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Abstract. In this paper wavelet packet bases are used for an estimation of the
autoregressive Hilbertian processes operator. We assume thaglrgpgrator kernel

can have some singular structures and estimate them by projecting fthgtionesses

on suitable bases. Linear methods for continuous-time prediction usingridilalued
autoregressive processes are compared with the suggested metioditated data and

on real-life data sets. Statistics of residual partial sums process&xgodte prediction

are used to check the model.

Keywords: autoregressive Hilbertian process, functional data analysis, waest&et
bases, ill-posed inverse problem, residual partial sums processes.

1 Introduction

In many real life applications, the data and the model cartioetsired in several ways.
In some time series it is possible to interpret the obsenad ds the realisation of the
functional process. Recently there has been much intamettei possibility of using
autoregressive Hilbertian model to predict the weatherljatmonic levels in electrical
networks [2] or cash flow in automatic teller machine netved®. In all the mentioned
papers, the projection on the finite number of principal congnts of the empirical
covariance operator has been used to predict future furadtmbservations. A compre-
hensive theoretical study of this method has been presegtBdsq [4].

Fourier transform and spline bases have been used in the-abhentioned papers.
The authors used a rule of thumb to determine the number esb&urther multivariate
principal components analysis and cross-validation riaiteave been used to reduce the
dimensionality of the space.

Wavelet bases can be used instead of Fourier transform imedphses for a less
regular functions. Antoniadis and Sapatinas [5] in thepgygoroposed to exploit some
wavelet bases regularity properties by suggesting thresati methods using wavelet
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Fig. 1. Bivariate time series.

regularisation techniques. Compared with spline basesgtmethods showed a similar
prediction errors on climatological time series.

In this paper we are concerned with the autoregressive Higloeprocess that has
some singular structures in its integral kernel. For the<S&n functional noise and
autoregressive operator with some singularities, it camdsimed that the covariance
operator principal components bases are not the best otlegf@stimation of the model
parameters.

In order to deal with the autoregressive operator sindigarive suggest to use
wavelet packet bases (WPB) so that the most suitable basestli dictionary of ad-
missible bases can be found.

Recently, the best basis methods have appeared in a vafippers in the area of
image compression and denoising (see [6] for review). Thaeraents presented by these
papers in favor of the wavelet packet bases can be appliathtibnal data with some
singular structures as well.

The rest of the article is organised as follows. The funeti@utoregressive process
and autoregressive operator kernel with singular straestare introduced in Section 2.
The residual partial sums processes and a certain classididnals of the residuals
partial sums are introduced. These functionals serve tsdestability and as a criterion
for parameters estimation. The section concludes withithelation results, which show
that the proposed method improves the prediction resuita értain class of functional
processes.

Section 3 presents the standard and non-standard form&mdtops decomposition
and discusses their extensions with the wavelet packdbdaries. Beylkinet al. [7,

8] have demonstrated that some operator can be presenté@ inoh-standard form
as the sparse matrix and there exist algorithms that applsetioperators in order of
O(N) operations. The estimation of the operator of a first-ordecfional autoregressive
process based on the wavelet packet transformation isrgeskie Section 4. The uniform
moving residual sums statistics are used to test the stahild suitability of the model.
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The real life application of the use of the wavelet packeatgfarmation is presented in
Section 5. The final section concludes with suggestionsuitoiré research.

2 Autoregressive Hilbertian and residual partial sums processes

Let H denote the Hilbert spack; (0, 1) with the norm||z||? = fol 22 (t)dt and with the

inner productx, y) = fol z(t)y(t)dt. A sequencés; = ¢;(t),t € [0,1];0 < ¢ < N) of
random variables with values ifi is said to follow a Hilbert space valued autoregressive
process of the first ordeARH (1)) associated witlie, p) if it is stationary and such that

& = p(&i-1) +ei, 1)

where(e;(t),t € [0,1];0 < ¢« < N) is an H white noise, and operater: H — H is
linear and compact [9].
Row residualg;) of the model (1) are defined in the usual way by

g =& —p(&i-1),
wherep is an estimate of the operatobased org, ..., &N
In order to test the model (1) for stability and suitabilite wonsider the process
En(s) = N"Y2(S(|Ns|) + (Ns — [Ns))8|nsj11), 0<s<1,
whereS(0) = 0 and
S(i)=>"g;, for0<i<N.
J<i
Residual partial sums process weak convergence to a Browmdéion with values in the
spaceH and in stronger topological framework e.g. Holder spacebees investigated

in the paper by Laukaitis and Rackauskas [10]. To test ARM{tylel stability, they
suggested to use the uniform moving residual sums statistic

MS(N,a) = max (m™) max [S(k+m)=S(k) - 5SWN)

)

where0 < a < 1. The dependency of the statisﬂ}/ﬂ@(N, «) from the choice of
Hoélder parametety has been presented at [10]. The authors demonstrated dkiatics
I\/A\S(N, «) is more sensitive to the changes of (1) when Holder exporgprbaches 1/2.

In this paper the statistﬁg(N , &) was used to test if the data are consistent with the
model (1). Our method is based on the choice of the best wava#ts and this statistic
is used to test how well the model fits the data for each wabelsis.

Let 3: [0,1]> — R satisfiesfo1 fol 3?%(s,t)dsdt < oo. Consider the operator
p: H — H defined by the kernet

plz) = /ﬂ(s,t)x(t)dt, for s €[0,1]. )
0

67



A. Laukaitis

We now consider three special examples of the simulatianetkialains the motiva-
tion behind this work.

1. The two randomly generated Dirac basis (peaks) on thasdf the kerneb (one
peak on the diagonal). In that case, the autoregressivatmpavill have the form

p(x) = Az, vi)vi + B(z,v3)va, (3)
where{vy,v2,v3} is an orthonormal system in H afid< A < 1 and0 < B < 1.

2. As the second example the kernels with singularities efftrm log |t — s| are
considered. Applications of such operators have been zedlipy Bradley [11].
For the simulation studies the following operator has bessdu

—log|t—s|—2log ( — |t—s|+1), |[t—s|#0o0r|t—s|#—1,
Bs.1) = t=sl=2log (~[t=s|+1), |=s|£00r|t—s|£-1,
100, [t—s|=0o0r|t—s|=—1.
3. The Gaussian kernel as an example of a smooth kernel duncti
B(s,t) = Kexp {(s® +1%)/2}, s, €[0,1]. (5)

In addition to the wavelet packet basis approach, two metpeogsented by Bosq [4]
and Antoniadiset al. [5] are used in the simulation.

The estimation of the operatpiis ill-posed. In order to handle it Bosq [4] suggested
the projection method on the span of principal componenth@fcovariance operator.

~ 1 ~ 1 .. .

LetTo = SN & @& andD = ~ SN & ® &4, be the empirical covariance and
cross-covariance operators and Igt,, be the span ok eigenvectors of“o associated
with the largest eigenvalues, and fet, be the orthogonal projector on this subspace.
Theu ® v defines the tensor product for two fixed elements € H and is the bounded
linear operator forn to H, defined by

r€Hr (u®v)(r) = (u,x)v.

Let us define the regularized covariance and cross-covariastimates as follows:
Ty = Tr,wl‘ow;w andl'; = chFlw;CN . The regularized estimator will be

ﬁ: 7TkNF1F0 7T;€N. (6)

Under certain assumptions on the covariance operatogstirmator is consistent(for
details see [4]). For less regular space Antoniatla. [5] proposed the method based on
the wavelet-vaguelette decomposition and which is defisddlbws

270

P& =Y (&0, " Gjok) Dok 7)

k=1

68



An Empirical Study for the Estimation of Autoregressive Hilfien Processes

and
p*bior = (LiTo + A) ' TE bk,

Wherefg andf’{ are the adjoint operator (ffo andf1 .

Autoregressive operator estimation based on the Wavelgalette decomposition
shows similar prediction accuracy as the covariance opepaincipal component pro-

jection method [5]. A recent study from Laukaitis and Radas [3] confirms those
findings.

Table 1 presents our simulation results for the model (1). aAgume that the
autoregressive operator has one of the three forms presabmve. Wiener process
is used as the noise componentin our simulations. The methods of the principal
components (6), the wavelet-vaguelette decompositiomrfd)the wavelet packet bases
(see Section 4) are compared by increasing the number oflesrfiipm 102 to 10° and

calculating the mean quadratic errors of the forecastddhlas. All simulation has been
carried in the MATLAB environment.

Table 1. Mean quadratic errors for one-step-ahead forecast ¢fithmodel (1)

Model (3) 102 103 10* 10°
PCA 0.09559 0.00398 0.001350 0.00104
Vaguelette  0.09130 0.00348 0.001449 0.00101
WPB 0.00140 0.00106 0.00096  0.00091

Model (4)
PCA 0.1302 0.06796 0.03352  0.03122
Vaguelette  0.1334 0.05279 0.03218  0.03174
WPB 0.1103 0.05072 0.03083  0.02989

Model (5)
PCA 0.1331 0.0069 0.0056 0.0025

Vaguelette 0.1366 0.0081 0.0059 0.0026
WPB 0.1497 0.0067 0.00591 0.0027

As we can see from Table 1, while consistent, method of thecjr@l components
perform poorly when we have small number of samples and ib#st predictors of the
future evolution have little to do with the largest prindipamponents.

The examples and arguments provided in the working papelaafiK and Onatski
[12] confirms that the method of functional principal compots is not always the best
way to estimate autoregressive operator. We see that tHeothef wavelet packet basis
gives more accurate estimation when we deal with the low murabobservations.
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3 Thestandard and non-standard form of operator decomposition

Operators with singularities in the kernel has been consitizn the paper by Beylkist
al. [7, 8]. They investigated operators representation in thealled non-standard form
and demonstrated that for some operators with singularfgarse representation with
algorithm of ordeiO (V) can be achieved.

By using wavelet bases the functigis, ¢) from (2) can be represented in standard
and nonstandard forms. The standard form is the repregentait an operator in the
tensor product basis. L§V; } ;< z be a multiresolution approximation [6] of the function
B(s,t). If there is the coarsest scalethen we have

ij =Va ®;';?+1 Wj’a
where subspacd®’; ., is supplementary of subspakg,; and is defined as?/; = V11 ®
W;1. Inthe case of finitely many scales the autoregressive typésea representation of
p; = PjpP;, whereP; is the projection on subspadé. Using standard form represen-
tation we can decompose autoregressive operator by thé sperators acting between
subspaces of different scald¥’;, — W; W; — W, V,, = Wy , Wy — V., V,, — V.

Alternatively, wavelet bases ih, (R?) , may be constructed using the scaling func-
tion in addition to the wavelets. In that case, the tripletfuictions; 1 (t) v.(s),
Vi k()d51(8), ¢k (t);.1(s), wherej, k.l € Z , forms a basis ofL.»(R?). Representing
operators in these bases leads to the non-standard forns [8]chain of triplety =
{A;B,T;};ecz acting on the subspacd§ and W;:A,;: W, — W;, B;: V; — W;,
I;: W; — V;. The operator§ A;B,T'; };c~ are defined asl; = Q,;pQ; , B; = Q;pP;
andl'; = P;pQ; . They admit a recursive definition via the relation

p:(Aj+1 Bj+1>
! Ljiyi o pj41 )’

where the operators; ,p;: V; — V; are defined by; = P;pP; . If there is a coarsest
scalen, then

p={{A;BL;}jezj<n: pn},

wherep,, = P,,pP, . If the number of the scales is finite, then the operators y@nised
as blocks of a matrix.

In this paper we extend the notion of the standard and nordatd integral oper-
ator representation by considering operator decompasitidhe wavelet packet basis.
Wavelet packet bases has been introduced by Coitehah [13] as a generalization of
the wavelet transform basis. This generalization of thditimal wavelet filter bank
structure permits the representation of a function by omaariy bases, each of which is
constructed by a unique ensemble of scalings and transatiche same wavelet/scaling
filter pair.

The motivation for using wavelet packet bases follows fraie possibility to have
a whole ensemble of localized representations beyond aldititmal wavelet transform.
Wavelets can isolate functions behavior in both lengthd}iand frequency.
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Following the same approach as in Section 3 both standard@mdtandard forms
of autoregressive operator can be introduced for wavelkgidases (more on the func-
tions decomposition by wavelet packet bases can be fouriBjrof [6]).

4 Estimation of the autoregressive operator by wavelet packets

Let Ty be the covariance operator of the random cufes defined byl'y = E(¢; ® &;)
so that(Tox, 2) = E(&;,x)(&, z) for z,z € H. LetT'; be the cross-covariance operator
for the curves{¢;} and {§;_1} defined byl'; = E(_1 ® &) so that(T'yz,2) =
E<£i_17 ;L><§Z, Z> for X,z € H.

It is easy to see that by multiplying (1) ldy_; and taking expectation we have that
the following relationship holds:

Fl = pFO

An intuitive way forp estimation is to substitute the covariance and cross-@nes
operators with their estimates

n n—1
To(x) = %Z}(fzﬂ?)&, Ty (z) = - i 1 Z;<§iax>€i+l-

In the expression above we have thgtis singular and we face with an ill-posed
problem. As a consequence, obtaining a consistent estimfiateequires regularization
of the solution. One way to achieve that would be to use ptiojeenethod on the span
of principal components as mentioned above (6). Mallat. [14] suggested to estimate
locally stationary process eigenfunctions of the covaéamperator by searching for their
close match in the dictionary of local cosines bases. Thedrd®gonal basis provides
a means of quickly computing compact, adaptive functiomagmations. In the case of
the functional autoregressive processes we have the pitgsdchose the basis close to
the principal components basis if the principal componbatss is the best one or to find
better if the principal components basis is not optimal $&si the prediction.

LetD = (¢4),en be a dictionary of waveforms. Wavelet packets and localneosi
bases can be as examples of such dictionaries.

The algorithm begins by assuming that the operator kefnedn be sparsely ap-
proximated by one of the wavelet packet admissible treeshaSeom the fast dynamic
programming algorithm of Coifman and Wickerhauser [15]dwat that the best bases
can be found by a bottom-up progression. At the bottom of sidefhere is only one
basis for consideratioll’} because bottom nodes are not subdecomposed. In the space
span by basi$V; we take the pairge,, , ¢,,)r Of bases that maximizes correlation of
functional process$¢; } from (1)

<¢’71 ) F1¢72>2
<¢W1 ) F0¢71 > <¢727 F()¢72> .

V((b'n > (b'yz) =
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Starting fromk = 1 the operatop is estimated in the basés., , ¢., ). The statistic
IT/I\S(N, «) presented above is used to check the model. If we reject theypothesis that
the residual partial sums process behaves like white ndisswe continue increasing
the number of pairés-, , ¢, ). The next step after the model (1) evaluation in the space
W7 is to follow as in [15] by investigating the spacg®’}’}o<),<oi. When we finish the
search in the admissible tree bases we get the most spansiersol

Also, as it has been shown in our simulation example aboegethre special cases
when we can have basis better then principal components die. example below
illustrates that we can find in the dictionary the basis thatase to principal components
basis.

5 Estimation of the payment systemstransactionsintensity

The operational cost control as well as the financial ligyidontrol is the motivation for
the following analysis. For the banks, it is important toefcaist the next day cash flow at
any given moment of time. That is why the functional data gsialis suitable for such
applications.

We tackle the problem of the payments prediction intensityithuania cards pay-
ment market at ATM ( automated teller machine is an electra@vice that allows a
bank’s customers to make cash withdrawals) networks betw@®11.2003 and
10.03.2004. Fig. 2 left side displays the functional datachEfunction represents the
number of transactions. Fig. 2 right side displays bivarifthe series that we received
after fixing the values from each functional process at 1Z80and 24:00 PM.

2del

Fig. 2. Bivariate time series.

We use double stochastic Poisson pro¢@ég ), t € [0, 1]) to model the intensity of

72



An Empirical Study for the Estimation of Autoregressive Hilfien Processes

the transactions.The corresponding intensities, ¢ € [0, 1] are given by

A) = / As)ds = EN(2).
0

By using the observations of the functionét), we build the observations for their
derivatives\(t). Namely, we consider

Atj) = A(t;) —A(t;—1), i=1,...,n, j=1,...,1024.

In the process of the exploratory data analysis we usedttatiS to judge about
the model (1) suitability. This analysis helped us to find thha must censor empirical
process by eliminating two weeks of Christmas holiday pk(for details see [3]). In
Table 2 we show values of the statisNES calculated for transactions processes before
and after we censored data. The distribution of the stafi$i can be found in the paper
by Laukaitis and Rackauskas [10].

From the results of Table 2 we can say that after adjustingeatichating autoregres-
sive operator the residuals of transactions intensitygsedollows white noise behavior
with 94 % confidential level.

Table 2. StatisticMS for transactions double stochastic Poisson process data set.
Case A — No censoring and no differentiation. Case B — Christmas pesimbed

aa 0.1 0.2 0.3 0.4 0.45 0.49 0.495
(A)MS 1231 1331 15.32 17.24 19.23 2229 2256
(B)MS 0.77 0.85 0.93 1.02 1.07 111 1.12

Finally, let us discuss the prediction capability of the mlocConsider the prediction
problem of the function\,1(¢),t € [0,1]. For prediction we used the model (1).
Different types of the forecasting errors can be considerte most widely accepted
measures of the performance of the estimatd,qf; is it's mean integrated square error
given by

1
MISE = E / (Eni1(t) — Enia (1)) dt.
0

We evaluated the MISE error by choosing ten days not useceipanameters esti-
mation(see Table 3).

It is clear that the predicted values depends on the numbairafipal components
used (for principal components estimation method) or thaber of selected bases (for
wavelet packet bases estimation method) in the model. Asanesee the most optimal
subspace dimension for principal components method is # dodwavelet packet bases
method.
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6

Table 3. Prediction errors

ErronM 1 2 3 4 5 6 7 8
PCA 550 502 499 495 505 497 504 507
WPB 586 553 524 518 505 497 496 5.06

Concluding remarks

We suggested the wavelet packet bases method for functinategressive process
estimation. As we have seen the method shows better pradimbimpared with the other
known methods when autoregressive kernel exhibits songrilsinstructures and when
the number of observations is limited. More mathematicaéstigation is needed to
investigate asymptotic properties of this method. We hoparovide them in the future

research work.

References

1.

10.

P. Besse, H. Cardot, D. Stephenson, Autoregressive foregadgtsome functional climatic
variations,Scandinavian Journal of Statistics, 27(4), pp. 673-688, 2000.

. A. Cavallini, G. C. Montavarri, M. Loggini, O. Lessi, M. Cacciani, N@mametric prediction

of harmonic levels in electrical networks, iRroceed. IEEE ICHPS VI, Bologna, pp. 165-171,
1994.

. A. Laukaitis, A. Rackauskas, Functional Data Analysis of Paymemstegs, Nonlinear

Analysis: Modelling and Control, 7(2), pp. 53-68, 2002.

. D. Bosqg, Modelization non-parametric estimation and prediction fortimeous time

processes, inNonparametric Functional Estimation and Related Topics, G. Roussas (Ed.),
NATO ASI series, Kluwer Academic Publishers, pp. 509-529, 1991.

. A. Antoniadis, T. Sapatinas T., Wavelet methods for continuous-thegigtion using Hilbert-

valued autoregressive processksirnal of Multivariate Analysis, 87(1), pp. 133-158, 2003.

. S. Mallat,A Wavelet Tour of Signal Processing, Academic Press, 1999.

. G. Fann, G. Beylkin, R. Harrison, K. Jordan, Singular operatomstiltiwavelet bases , APPM

preprint 517]BM Journal of Research and Development, 48(2), pp. 161-171, 2004.

. G. Beylkin, R. Coifman, V. Rokhlin, Fast Wavelet Transforms angmrical Algorithm,

Commun. Pure & Appl. Math., 44, pp. 141-183, 1991.

. D. Bosq, Linear Processes in Function Spaces, in: Lecture Notes in Satistics, Vol. 149,

Springer-Verlag, Berlin, 2000.

A. Laukaitis, A. Rackauskas, Testing changes in Hilbert spacereguéssive models
(Russian,English),ith. Math. J., 42(4), pp. 343-354; translation frotiet. Mat. Rink., 42(4),
pp. 434-447, 2002.

74



An Empirical Study for the Estimation of Autoregressive Hilfien Processes

11.

12.

13.

14.

15.

16.
17.

18.

K. Bradley, A. Alpert, Class of BasesIit for the Sparse Representation of Integral Operators,
S AM Journal on Mathematical Analysis, 24(1), pp. 246-262, 1993.

V. Kargin, A. Onatski,Dynamics of Interest Rate Curve by Functional Auto-Regression,
Economics Working Paper Archive at WUSTL, 2004.

R.R. Coifman, Y. Meyer, M. V. Wickerhauser, Wavelet Analysisl &ignal Processing, in:
Wavelets and Their Applications, M. B. Ruskai et al. (Eds.), Jones and Bartlett, Boston, MA,
pp.153-178, 1992.

S. Mallat, G. Papanicolaou, Z. Zhang, Adaptive Covariance Estimafibocally Stationary
Processednnals of Satistics, 26(1), pp. 1-47, 1998.

R.R. Coifman, M. V. Wickerhauser, Entropy-based algorithmsbést basis selectiohEEE
Trans. Inform. Theory, 38(2), pp. 713-718, 1992.

P. Billingsley,Convergence of Probability measures, John Wiley & Sons, New York, 1999.

P. Besse, H. Cardot, F. Ferraty, Simultaneous nonparametriessémns of unbalanced
longitudinal dataComputational Satistics and Data Analysis, 24, pp. 255-270, 1997.

S. Guillas, Rates of convergence of autocorrelation estimates foregressive Hilbertian
processestat. Probab. Letters, 55(3), pp. 281-291, 2001.

75



