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Abstract. We consider the Abel equation of the second kind with sinusoidal forcing,
which is a model equation for western boundary outflow in the Stommekhafdhe
large scale ocean circulation. Series solutions of this equation indicatedbenge of
resonances at certain discrete values of a parameter which metureslinearity of

the flow, but numerical solutions using a standard scheme show noneweiae these
resonances. We discuss and resolve this apparent contradiction.
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1 Introduction

The large scale circulation of the oceans is both one of th& ingportant and complex
problems arising in geophysical fluid dynamics. One of thafiees of this circulation
of particular interest over the years has been the flow neawtstern boundary [1, 9]
because of the obvious importance of the Gulf Stream in thehN&tlantic and similar
phenomena in other oceans. Since the Gulf Stream separateshe US east coast at
Cape Hatteras, one particular aspect of the western boymdarent that has been of
interest to oceanographers is the issue of when and howatates from the boundary.
We should point out that in this paper we use the term separtdiinclude a separation
bubble or recirculation gyre as well as a fully detached loauy layer. Even some very
simple models can mimic this separation, and in this stu@yavisit one of the simplest
of these models, that due to Stommel [10] which consists ofdisnensional flow in a
rectangular basin on a beta plane with the frictional foregsesented by an effective
bottom drag—rV?2, so that the stream functian obeys the time-independent potential
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vorticity equation on a beta plane,

0 (v, V20)
9 (z,y)

whereg is the Rossby parametdll/ is the curl of the wind stress, andis the friction
parameter. The analysis presented here stems from the ®lamodel, but we note that
a slightly more complicated (and realistic) model is thag¢ do Munk [7], in which the
frictional forces are represented by lateral frictida ' V1. Although the Munk model
is a more realistic model of the circulation of a real ocetis, liess tractable analytically.
Our experience [5] is that the boundary layers in the two rwobehave in a somewhat
similar manner, and therefore it is likely that analysistf@ Stommel model will provide
additional insight to the Munk model.

In both the Stommel and Munk models, frictional forces angallg neglected in the
interior of the flow, but become important near the walls tipatarly near the western
wall, where a thin viscoinertial boundary layer is necegsarorder for the velocity to
satisfy the no-normal flow condition at the wall. In this Iaytere is a threefold balance
between the Coriolis term, the viscous term and the nonlitezen. Usually, the flow in
the interior is fairly simple, although one study [2] for thiink model has indicated that
this is not always the case.

In what follows, we shall consider flow in a rectangular basipy < z < xg
and—L < y < L, where physically, the direction of increasimgcorresponds to east
and that of increasing to north, and we shall assume for simplicity that the flow ia th
interior is zonally uniform, meaning independent of thetemsst coordinate [11], with
the stream function in the interior given iy = 2 cos (7y/(2L)) and the curl of the wind
stress by = —Wj cos (7y/(2L)), with Wy = 72 /(2L?). This stream function/wind
stress combination is a solution of (1), but does not satisyconditions at either the
eastern or western walls, so that a boundary layer is redjaireach of these two walls.
Traditionally, the boundary layer analysis for this prablaas been concerned with the
flow in the northwestern corner, as that is where separatistnoitccurs. and therefore we
expand about the poirit:yy,, L), introducing the stretched coordinatéss (z — xw ) /9,
n=(y—L)/Land¥(¢,n) = ¥(z,y), whered = r/[ is the boundary layer thickness,
which is found by balancing the viscous and Coriolis terngde the boundary layer.
With these scalings, the potential vorticity equationdesine boundary layer becomes

+ B, =W —rV2y, 1)

AO (W, Wee + e, em?® | w
S e

where\ = 7/(8Ld?) is a measure of the strength of the nonlinearity and (5/L)”
measures the relative sizes of the derivatives with redpegtandn in the Laplacian.
If we make the usual boundary layer approximation [12—1%] l&b the boundary layer
thickness) — 0, we get

We +

A0 (W, W)

Vet o, e ®

34



On the Abel Equation of the Second Kind with Sinusoidal Ragci

The boundary conditions fob, the stream function inside the boundary layer, are that
is constant on both = 0 andn = 0, and also thall — ¢; as¢ — oo, so that the flow
inside the boundary layer matches onto the flow in the intetiave use these boundary
conditions, we can integrate (3) with respectto

A0 (¥, W) . T

— U+ U =)y = —2sin —. 4

) + U4 U =y sin = (4)
If we evaluate (4) at the western wall= 0, where¥ (0,7) = ¥, (0,1) = 0, it reduces to

A / .o

S Vo)V (n) + Vo(n) = ~2sin L, (5)

whereV (0,n) = Vy(n) is the northward velocity” = ¥, evaluated at the wall. The
condition that¥ is constant om = 0 becomed/4(0) = 0. This is an Abel equation of the
second kindV, Vo — Vo = f((), as discussed in §1.3 of [18]. The better known solvable
cases are listed in [18], and this does not appear to be ohewof. t

In [6], we used (5) as a simple model equation for western Bagnoutflow in the
Stommel model. In that paper, we sought series solutions)tof(the formVy(n) =
>—, vy’ and also to (4) of the form¥(¢,m) = Y272, ¢;(€)7’, with the two series
related byv; ¢;(0). We found that the model equation (5) captured some of the
features of (4). For example, for both equations, solutifrithe form sought could only
exist if the parametex was less than a critical value. The critical value\. was reported
in [5, 6, 8] for the Stommel model and in [3, 4] for the Munk mbodehe failure of these
equations to have a solution is coincident with the sepawaif the boundary layer [16],
and in [17], it was shown that asis increased beyond,., the separation point moved
further south.

A second feature that the series solutions to (5) and (4eshaas the presence of
resonances at certain discrete valuesa,ofith the series solutions becoming singular as
A approached the resonant values, and those resonances topithof the present study,
where we will pursue the asymptotics of (5) in more detaihtimg[6], using the power of
symbolic computation, and also compare the series sokitanumerical solutions.

2 Analysis

2.1 Series solution

We need to find solutions to (5) which vanishjat 0, and to this end, we will try a series
solution of the form

Vo(n) =Y v (6)
j=1

If we substitute this series into the Abel equation (5) anougrpowers of), we get a
hierarchy of equations. At leading ord@r(n), we find the coefficient; must obey

Mo? 4+ vy + 72 =0, @)
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which has two solutions which are plotted in Fig. 1(a),

) 141 -4}, ®)

™

U1 2\ [
where we take the+” sign for v§+) and the “-" sign forv@.

In order forv; to be real, which is required, the quantity under the squaotin (8)
cannot be negative, so we require<  for a solution of the form (6) to exist.

In what follows, we will write the coefficients in the serieB) (in terms of the
parameten, which we used in [5, 6, 17], which is related foby \y? — .+ 1 = 0,
or A = (u — 1) /2, which has two roots which are plotted in Fig. 1(b),

1
) = n [1+V1-4)], 9)
so thatv; = —mp.

Vi H

L 20 20 1

110 10 1

5 -4 3 -2 -1 1
5 -4 -3 2 - 1
-10 + -10
b

@ 20 1 ®) -20

Fig. 1. (a) The leading coefficieni in the series (6); (b) the parameie(9).

At the next orde© (n?), we find thatu; must obey
(§ - 2)1;2 -0, (10)
W

so thatv, = 0 provided that # 2, while v, is undetermined if. = 2. This means that
= % is a special case which must be considered separately.

If u# 2, atO (n®), we find thatv; must obey

(% ~3)oy = T (11)

If p = %, (11) become® = 73/24, which is obviously wrong and means that= %
is another special case, for which extra terms must be iediiil the series solution. If
1 # 3, (11) has a solution

> u

12)
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If 11 is neither3 nor £, atO(n*), we find thatv, must obey
(§ - 4)U4 =0, (13)
W

so thatv, = 0 provided thafu # %, while v, is undetermined ifi = 2. This means that
1 = 2 is a third special case.

If we continue in this fashion, a®(n™), we find that the equation far, is of the
form

(n—f—l

m — n)vn =cp. (14)

If n = 2m is even, (14) will be of the form

<2m+1
I

so thatvg,, = 0if u # 1 + 1/(2m), butvs,, need not be zero ifi = 1 + 1/(2m). If
n = 2m + 1 is odd, (14) will be of the form

— Qm) Vom = 0, (15)

(2m+2

p —2m — 1)1}2m+1 = C2m+1, (16)

whereca,, 11 # 0, so that we get a contradictionif = 1 + 1/(2m + 1), meaning that
additional terms must be included in the series solutiorttfat value ofu.

The upshot of thisisthatji = 1+1/nforn =1,2,3,..., then there is aresonance
in the series solution and additional terms must be includédle if © # 1 4+ 1/n for
n =1,2,3,..., then the series solution is of the form

Vo(n) = Zv2j+1772j1, (17)

=0

with

pr’

V3 = ———F—71+>»
72(p - 3)
14-9 9
6912(u — 3)"  6400(u — ) . (18)
; ’”7{ 4671p2 — 129964 + 9104 3 A7
7= - _ ’
9953280 (1 — 4)° 5120(p — &) 401408(p — £)

These coefficients appear to be singular as we apprpachl + 1/(2m + 1) for m =
1,2,3,..., so we might expect that a plot &} () as a function of: for a given value

of n would be singular at the values pf To examine this, we used a computer algebra
software package to calculate the coefficients in the sétiBsas far a®s5, and we then
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evaluated the series at= 0.1, keeping terms as far ags7n°°, again using the computer
algebra package and keeping 150 significant figures in tlweilegions. The results are
shown in Fig. 2(a), where we pldf;(0.1) as a function ofu, and it can be seen that
as expected, the series solution has very narrow singeldty = 1+ 1/(2m + 1) for

n =1,2,3,...,andthis figure would seem to confirm that(n) has singularities at those
values ofu. In Fig. 2(b), we plot the series for values pfclose to, which is one of
the resonant values of again keeping terms as farag°°, and it can be seen that the
series blows up, with the blow-up happening earlieﬂm)proacheé.

VO(Ol) 0 0.1 0.2 I’]
2 -
_02 -
1r -0.4
1 2 3 -0.6
0 - : = U
~\ 0.8
B 1k
-1.2 +
2r (b)
-1.4
aL @ Vo(n)

Fig. 2. (a) The series (17,18) evaluatedhat= 0.1, keeping terms as far a8(n>°).

(b) The series (17,18) keeping terms as facHs"”): circle p = 5 — 0.01; square

p =3 40.01; trianglep, = 4 — 0.005; diamondu = 2 + 0.005; stary = 3 — 0.001;
crossy = 5 + 0.001.

For the resonant values @f additional terms must be included in the series. If

p=1+1/(2m), for example, 2, I .., then even powers of are required, so that the
series solution will be of the form

Vo(n) = vn, (19)
j=1
with vo; = 0 for j < m while vy, is a free parameter. For example, for= % we have
4 2 3 20 3 5 2
Vo(n) = — pn + van® + (Lv? - 7T*)713 + ( UQZ - = UZ)T4
3 8 9 24
4 2 5 (20)
(1121}2 Ty T ) 5
273 2 640 Y
wherev; is a free parameter. | = 1+ 1/(2m + 1), for example3, 8,2, ..., then
logarithms are required, so that the series solution wibhtde form
0o ‘ co 7 ‘ k
Vo(n) = vaan™ ™ 4+ 30 vgy ™t (hl 77) , (21)
j=1 j=m k=1

38



On the Abel Equation of the Second Kind with Sinusoidal Ragci

whereuvs,, 1 is a free parameter. For example, for= %, we have

7'l'3 3
Vo(n) = — pmn + (vs — Flnn)n

93 wiug  1lx° (37721/3 71'5) o 9| 5

— - — 1 —(1
+[87r+ 8 960 5 tag)nt gyt
wherevs is a free parameter. Perhaps surprisingly= 2, which corresponds to the
critical value of\ = i in (9), is not a special case and is covered by the seriesi@olut

(17), (18).

(22)

2.2 Numerical solution
The analysis of Section 2.1 would seem to indicate that thel Aguation

E = Vo) Vi (n) + Voln) = ~2sin ! (23)

v 2
might be expected to exhibit resonant behavior wheis equal to one of the resonant
values discussed in Section 2.1, and to explore this mag ¥ug solved (23) numerically
using a standard fourth order Runge-Kutta scheme, usinigitied condition V4 (0) = 0.
These numerical solutions would seem to indicate that then@nces do not occur. In
Fig. 2(a), we plotted/,(0.1) as a function ofu using the series solution. In Fig. 3(a),
we repeat this plot but using the numerical solution rathantthe series solution. For
© < 1, to the left of all the resonances, apdreater than about 35, just to the right
of the resonance at = %, the plots from the series solution and the numerical smhuti
are near identical. However, far betweenl and aboutl.35, the numerical and series
solutions are somewhat different. Between these valjig$,1) from the series solution
appears to lie on a smooth curve between the branches othigdange, except at the
resonances, at each of which there is a highly localizedesji8k contrast, the numerical
V5(0.1) tends to—oco asp — 0+, with nothing untoward happening at the resonances.

In Fig. 2(b), we plotted the series for valuesottlose to the resonance §t In
Fig. 3(b), we repeat this plot but using the numerical solutiather than the series
solution, and again the results are somewhat different. ntimeerical solution does not
blow up, and all of the curves in Fig. 3(b) are very similar.

Taken together, Fig. 3(a) and 3(b) would seem to suggestiteaesonances do not
in fact occur. In Fig. 4, we compare the numerical and seédisns to (23) close to
1 = 1. For p slightly less than, in this case: = 0.9, the series and numerical solutions
are in excellent accord, but farslightly greater than, the series and numerical solutions
are completely different.

There is a simple reason the two solutions are so differetiimegionl < p <1.35,
which is that the series (17) is failing to converge in thigioa. The coefficients (18) in
(17) involve negative powers @f: — 3), (1 — 2), (v — £), ..., and in Table 1, we give
the exponents of these terms for the first few coefficienthiénsieries. The exponent of
(1 — %) decreases by every coefficient, that of — 2) every second coefficient, and

that of (u—1— ﬁ) everymth coefficient. Because (17) involves only odd powers of
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Vo(0.1) 0 0.1 °2_ 1
2 -
-0.2
1F -04
1 2 3 0.6
0 + V1
-0.8
1+ 1
-1.2 +
2r (b)
14 F
aL @ Vo(n)

Fig. 3. Numerical solutions to (23). (a) The numerical solution evaluated= 0.1.
(b) circlep = 3 — 0.01; squarey, = 3 + 0.01; triangley = 5 — 0.005; diamond
p =3 +0.005; stary = 5 — 0.001; crossy = 3 + 0.001.

0 1 2 0 1 2
n n
2 2
4 4 -
6 6
i @ sl ®)
Vo(n) Vo(n)

Fig. 4. Solutions to (23): circle = 0.9; crossu = 1.0; squarew = 1.1. (a) Numerical
solution. (b) Series solution.

Table 1. Exponent ofx — po) in the coefficients (18) in the series (17) near the
resonances atp = 2m/(2m — 1)

4 6 8 10 12 14
Ho 3 5 7 9 11 13
V3 -1 0 0 0 0 0
Vs -2 -1 0 0 0 0
v7 -3 -1 -1 0 0 0
Vg -4 -2 -1 -1 0 0
vn -5 -2 -1 -1 -1 0
V13 —6 —3 -2 -1 —1 —1
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7, we would expect that the radius of converge of (17) behawee(Ji — %)1/2 near the
resonance gt = 3, like (u — &)/ nearp = £, and like(u — 1 — 5:55)"/®™ near
w=1+ ﬁ so that ag: approaches a resonance, the radius of convergence of (17)
will approach zero. In this region then, the series can tethe value o¥{, and each of its
derivatives at) = 0, but is of little use as we move away fram= 0. Outside the region,
there is good agreement between the series and numeriaéibssl However, since the
resonances at = 1 + ﬁ lie inside that region, the region where the series is délitt
use is the region which is of most interest.

With regard to the solution at the resonances themselvespdmerical solutions
discussed above showed no sign of them. However, this isitation of the numerical
method used, and is an instance where the absence of evideratevidence of absence.

The Runge-Kutta method used estimatgé) at 4 points in each time step, with (0) =
—mpandV (n) = —:—ﬁj (1 + 2V, sin %) for > 0. The resonances pt= 1+ 5
occur because the higher derivatives are undeterminedpatetect them, the numerical
method must involve those higher derivatives. For exaniple,resonance at = g

occurs becaus¥, (0) is undetermined, and one way to investigate it is to difféete
the Abel equation (23) once with respectjtto get a second order equation,

- ]. 17 /7 7 7.[-
/jwz Vo(m)Vy (n) + VOQ(W)} + Vy(n) = —mcos 777 (24)
If we sety = 3 and then introduc#’ () = V; (1), we have a first order system,

o [Vo(n)V; () + V)] + Vi) =~ cos 3

Vo (n) = Va(n),

which we can again solve using a Runge-Kutta method by eBtimbothVO'(n) and
V, (1) at 4 points in each time step, with () = V4 (n) andV; (0) = 2v, and V] () =
—%‘1<V12 + 2V + % cos %”) for n > 0, wherewv, is a parameter which must
be specified. A similar approach, involving successivelgda systems, can be used
to investigate the resonances jat= %,%,.... In Fig. 5(a), we plot the numerical
solutions using this approach. The solution using the waignethod, which is included
for comparison, coincides with the new method when= 0. The series solution (19) is
plotted in Fig. 5(b), and the solution witlh = 0 coincides with the general series (17).
With the exception of the cases = +10, for the cases shown, there is good agreement
between the numerical results and the series up to apeul.7, when the series diverge.
This can be taken as numerical confirmation of the existeftleeoresonances and the
resultant multiple solutions.

The resonances at= 1 + ﬁ occur because the higher derivatives are singular,
and to detect them, we must remove the singularity at leaalidgr. For example, for the
resonance gt = %, the series solution was

(25)

3
%:—pw+(vg—%lnn>n3+..., (26)
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so if we definely, = Wy — %3173 In n, then the series solution &V, will be
Wo = —pm +vsn® + ..., (27)

so that the leading order logarithm has been removed. If fiereintiate the Abel equation
(23) twice with respect tg) and set; = 3, and then introducéVy (n) = Wy(n) and

Wa(n) = W, (n), we have a first order system which we can again solve usingigéRu
Kutta method by estimating each ©f, (1)), W, () andW,(n) at 4 points in each time
step, withiW, (1) = Wi (n), W, (1) = Wa(n), andW,(0) = 6vs, whereus is a parameter
which must be specified. A similar approach, involving sgsoeely larger systems, can
be used to investigate the resonances at % % .... In Fig. 6(a), we plot the numerical
solutions using this approach. The solution using the walgmethod is included for

T T T T r] T T T T n

2 F 2 F

4+ 4k

6 | 6 |

b
Pl (@ Al (b)
Vo(n) Vo(n)

Fig. 5. Solutions to (23) fop = %: circleve, = 0; squareve = 1; trianglevy = —1;
starvy = 10; diamondv, = —10. (a) Numerical solution, cross denotes solution of

original equation; (b) Series solution (19), cross denotes (17).

T T T r] T T T r]

2 F 2 F

4+ 4k

6 | 6 |

b
sl (@ sl (b)
Vo(n) Vo(n)

Fig. 6. Solutions to (23) fop = %: circlevs = 0; squarevs = 1; trianglevs = —1;
starvs = 10; diamondvs = —10. (a) Numerical solution, cross denotes solution of

original equation; (b) Series solution (21).
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comparison, but does not correspond to any valug of he series solution (21) is plotted
in Fig. 6(b). The general series (17) was singulay at %. Once again, for the cases
shown, there is good agreement between the numericalsesutthe series for smaj|
and again, this can be taken as numerical confirmation oftisteace of the resonances
and the resultant multiple solutions.

3 Discussion

The results of this paper are a cautionary tale. In the puswsection, we found both series
and numerical solutions to the Abel equation of the second tiith sinusoidal forcing
(23), which is a model equation for western boundary outflowthie Stommel model
of the large scale ocean circulation [6]. The series satutias resonances at certain
discrete values of the paramejgrat which values (23) has multiple series solutions and
additional terms need to be included in the seriesuApproaches these resonant values,
the series solution becomes singular. The numerical saolsitiell a somewhat different
story. When we solved (23) using a standard fourth order Rifaga scheme, it was
apparent that the numerical solutions were not singular thearesonant values, and in
this conflict between the numerics and the asymptotics, timenics came out on top
because ag approaches a resonant value, the radius of convergence séties solution
approaches zero. The standard numerical scheme also séerfied no evidence of
the resonances and multiple solutions predicted by the pt®tits, and on this issue,
the asymptotics came out on top. The resonances occur lestteuisigher derivatives are
either undetermined or singular, and the standard nunmiedbame was oblivious to these
resonances because it was calculating only the first deévaOnce we converted the
equation to a system of equations involving these highdvatares, the numerics were
able to verify the presence of the resonances and the eséstdrihe multiple solutions,
but without the information gleaned from the series sotlutibout the location and nature
of the resonances, we would not have been able to constricppropriate numerical
schemes and indeed we would have been as oblivious to theamses as the original
numerical scheme. The moral of this cautionary tale is tludh Iseries solutions and
numerics can provide valuable information but both needetoded with caution: series
which do not converge provide misleading information whilenerics can fail to provide
important information.
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