is the surface temperature withTw > T∞. When
V is positive, it stands for suction or withdrawal andV is negative for injection or blowing
of fluid through the surface of the cone. In the present case, only suction is considered
and therefore,V is taken as positive throughout.

Since near the apex of the cone, the boundary layer is much similar that the free-
convection boundary layer in the absence of suction, we can introduce the following
transformations

ψ = νr(Grx)1/4

(

f(ξ, η) +
1

2
ξ
)

, T − T∞ = (Tw − T∞)θ(ξ, η),

η =
y

x
(Grx)1/4, ξ =

V x

ν
(Grx)1/4, r = x sin γ,

Grx =
gβ cos γ(T − T∞)x3

ν2
, Tw − T∞ ≈ xn,

(5)

whereGrx is the local Grashof number,ξ is the dimensionless suction parameter,η is the
pseudo-similarity variable andψ is the stream function defined by

u =
1

r

∂ψ

∂y
and v = −

1

r

∂ψ

∂x
.

Finally, the functionsf(ξ, 0) andθ(ξ, 0) are, respectively, the dimensionless stream func-
tion and the temperature function of the fluid in the boundarylayer region. Hence

u = ν
(Grx)1/2

x

∂f

∂η
,

∂u

∂y
= ν

(Grx)3/4

x2

∂2f

∂η2
,

∂2u

∂y2
u = ν

Grx
x3

∂3f

∂η3
,

v =
ν(n+ 7)

4x
(Grx)1/4f(ξ, η) −

νξ(n+ 7)

4x
(Grx)1/4

−
νη(n− 1)

4x
(Grx)1/4

∂f

∂η
−
νξ(n+ 7)

4x
(Grx)1/4

∂f

∂ξ
,

βT

ρCp
u
∂p

∂x
= −

ρgβT

ρCp
u = −

ǫ
(

T∞ − (Tw − T∞)
)

x2
θ(ξ, η)(Grx)1/2

∂f

∂η
.

Heregβx/Cp = ǫ, is pressure work parameter which is first used by Gebhart [13] as
dissipation parameter. Therefore the modified momentum equation can be re-written as

f ′′′ +
n+ 7

4
ff ′′ −

n+ 1

2
f ′

2
+ θ =

n+ 7

4
ξ
(

f ′
∂f ′

∂ξ
− f ′′

∂f

∂ξ
− f ′′

)

, (6)

whereTw − T∞ = xn.
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Also the energy equation can be written as

1

Pr
θ′′ +

n+ 7

4
fθ′ − (n+ ǫ)θf ′ =

n+ 7

4
ξ
(

f ′
∂θ

∂ξ
− θ′

∂f

∂ξ

)

. (7)

The corresponding boundary conditions to be satisfied are:

f =f ′ = 0, θ = 1 at η = 0, (8)

f ′ = 0, θ = 0 as η → ∞, (9)

wherePr = ν/α is Prandlt number and primes denoting differentiation withrespect toη
For the flow from an impermeable surface (i.e.,ξ = 0), the equations (6) and (7) subjected
to the boundary conditions (8) and (9) have been solved by Hering and Grosh [3] for non-
isothermal surface. Solutions of the local non-similar partial differential equations (6) to
(7) subjected to the boundary conditions (8) and (9) are obtained by using the implicit
finite difference method, which has been used, by Hossain [14] and Hossain et al. [15].

Once we know the values of the functionsf and θ and also their derivaties, it
becomes important to calculate the values of the local skin-friction coefficient,Cfx and
the local Nusselt numberNux, from the following relations.

Cfx =
τw
ρU2

and Nux = −
qwx

κ(Tw − T∞)
,

whereτw = µ
(

∂u
∂y

)

y=0

andqw = −κ
(

∂T
∂y

)

y=0

are, respectively, the shear stress and

rate of heat-flux at the surface andU = ν(Gr)1/2/x is the reference velocity. Now

τw = µ
(∂u

∂y

)

y=0

= µν
(Grx)3/4

x2

∂2f(ξ, 0)

∂η2
,

qw = −κ
(∂T

∂y

)

y=0

= −κ
xn(Grx)1/4

x

∂η(ξ, 0)

∂η
.

Therefore, we have

Cfx =
τw
ρU2

= µν
(Grx)3/4

x2

∂2f(ξ, 0)

∂η2

/ρν2Grx
x2

=
∂2f(ξ, 0)

∂η2

/

(Grx)1/4.

Which implies that

(Grx)1/4Cfx =
∂2f(ξ, 0)

∂η2
. (10)

Again

Nux =
qwx

κ(Tw − T∞)
= −κ

xn(Grx)1/4

x

∂θ(ξ, 0)

∂η

/

κ(Tw−T∞) = −(Grx)1/4
∂θ(ξ, 0)

∂η
.

Therefore,

(Grx)1/4Nux = −
∂θ(ξ, 0)

∂η
. (11)
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3 Perturbation solutions for small ξ

Since near apex of the cone,ξ is small for smallx or smallV or both, series solution
of the equations (6) to (7) may be obtained by using perturbation method treatingξ as a
perturbation parameter. Hence, we expand the functionsf(ξ, η) andθ(0, ξ) in powers of
ξ, yield expansions of

f(ξ, η) =

∞
∑

i=0

ξif(η) and θ(ξ, η) =

∞
∑

i=0

ξiθi(η). (12)

Substituting the above expansion (12) into equations (6) and (7) and equating the various
power ofξ up toO(ξ2), we get the following sets of equation:

f0
′′′ + θ0 +

n+ 7

4
f0f0

′′
−
n+ 1

2
(f0

′)2 = 0, (13)

1

Pr
θ0

′′ +
n+ 7

4
f0θ0

′
− nf0

′θ0 − ǫf0
′θ0 = 0 (14)

and the boundary conditions

f0(0) = f0
′(0) = 0, θ0(0) = 1, f0

′(∞) = θ0
′(∞) = 0,

f1
′′′ +

n+ 7

4
f0f1

′′ +
n+ 7

2
f1f0

′′
−

5n+ 11

4
f0

′f1
′ +

n+ 7

4
f0

′′ + θ1 = 0, (15)

1

Pr
θ1

′′+
n+ 7

4
θ1

′f0+
n+ 7

2
f1θ0

′
− (n+ǫ)(θ0f1

′+θ1f0
′)−

n+ 7

4
f0

′θ1 = 0 (16)

and the boundary conditions

f1(0) = f1
′(0) = 0, θ1(0) = 0, f1

′(∞) = θ1
′(∞) = 0,

f2
′′′ +

n+ 7

4
f0f2

′′ +
n+ 7

2
f1f1

′′ +
3n+ 21

4
f2f0

′′
−

3n+ 9

4
f1

′2

− (3n+ 9)f0
′f2

′ +
n+ 7

4
f1

′′ + θ2 = 0, (17)

1

Pr
θ2

′′ +
n+ 7

4
θ2

′f0 +
n+ 7

2
f1θ1

′ +
3n+ 21

4
f2θ0

′

− (n+ ǫ)(θ0f2
′ + θ1f1

′ + θ2f0
′) −

n+ 7

2
f0

′θ2 −
n+ 7

4
f1

′θ1 = 0 (18)

and the boundary conditions

f2(0) = f2
′(0) = 0, θ2(0) = 0, f2

′(∞) = θ2
′(∞) = 0.

The coupled equations (13) and (14) are non-linear, whereas(15) to (18) are linear,
and these may be solved pair-wise one after another. The implicit Runge-Kutta-Butcher
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(Butcher [16]) initial value solver together with the Nachtsheim-Swigert iteration scheme
of Nachtsheim and Swigert [17] is employed to solve the aboveequations pair-wise up
to O(ξ2). Thus solutions are obtained forfi andθi for i = 0, 1, 2 and their derivatives.
The local skin-friction coefficient and the local Nusselt number are calculated from the
following expressions

(Gr)1/4Cfx =
∂2f(ξ, 0)

∂η2
= f ′′

0
(0) + ξf ′

1
(0) + ξ2f ′′

2
(0) +O(ξ3), (19)

(Gr)1/4Nux = −
∂θ(ξ, 0)

∂η
= −

(

θ′
0
(0) + ξθ′

1
(0) + ξ2θ′

2
(0) +O(ξ3)

)

. (20)

4 Results and discussion

In this paper we have investigated the problem of laminar free convective flow and heat
transfer from a vertical permeable circular cone with pressure work and non-uniform
surface temperature. The solutions of the momentum and energy equations with the
appropriate boundary condition are obtained by the finite difference method together
with the Keller-Box scheme and by perturbation methods. Results are obtained in terms
the local skin-friction, the rate of heat transfer, velocity and temperature profiles and
presented in graphical as well as in tabular form.

The effects of varying Prandtl numberPr (Pr = 0.72, 1.0, 3.0, 5.0, 7.0), pressure
work parameterǫ (ǫ = −0.6, 0.1, 0.3, 0.6, 0.9) and temperature gradient parametern
(n = −0.45, −0.1, 0.5, 0.9, 1.20) on the dimensionless velocity profilef ′(ξ, η) and the
dimensionless temperature profilesθ(ξ, η) are shown in Figs. 2–4. The skin friction and
the surface heat transfer coefficients are shown in Figs. 5–7.

Fig. 2(a), (b) shows the velocity and temperature profiles for pressure work param-
eterǫ (ǫ = −0.6, 0.1, 0.3, 0.6, 0.9) with temperature gradient parametern = 0.5 and
Prandtl numberPr = 0.72, we see that in Fig. 2(a), (b), the velocity and temperature

Fig. 2. (a) Velocity and (b) temperature profiles againstη for different values of pressure
work parameterǫ with n = 0.5, Pr = 0.72.
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profiles are decreases with the effect of pressure work parameter. From Fig. 3(a), (b),
we observe that the velocity and temperature profiles are decreases with the increasing
of temperature gradient parametern (n = −0.45, −0.1, 0.5, 0.9, 1.20) with other
controlling parameterPr = 0.72 andǫ = 0.2. The effects of varying Prandtl number
Pr (Pr = 0.72, 1.0, 3.0, 5.0, 7.0) on the dimensionless velocity,f ′(ξ, η) and the
dimensionless temperature,θ(ξ, η) distributions againstη for the pressure work parameter
ǫ = 0.5 and the temperature gradient parametern = 0.4 are shown in Fig. 4(a),(b). From
these figures, it is seen that the velocity and temperature profiles are decreases with the
increasing values ofPr. In case of water at20◦ C (Pr = 7.0), the free laminar boundary
shows a sharp decrease compared to the effects in electrolyte solution such as salt water
(Pr = 1.0) and air (Pr = 0.72) at20◦ C andPr = 3.0, 5.0 have been used theoretically.
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Fig. 3. (a) Velocity and (b) temperature profiles againstη for different values of
temperature gradient parametern with ǫ = 0.2, Pr = 0.72.
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Fig. 4. (a) Velocity and (b) temperature profiles againstη for different values of Prandtl
numberPr with ǫ = 0.5, temperature gradient parametern = 0.4.

In Figs. 5–7 numerical values of local skin-friction coefficient and the local heat
transfer coefficients obtained by finite difference as well as perturbation methods have
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been presented for different values of pressure work parameter ǫ, temperature gradient
parametern and Prandtl numberPr. In all these figures we observe that there are
excellent agreements between perturbation solutions and finite difference solutions for
0 ≤ ξ ≤ 1 as expected. We also observed that the values of local skin friction coefficients
increase with the increase inξ near the apex of the cone and its values decrease to the
asymptotic value asξ increase.

In Fig. 5(a), (b) the effects of the pressure work parameterǫ on the local skin-friction
coefficient and the local heat transfer coefficient are observed. From this Fig. 5(a), it
can be seen that an increase in the values ofǫ (ǫ = −0.6, 0.1, 0.3, 0.6, 0.9) leads to a
decrease in the values of skin-friction coefficient for allξ and smallξ. Also in Fig. 5(b) we
see that the heat transfer coefficient decrease with the increase of pressure work parameter
ǫ. Perturbation solutions are in very good agreement with finite difference solution.

The numerical values of local skin-friction coefficient,Cfx(Grx)1/4 and local heat

Fig. 5. (a) Skin friction and (b) heat transfer coefficients againstξ for different values
of pressure work parameterǫ with n = 0.5, Pr = 0.72.
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Fig. 6. Skin friction and (b) heat transfer coefficients againstξ for different values of
temperature gradient parametern with ǫ = 0.2, Pr = 0.72.
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transfer coefficient,Nux/Gr
1/4

x , against suction parameterξ for different values of tem-
perature gradient parametern (n = 0.0, 0.5, 1.0) with Prandtl numberPr = 0.72 and
the pressure work parameterǫ = 0.2 are displaced in Fig. 6(a), (b) respectively. From
Fig. 6(a) we observe that the value of local skin friction coefficients decreases with the
increase of temperature gradient parametern against suction parameterξ. Also from
the Fig. 6(b), here we observed that the heat transfer coefficients are increasing with the
increase of temperature gradientn. This indicates that the heat transfer coefficient does
wholly depend on temperature gradient parameter.

In Fig. 7(a), (b), it is depicted that the local skin frictionand local heat transfer coeffi-
cient are decreasing with the increasing values of Prandtl number Pr
(Pr = 0.72, 1.0, 3.0, 5.0, 7.0) against suction parameter x and other controlling pa-
rametersǫ = 0.3 andn = 0.4.
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Fig. 7. (a) Skin friction and (b) heat transfer coefficients againstξ for different values
of Prandtl numberPr with ǫ = 0.3, temperature gradient parametern = 0.4.

Tabulated values of the skin friction and heat transfer coefficients againstξ are shown
in Table 1 for different values of temperature gradientn (n = 0.0, 0.5, 1.0). In this table,
we see that the values of skin friction coefficients decreasewith the increasing values of
temperature gradient parametern and the local heat transfer coefficients increases with
the increasing values of the temperature gradient parameter n.

Table 1. Numerical values of skin-friction and heat transfer coefficient againstξ for
the different values of temperature gradientn (n = 0.0, 0.5, 1.0) while Pr = 0.72,

ǫ = 0.6

n 0.0 0.5 1.0
ξ f ′′(ξ, 0) −θ′(ξ, 0) f ′′(ξ, 0) −θ′(ξ, 0) f ′′(ξ, 0) −θ′(ξ, 0)

0.0 0.891936 0.420508 0.7313878 0.520629 0.642194 0.600726
0.5 0.896407 0.620748 0.735054 0.720871 0.645413 0.800968
1.0 0.856963 0.848025 0.702710 0.938134 0.617013 1.018231
1.5 0.779210 1.129365 0.639025 1.196446 0.561095 1.276543
2.0 0.674111 1.441742 0.552771 1.501815 0.485351 1.576906
3.0 0.434152 2.202662 0.356004 2.212674 0.312589 2.242712
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5 Conclusions

The present paper deals with the effect of transpiration velocity on laminar free convection
boundary layer flow from a vertical non-isothermal cone. Numerical solutions of the
equations governing the flow in the allξ and smallξ (the scaled stream wise variable
for the transpiration velocity) have been obtained by usingthe implicit finite difference
method together with Keller-Box scheme and by perturbationmethod. From the present
investigation, the following conclusions may be drawn:

• The value of skin friction coefficients increase with the increase inξ near the apex
of the cone and its values decrease to the asymptotic value asξ increase.

• The local rate of heat transfer coefficient increases due to the increasing values ofξ.

• For increasing values of temperature gradientn, the skin friction coefficients de-
crease but the rate of heat transfer coefficients increase asthe value of the tempera-
ture gradient parameter increases.

• An increase in the value of Prandtl number,Pr, leads to decrease in the values of
skin-friction coefficient and the local rate of heat transfer respectively.

• For increase values of pressure work parameterǫ, the skin friction coefficient and the
rate of heat transfer are decreases.

• Due to the increase in temperature gradient parametern, the velocity as well as the
surface temperature decreases.

• The velocity and temperature distribution decreases with the increasing values the
dissipation parameterǫ.

• The fluid velocity as well as the temperature profiles decreases owing to the increase
in the values of Prandtl number,Pr.

• There are excellent agreements between perturbation solutions and finite difference
solutions for0 ≤ ξ ≤ 1 as expected.
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