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Abstract. We present a numerical study for the steady, coupled, hydrodynbeatand
mass transfer of an incompressible micropolar fluid flowing over a neaistretching
sheet. The governing differential equations are partially decoupled assimilarly
transformation and then solved by two numerical techniques — the finitertemethod
and the finite difference method. The dimensionless translational velogdgprotation
(angular velocity), temperature and mass distribution function are cemidor the
different thermophysical parameters controlling the flow regime, viz rtbelinear
(stretching) parameteb, Grashof numberz and Schmidt numbeiSc. All results are
shown graphically. Additionally skin friction and Nusselt number, whichviite an
estimate of the surface shear stress and the rate of cooling of theesudapectively,
are also computed. Excellent agreement is obtained between bothicaimesthods.
The dimensionless translational velocitf/ X for both micropolar and Newtonian fluids
is shown to decrease with an increase in nonlinear pararbeteimensionless micro-
rotation (angular velocity)y, generally increases with a rise in nonlinear parame(er
particular in the vicinity of the wall) and decreases with a rise in convectivanpeter,
G. The effects of other parameters on the flow variables are also déstu3$e flow
regime has significant applications in polymer processing technologgnatedlurgy.

Keywords: micropolar fluid, nonlinear stretching sheet, materials processing daoyin
layers, numerical solutions, convective heat and mass transéerlfPnumber, Schmidt
number, Grashof number.

Nomenclature

Roman
Cy  skin friction coefficient cp specific heat at constant pressure
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f dimensionless stream function T temperature

g dimensionless microrotation u  velocity along ther-axis

ge Qravitational acceleration v velocity along they-axis

G Grashof number D stretching factor

j  micro-inertia density V, suction velocity

N microrotation x distance along the sheet

Pr Prandtl number y distance normal to the sheet

Sc  Schmidt number s surface parameter

p  pressure b nonlinear (stretching) parameter
q surface heat flux

Greek

n  similarity variable ~  micropolar parameter

1 dynamic viscosity 0 dimensionless temperature

v kinematic viscosity G coefficient of thermal expansion
vs microrotation/spin-gradient viscosity ¢ dimensionless mass transfer

p density of the fluid A suction parameter

x  coupling coefficient 1 stream function

Subscripts

w  surface conditions oo conditions far away from the surface

1 Introduction

In numerous industrial transport processes, convectigedred mass transfer takes place
simultaneously. Phenomena involving stretching sheettife widely in for example,
aerospace component production metal casting [1]. In suotepses metals or alloys
are heated until molten, poured into a mould or die, and diquital is subsequently
stretched to achieve the desired product. When the supezcheslt issues from the
dies it loses heat and contract as it cools, a stage in migjigifh processing referred to
asliquid state contraction With further cooling and the loss of latent heat of fusion,
the atoms of the metallic alloy lose energy and are boundlyigbgether in a regular
structure. The mechanical properties of the final produpedd to a great extent on the
heat and mass transfer phenomena, the cooling rate, sonte®transfer rate etc. Much
numerical research has been conducted in metal sheet floWslimg studies by Lait et
al. [2], Goldschmit et al. who examined viscoplastic met@lv8 [3], Goldschmit [4] who
provides a finite element methodology for general metal flowning, and more recently
by Cavaliere et al. [5].

Some other important industrial applications of stretgtsheet transport phenomena
are the extrusion of a polymeric sheet from a die or the drgwfiplastic films [6]. During
the manufacture of these sheets, the meltissues from aglisaubsequently stretched to
achieve the desired thickness. The mechanical propefttas @inal product are strongly
influenced by the stretching rate and on the rate of cooliath parameters which can be
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controlled by engineers. Polyester being a flexible mdteen tolerate filament surface
stretching during the course of ejection; therefore théaservelocity deviates from being
uniform. A linear stretching rate is all the more desiralblewever in practice the stret-
ching rate is observed to change during the process andrefohe generally nonlinear.
Such extensional polymeric flows have attracted considier@tbention in mathematical
and experimental rheology since the 1960s. Ballman [7]idensd the stretching flow of
a Polystyrene melt. Ziabicki [8] provided a classical tigabn the physical mechanisms
of polymer fiber flow dynamics in extensional sheet and othdustrial flows. Denn
and Marrucci [9] considered the stretching flow of viscottasuspensions with applica-
tions in plastics manufacturing. Denson [10] studied thetshing regime in polymeric
processing. Newtonian stretching flows have also beenestudidetail. Sakiadis [11]
initiated the study of boundary layer flows over a continusoléd surface moving with
constant speed for viscous fluids. Due to entrainment of amldiuid, the situation
represents a different class of boundary layer problemghivhas a solution substantially
different from that of boundary layer flow over a semi-infinftat plate. For a Navier-
Stokes (viscous) fluid, the heat and mass transfer on a htngtsheet with suction
or blowing was investigated by Gupta and Gupta [12]. Varisosnarios in thermo-
convective heat and mass transfer for stretching flows wabsegjuently discussed by
many researchers. Surma Devi et al. [13] reported on nuaid(ficite difference so-
lutions) for the transient three-dimensional boundanefajow caused by a stretching
surface. Chen and Char [14] studied the convection flow pasie&ching surface with
transpiration (wall mass flux) effectsKumari et al. [15] modeled the hydromagnetic
convection from a stretching surface with prescribed wethperature/heat flux surface
conditions using the Keller-Box numerical method. Surmai@éal. [16] considered the
momentum and heat transfer on a stretching sheet, pregdmtite difference computa-
tions. Takhar and Nath [17] studied the three-dimensiooa flue to a stretching flat
surface with transient effects using shooting methods.y Th8] extended this analysis
to consider for the first time, rotational and magnetic baatgé effects on transient flow
over a stretching surface. Takhar et al. [19] more recemi@yaed the flow dynamics and
species mass transfer in a stretching sheet with chemmetioa and magnetic retardation
effects, using the Blottner difference scheme.

All the above investigations were restricted to Newtoniamon-Newtonian (vis-
coelastic or power-law type) fluids. In many environmentadl andustrial flows the
classical theory of Newtonian fluids is unable to explainnfierofluid mechanical cha-
racteristics observeddicropolar fluids are fluids with microstructure belonging to a class
of complex fluids with nonsymmetrical stress tensor refittoeasmicromorphic fluids.
Physically they represent many industrially importanuids consisting of randomly-
oriented particles suspended in a viscous medium. Theicdhskeories of continuum
mechanics are inadequate to explicate the microscopicfesaaiions of such complex
hydrodynamic behaviour. Eringen [20] presented the esdrfirmulation of a general
theory of fluid microcontinua taking into account the ingréharacteristics of the sub-
structure particles, which are allowed to sustain rotatind couple stresses. Later Erin-
gen [21] generalized the theory to incorporate thermakedfan the so-called thermomi-
cropolar fluid. The theory of micropolar fluids and its exiens the thermomicropolar
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fluid constitute suitable non-Newtonian hydrodynamic dredino-hydrodynamic models
which can simulate the flow dynamics of colloidal fluids, lidjerystals, polymeric sus-
pensions, haemotological fluids etc. Many numerical ssidfenicropolar heat and mass
transfer have been communicated in the literature. Hassamd Gorla [22] investigated
the heat transfer to a micropolar fluid from a nonisotherrtratshing sheet with suction
and blowing. Flow over a porous stretching sheet with streuncfion or injection was
examined by Kelson and Farell [23]. Physically these irngasibns were confined to the
linearly stretching sheet casén certain polymeric processes nonlinear stretchingcedfe
are important. In metallurgical process the nonlinear sigfoof a metal stream has to
incorporated into models to provide a realistic computatibligh velocity streams are
erosive in nature and likely to dislodge particles of moulatenial. They are also likely
to cause penetration of the metal in to mould material whey tmpinge upon it. On
the other hand low velocity streams are more susceptiblsgivagion and less likely to
completely fill the mould cavity. Industrially therefore abderate velocity is chosen to
yield the desired characteristics. Drawing of plastic filaml artificial fibers, are other
applications of nonlinear stretching flows.

The purpose of the present investigation is therefore tysttoe coupled fluid flow,
heat and mass transfer phenomena over a stretching shbetamitinear velocity for
micropolar fluids. Such a study has not been reported earlier in theatitez and is
important in non-Newtonian materials processing. It coumgts the first study to the
author's knowledge of free convective flow witieat and mass transfer in micropolar
nonlinear stretchinglow regimes. The governing system of conservation equstisn
reduced to a coupled, multiple-degree system of nonlingfarential equations, which
are solved by using the finite element method and also a fiiffeehce method. Graphs
are plotted for dimensionless translational velocity, noHmotation (angular velocity),
temperature and mass transfer function for various valfigheononlinear stretching
parameter, Grashof number and Schmidt number. We also dendpuensionless wall
shear stress function and heat transfer rate, demonstmatitellent agreement between
the two numerical schemes employed.

2 Mathematical model

Consider an isothermal, steady, laminar, incompressititeopolar fluid flowing over
a surface coinciding with the platg = 0, the flow being confined in the regian >

0. Two equal and opposite forces are introduced alongrth&is so that the surface is
stretched keeping the origin. The physical regime is ithtsd in Fig. 1. The governing
conservation equations, assuming thermal equilibriumbeacast as follows:

du  Ou

9z + oy 0 (mass) ()
ou ou K\ O%u kKON

’U/a—x —+ ’Ua—y = (1/ Z) a—y2 + ;a—y + geﬁ(T — Too) (momentum) (2)
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ON ON K ou vy 2N
U + va—y _E (2N ay) + E oy (angular momentum) 3)
oT oT 0*T OT ON 90T ON
PCp (u% + 08—1) = fa—yQ + o <ath 9y~ Oy ox ) (energy (heat)) (4)
0C 4 oCs\ , 02Ca I .
PCp (uﬁ + va—y) =ky 9y (diffusion (species)) (5)

whereC'4 is the concentration of the microconstituent present inflive. The thermal
diffusivity k¢ in equation (4) and molecular diffusivity, in equation (5) are assumed
constant. Using the boundary layer concept, the effe€fofn the momentum equation
is negligible in comparison to the effect %“—f Itis S|m|Iar to the fact that momentum
equation for the velocity in they direction has been ignored.

y:m
Stretching forces
<« .
. _—
slit —> / >
0 X
Micropolar fluid sheet

Fig. 1. Physical regime.

Similar considerations have been employed successfullgdison and Farell [23] and
Bhargava et al. [24].The corresponding boundary conditeme given by

y=0: u(z,0)=Dz’ wv(z,0)=0, N(z,0)=-— T=T,, Ca=C,,, (63)

u
Pded
oy’
y—o0o: u—o00o, N—=0, T 5Ty, Cqy—Cy_. (6b)

HereCy,, > Ca_, the transfer of species is occurring due to convection fitmrsurface
to the full stream fluid. A linear relationship between miatation function N and
surface shea{’au) is chosen for investigating the effect of different surfacaditions
for the m|crorotat|0n Here is the boundary parameter and varies frono 1. The first
boundary conditionq = 0) is a generalization of the no-slip condition, which regsir
that the fluid particles closest to the solid boundary stizkt theither translating nor
rotating. The second boundary condition i.e. microrotatioequal to the fluid vorticity
at the boundarys(# 0), implies that in the neighborhood of a rigid boundary, tifea
of microstructure is negligible since the suspended gagican not get closer to the
boundary than their radius. Hence in the neighborhood oflthé shear and therefore
the gyration vector must be equal to fluid vorticity.
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3 Transformation of model

Introducing the dimensionless functiorf§y) andg(n), such that the continuity equation
is automatically satisfied and choosing the similarity $fanmation as given by Vajravelu
[25].

2v ’ ,
_ DOty gy, b1 _JPOAD sz ()
V= TR gt ). N = T ()
T-Ty _ Ca—Ca
O(n) = m» é(n) = m’

where prime denotes differentiation with respecitd@he governing equations (2) to (5)
are then reduced to the following set of nonlinear, coupheihary differential equations.

b
(1+R)f’”+Rg’+b+i1G0—bi—lf”jtff”zo, (8)
2 " " 3b—1 / / _
—H—IR(2g+f)+Ag +A1(b+1fg—gf)—07 9)
0" + Pr(f0' —ay90’) =0, (20)
¢" + Sc(f¢') =0. (11)
The corresponding boundary conditions (6) reduce to:
f0)y=0, f(0)=1, g¢(0)=-sf"(0), 0(0)=1, ¢(0)=1, (12a)
f(0) =0, g(o0) =0, 6(c0)=0, ¢(c0)=0, (12b)

b—1 . . .
whereR = % A= L= m Ll A; = —u=k are the physical micropolar parametér,—=

pvp?
9:B8(Tw 7<) is the local Grashof number i.e. convective paramefier 1 correspond

to the linear stretching sheet. The parametérand G correspond to local effects i.e
pertaining to specific values of Similar studies were made by Kelson and Desseaux [26]
and have been adopted in the present analysis. Equatios tf8refore also an ordinary
differential equation.Pr = % is the Prandtl number anslc = % is the Schmidt
number. The shear stress at the surface of the sheet is dafined

ou _ D(b+1)
v = — el ——D (3b—1)/2 ¢1 T 1
ro= (4 B) (5, ) o= Drr 0 (13)
The wall heat flux is computed using the following expression
or Db+1) o
= _K;(— = —K (T, — T )y| ———220=1/2¢7(0). 14
aw=-Ks(G,) =Kl = Tl =5 =020/ 0) (14)

The set of equations (8) to (11) are highly nonlinear andetfoee the system cannot
be solved analytically. The finite element method and alsaitefdifference technique
have been used to solve the equations under the prescrévesfidrmed boundary condi-
tions (12a), (12b); both methods will now be described.
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4 Numerical methods of solution

4.1 The finite element method

Finite element method is widely used for solving boundany&groblems. The basic
concept is that the whole domain is divided in to smaller eets of finite dimensions
called “Finite Elements”. Thereafter the domain is consadeas an assemblage of these
elements connected at a finite number of joint called “Nod&k& concept of discretiza-
tion is adopted here. Other features of the method inclueldiisg continuous polynomial,
approximations of the solution over each element in termoafah values, and assembly
of element equations by imposing the inter-element coitjirad the solution and balance
of the interelement forces. The method entails the follogygteps:

1. Division of the domain in to linear elements, called thédielement mesh.
2. Generation of the element equations using variatiomatdéations.

3. Assembly of the element equations as obtained in steps (2)

4. Imposition of the boundary conditions to the equatiortaioled in (3).

5. Solution of the assembled algebraic equations.

The assembled equations can be solved by any of the numésidahique viz.
Gaussian elimination. An important consideration is tHastmape functionsvhich are
employed to approximate actual functions. For one-dinmradiand two-dimensional
problems, the shape functions can be linear/quadratic ajttehorder. However the
suitability of the shape functions varies from problem tolpgem. Due to the simple
and efficient use in computations, linear as well quadrdtape functions are used in
the present problem. However it is observed that the redoltsot vary considerably
indicating that both elements provide approximately threesaccuracy. The comparison
for both types of shape functions is given in the Table 1.

Table 1. Comparison of results with linear as well as quadratic elements

n h g 0
Linear Quadratic| Linear Quadratic| Linear Quadratic

1 1.00000 1.00000 | 0.17619  0.17616 1.00000 1.00003
2 0.48405 0.48407 | 0.08989  0.089889 | 0.03404 0.03406
3 0.18795 0.18799 | 0.04496  0.04496 0.00004 0.00005
4 0.07291 0.07294 | 0.02020 0.02021 0.00000 0.00000
5 0.02801 0.02805 | 0.00850  0.00853 0.00000 0.00000
6 0.01048 0.01048 | 0.00341  0.003471 | 0.00000 0.00000
7 | 0.00366 0.00364 | 0.00129  0.00127 0.00000 0.00000
8 0.00000 0.00000 | 0.00000  0.00000 0.00000 0.00000
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In our computations, the shape functions for a typical elene., 7. 1) are taken
as:linear element

e Met1 — 7 e N—7MNe
- ) 1/’2 -
Ne+1 — Te Ne+1 — Te
guadratic element

(Met1 + e — 20)(Net1 — 1) e = 4 — ne)(Me41 —n)
9 2 =

y Me SN < Neta;

we = )
! (776-1-1 - 775)2 (776+1 - 776)2
,(/}g — _ (Tle+1 + Tle — 277)(77 - 776)
(77@+1 - 776)2

The general details of the steps employed in finite elemealysis can be found in [27]
and are summarized in Fig. 2 below. To solve the differemtiplations (8) to (11) with

Discretization of the
domain into elements

|

Derivation of element equations

l

Assembly of element equations

|

Imposition of boundary conditions

|

Solve the system of equations

|

Print variables

Fig. 2. Finite element computation stages.

boundary condition (12), we assume:

# =h. (15)
The system then reduces to:
2 2b
1 " / _ 2 I 1
(1+ R)A" + Ry +—b+1G6 —b+1h + fh' =0, (16)
_ 2 / " 31, ) =
R0+ 0+ Ag" + A (T hg — g'F) =0, (17)
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0" + Pr(f0 —a1g8") =0, 18)

¢" + Sc(f¢') = 0. (19)
The corresponding boundary conditions (12a), (12b) retiice

f0)=0, h(0)=1, g(0)=-sf"(0), 0(0)=1, ¢(0)=1, (209)

h(c00) =0, g(c0) =0, 6(c0) =0, ¢(c0)=0, (20b)

The whole domain is divided into eighty two-noded line elatse over each of the
element, finite element equations are derived.

Variational formulation. The variational form associated with equations (15) to (19)
over a typical linear element is given by

Ne+1

[ wits = man=o. (21)

7}6

Ne+1

/w (1+R)h”+R’+LG9—2—bh2+fh’ dn =0 (22)
2 I b1 =5

[ s = gm0y s ag s (Pt —gs) Jin=0. @)

b+1 b+1
Ne
Ne41
/ wy (0" + Pr(f8' — a198"))dn = 0, (24)
Ne
Ne+1
ws (4" + Sc(f¢'))dn =0, (25)

Ne

wherew;, wy, ws, wy andws are arbitrary test function and may be viewed as the
variation inf, h, g, 8 and¢ respectively. All functions satisfy all homogeneous baanyd
conditions, as per theoretical requirements.

Finite element formulation. As the domain is defined into two-noded elements, hence
the appropriate finite element approximation is assumed as

2 2 2 2 2
F=Y 0% 9= g6, h=>_hi&, 0= 0;&, v => &,  (26)
j=1 j=1 j=1 j=1 j=1
wherew,; = &; for the first node andy; = & for the second node with= 1,2, 3,4 and

5. Here¢; are the shape functions for the line element n..1) and are taken as:

e_n€+1_n e __ n—Te

- ) 2 — 9 (27)
776+1 - 77& 776+1 - 77&
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wheren, < n < n.4+1. The finite element model of the equations (21) to (25) for the
typical element is given by:

(KM (K2 (K] [KY K] [{f} {r'}
(K21 [K22) (K] [K*] 0 [K2)) | {h} {r2}
(K2 [KP2) (K] K (K] {g) | = ({r?}] (28)
(K] [K2) (KR [KY] 0 [K9))) {6} {r'}
(K1 [E22) (K] (K (K] {6} {r°}

Here eacHK™"] is of the order2 x 2 and[r™] (m,n = 1,2,3,4,5) is of 2 x 1. These
matrices are defined as:

Ne+1 TNe+1

dg;
11 12 _
Kl = [ 65 K = [ ean

13 14 15 25
KB =K =KP =0, K¥ =0,
e, de 2 "
K2=(1 —i—jd /hz d / =L dn,

TMe+1 Ne+41

K% = /51 Eﬂd K2 = b+1G/§z§]n,

or 1 de
K¢ =i [ &52an

b+1 dn
/’76
Mt 29a
Kséﬂ:fA/@dfﬂ /55 (29a)
I dn dn b—|—1 >
MNe
MNe+ MNe+1
LAl hggd — /fg S g
bl iS5 an i m,
Ne Ne

34 35 41 42 43 51 __ 52 53 __ 54
KM =K =Kl=KP2 =K =0 KJ}=K?=K?=K}=0,

MNe+1
s g g,
44 _ _ as; j S
wif = [ { R e - Praca’d fan

e
K4 — Kfjl = Ki5j2 = K;.”?’ K54 =

ij

0,
T e e
K55 — S z
1] /{ d77 d +S § }d’l],

Ne
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)

rl=0, 2= _(5 dh)nm’ 3= _A<£idg>:e+1
) (29b)

“dn/ . dn
() (s

wheref = 2% Fi¢;, h = Y5_ h;&;.. The systems of equations after assembly of
the elements are nonlinear therefore an iterative schemse to solve it. The system
is linearized by incorporating the known functigrandh. The whole domain is divided

in to a set of80 line elements. Each element matrix is of the ortérx 10. Thus after
assembly of all the elements equations we obtained a mdtarder405 x 405. For the
computational purposg = oc has been fixed a& If n = oo is taken to be more thah

all the unknown functions do not change up to the desiredracgu

4.2 Finite difference method

For comparison purposes the same system of equations 19%)-subject to boundary
conditions (20) are solved numerically using the finiteati#ce method. This method
is used for solving ordinary as well as partial differengguations governing boundary
value problem as well as initial value problem. This methad be explained briefly the
following Fig. 3:

Divide the domain into finite
no. of equal sub-domains

Obtain the difference equations
using difference formulae

|

Arrange the equations into standard form

|

Apply the boundary conditions

1

Solve the system of equations

Fig. 3. Finite element computation stages.

By using the central difference formulae, the set of equatid5)—(19), can be written
as:

i fi
h; = Ton (30)
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hiv1 —2h; + hi— i+1— i
2(1+ R) +1 + L, pYitl — Y

he? 2he
Gl - biblh% =t g, (31)
A (3bb+—11 fi+12;efiflgi _ 9i+12;69i71 fi) —0, (32)
i1 — ng + di1 + Sc<¢i+;f; ¢i1) —0, (34)

whereh, is the step length. Since the above equations are non-lamehcoupled hence
they cannot be solved exactly. Therefore an iterative sehisnrequired to be used.
Writing down the equations in the form:

l‘i:F(lth,...,ln), (35)

where eacH; is the function of the variablg;, h;, g;,0; andx; is any of the variable
fi, hi,gi,0;. Similarly equations are formulated for each variable o #guations
(30)—(34). Commencing with the initial guess values, newaite values are obtained.
This process continues until the absolute efrar — x;_;| is less than the accuracy
required. The condition of convergence of the scheme has &leeady checked before

implementing the iterative scheme. Following equatior) (8t equations (30)—(34) can
be written as follows:

fir1 = hi2he + fiyq, (36)
_ hi+1 + hi—l Rhe 9i+1 — 9iy h€2
hi = 2 1+ R 4 TR + 1G9’
bhe? (hit1 — hq, )he
_ h2 : 1+ 11 =0 37
(b+1)(1+R) i+ 1+ R ’ (37)
Rhe hiv1 — hi—
== 2¢; + —————
g (b+1)A<g+ 2he )
gi+1 — Gi—1 Aihe 13b—1 f’i-‘,—l - fi—l 941 — i1
T A (b+1 2he V' 2he fl)’ (38)
. he (. 0i41+60;1 Qi1+ 0i—1
O; = (Oiy1 —0i—1) + PTZ (sz 041ng) (39)
o _ he (. ¢it1+ &4
61 = (dus1 — bi-1) + Se (HEEEEEL ), (40)
The boundary conditions are presented as:
fi=0, hy=0, go=0, 0;,=0, ¢1=0, (41a)
hs1 =0, gs1 =0, 051 =0, ¢s1=0, (41b)
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The system of equations (36) to (40) with the boundary caybt(41) has been solved
iteratively and the results obtained are compared withafuisained by FEM.

5 Results and discussion

The variation of the skin friction and heat transfer withpest to convective parameter
G, surface parameter, Prandtl numberPr, and nonlinear parametérare depicted in
Table 2. It can be seen that the skin friction coefficierft(0)”, increases with increase
in s, nonlinear parameter and Prandtl number while it decreagkbduoyancy parameter
(G). The rate of heat transfer0(0)’, increases with higher values dfand Prandtl
number and it decreases with an increase in convective gheat

Table 2. Table for skin friction—f/(0) and the rate of heat transfer6’(0) with
different value of surface parameter Grashof number=, Prandtl numberPr and
the nonlinear parametér

s=05,b=50, Pr=1.0 G=05,s=05, Pr=1.0
G —f"(0) —0'(0) b -1"(0) —0'(0)
0.0 1.61543  0.888812 | 1 —1.14311 1512
0.5 1.36225  0.957716 | 2 —0.079178  1.8979
1.0 1.4997 1.01151 3 1.04799  2.27862
50  —0.066952 1.28827 5 2.05701  2.66449
10.0  —1.14311  1.5124 10 2.8866 3.0489
G=05b=50, Pr=1.0 G=05b=50,s=05
s —f"(0) —0'(0) Pr —£"(0) —0'(0)
0.0  1.2076 1.7363 0.4 1.1829 0.526316
0.25  1.2800 1.06991 0.733  1.3056 0.783232
0.5  1.36225  0.95776 1.0 1.36225  0.95776
0.75 1.45669  0.83748 | 4.0 1.5247 2.2057
1.0 156676  0.70884 | 7.0 1.5588 2.96119

Comparison between the finite element and finite differeindatisns is illustrated
in Table 3, where fox = 0.5, Pr = 7, b = 0.5, Sc¢c = 1.0, G = 0.5 we have compared
profiles ofh, g andé with n coordinate. Excellent correlation is demonstrated betwee
the two numerical methods. We observe thgtlimensionless translational velocity),
(dimensionless micro-rotation) ardd(dimensionless temperature) all decrease continu-
ously from a peak value of unity at = 0 to a minimum value aty = 8. In addition
we have computed these profiles using both linear and quadtaments with the finite
element program, again for arbitrary values of the thermsigial parameters and observe
very little difference in the computations.

In the graphs provided, the dimensionless velocity, magation, temperature and
mass transfer functions are computed for fixed value of Rramanber Pr, material
parametery;, surface parametar and physical micropolar parametersand A, , which
are taken ag.0,1.0,0.5,1.0 and 1.0 respectively, while the effect of other important
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parameters namelgonlinear parameter, Grashof numbeks and Schmidt numbegc,
have been studied explicitly. These functions are showriga.#, 5.

Table 3. Comparison of the results (FEM — finite element Vs, FDM — finitedifice).

s=0.5, Pr=7,b=0.5, Sc=10,G=0.5

n h g 0

FEM FDM FEM FDM FEM FDM
0 1.0 1.0 0.302512 0.302342 | 1.0 1.0
1 | 0.526108 0.526407 | 0.142686 0.142234 | 0.476286 0.476458
2 | 0.258348 0.258276 | 0.074133 0.074120 | 0.161974 0.161546
3 0.117828 0.117336 | 0.036948 0.036406 | 0.045465 0.045873
4 | 0.050599 0.050213 | 0.017178 0.017012 | 0.011584 0.011256
5 | 0.020490 0.020034 | 0.007547 0.007850 | 0.002806 0.002560
6 0.007551 0.007201 | 0.003131 0.003251 | 0.000645 0.00084
7 | 0.002152 0.002104 | 0.001103 0.001428 | 0.000124  0.00000
8 |0 0 0 0 0 0

Fig. 4 illustrates the variation of dimensionless transtal velocity, microrotation,
temperature and mass transfer (concentration) functigthanonlinear parameteb. Pro-
files are depicted both foR = 0 and R # 0. R = 0 corresponds to the Navier-
Stokes viscous fluid, which was considered by Vajravelu.[25]. 4(a) demonstrates
the variation of velocity with the parametierwhere velocity decreases @screases. It
is found that the translational velocity for a Newtoniandlis less than that for micro-
polar fluids. The results fob = 1 correspond to dinear stretching sheet, for which
the lowest translational velocities are observed. Fig) 4tiows the variation of the
microrotation functiong, with b. It is clear from the figure that microrotation function
first increases near the boundarytaisicreases, but away from the boundary a reverse
pattern is observed. Fig. 4(c) depicts the variation of terajure functionf, with b.
Temperature for Newtonian flow is less than the micropolad$ldor b = 1 i.e. the
linear stretching case. However for= 5 the temperature values are almost identical
for both Newtonian = 0) and micropolar R = 0.5) cases. For the highest value
of b (strong nonlinear stretchijgwe observe a reversal from thieear case § = 1),
wherein micropolar fluid temperature (R = 0.5) is less thamwtdaian fluid temperature.
This indicates that with strong nonlinear stretching miailar fluids achieve a decrease
in temperature compared to Newtonian fluids, which may besfigal in temperature
control of polymer stretching processes. Generally dses the temperature increases
with an increase in the nonlinear stretching paramiet&ig. 4(d) shows the effect of the
stretching parameteb, on mass transfer functiom, for the case of a micropolar fluid
(R = 0.5). Mass transfer functionp, clearly increases markedly with a riseinas
expected fast stretching therefore enhances mass traAdifprofiles descend smoothly
from unity at the wall to zero in the free stream (far from thalljy Furthermore the
variation in all above functions becomes less pronouncethfged values. This is due
to the fact that the coefficie +b1, W11 in the differential equations (8) anﬁ:—f in (9)
approaches tB, 0 and3 respectively as approaches infinity, which is true for real flows
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as the stretching parameter cannot be too large i.e. mustahBmiting value.

1

H—>

(© (d)

Fig. 4. Velocity (a), microrotation (b), temperature (c), mass trar{gligfor differentb
(s=05, Pr=7,G=5, Sce=1, R=0.5).

Fig. 5 illustrates the variation of dimensionless traristea! velocity, microrota-
tion, temperature and mass transfer functions wittor various Grashof numbersg;.
Fig. 5(a) demonstrates the variation of the velocity disition with the free convective
parameter(=. It is observed that velocity continuously increases withirerease in the
Grashof numbet=, which implies an increase in the boundary layer thicknégdoc-
ity is observed to be a maximum near the boundary and decrdasaway from the
boundary. For moderate value @fthe velocity profile changes its nature; it exhibits a
steep behaviour and decreases as Grashof number decrasessing buoyancy (i.e.
G values) therefore enhance the velocity values i.e. acteléhne flow. Fig. 5(b) shows
the variation of the microrotation distribution, which continuously decreases with an
increase in the Grashof numbé¥, For large values of the convective parametéy,
near the boundary, microrotation is negative (i.e. ¢dor= 20), whereas away from
the boundary it becomes positive and finally descends to. ZEhus large convection
effects produce a reverse rotation only near the bounddiymigrorotation profiles for
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G = 0.5,1,10 and20, converge at) ~ 3 and tend to zero. The temperature distribution,
0, with n, is shown in Fig. 5(c).¢ increases continuously with an increase in the value
of the Grashof numbery. The convective parameter has thus an important role in
controlling the temperature. As in many metallurgical gsses [1], temperature rises
to a great value (during intermediate stages), and ther@éed of maintain appropriate
temperatures, which can be achieved using convective émayy effects. Lower Grashof
numbers therefore depress temperatures throughout therdlgwe. In Fig. 5(d) we
observe that the mass transfer functignijs increased slightly with a rise in convection
parameter(z. Hence the largest values ¢fcorrespond t&z = 20, and these decrease
as(G falls to 10, 1 and0.5. Mass transfer therefore may also be inhibited by redudieg t
Grashof numbel(s, in practical applications.
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Fig. 5. Velocity (a), microrotation (b), temperature (c), mass trar{dfefior differentG
(s=05, Pr=7,b=5, Sc=1, R=0.5).

Finally in Fig. 6 we have illustrated the profile of mass tfengunction, ¢, with n
coordinate for various Schmidt numbefs;. All profiles descend smoothly from unity
at the wall ¢ = 0) to zero in the free streamy (= 8). A rise in.Sc from 0.5 through
1,2, 3 to 5 induces a considerable reductiongrvalues indicating that mass transfer is
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reduced in the micropolar fluid with highéc values. For highe6c values, the profiles
also descend much faster to zero; this descent becomes nagigatjasSc decreases in
value.

Fig. 6. Mass transfer for different Schmidt numlde¢s = 0.5, Pr = 7, b = 5,
G =5, R=0.5).

6 Conclusions

1. The dimensionless translational velociff/, for both micropolar and Newtonian
fluids decreases with an increase in nonlinear pararbgaéthough values for micro-
polar fluids are consistently higher. For micropolar fluidsifig in our computations,
R =0.5), f/ increases with an increase in the convective parandgtarhile it.

2. Dimensionless micro-rotation (angular velocity),generally increases with a rise
in nonlinear parametér(in particular in the vicinity of the wall) and decreasestwit
a rise in convective parameter, (again most notably in the vicinity of the wall).
With considerable distance from the wajl & 3), G however has negligible effect
on micro rotation profiles.

3. Convective parametef; i.e. Grashof number, can be used effectively for contrgllin
the temperature field.

4. Dimensionless temperaturfor both micropolar and Newtonian fluids, increases
with an increase in nonlinear parameterf-or micropolar fluids our results indicate
thatf increases with a rise in convective parameter,

5. Dimensionless mass transfer functign for micropolar fluids, increases generally
with an increase in nonlinear parametiegnd also with an increase in convective
parameter(s; howevery decreases with a rise in Schmidt number.

6. Skin friction numerically increases with an increaseurface parameter, Prandtl
numberPr and nonlinear parametéy while decreases with increase in convective
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parameter7, indicating that these parameters accelerate the flow eegimus drag
forces can be reduced by an increase in the free convectiampterG.

7. Heat transfer rate increases with an increase in comeeptrametets, nonlinear
stretching parameteb, and also Prandtl number. The increase in heat transfer rate
indicates a fast cooling of the plate. However a rise in sg@rfaarametes, is shown
to decrease the heat transfer rate markedly.
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