
Nonlinear Analysis: Modelling and Control, 2007, Vol. 12, No. 1, 123–138

Dynamical Complexity in Some Ecological Models:
Effect of Toxin Production by Phytoplankton

R. K. Upadhyay1, R. K. Naji2, N. Kumari1

1Department of Applied Mathematics, Indian School of Mines University
Dhanbad-826 004, Jharkhand, India

ranjit_ism@yahoo.com
2Department of Mathematics, College of Science, University of Baghdad, Iraq

rknaji@yahoo.com

Received: 07.08.2006 Revised: 16.10.2006 Published online: 29.01.2007

Abstract. We investigate dynamical complexities in two types of chaotic tri-trophic
aquatic food-chain model systems representing a real situation in the marine environment.
Phytoplankton produce chemical substances known as toxins to reducegrazing pressure
by zooplankton [1]. The role of toxin producing phytoplankton (TPP) onthe chaotic
behavior in these food chain systems is investigated. Holling type I, II, andIII functional
response forms are considered to study the interference between phytoplankton and
zooplankton populations in the presence of toxic chemical. Our study shows that
chaotic dynamics is robust to changes in the rates of toxin release as well as the toxin
release functions. The present study also reveals that the rate of toxin production by
toxin producing phytoplankton plays an important role in controlling oscillations in the
plankton system. The different mortality functions of zooplankton due to toxin producing
phytoplankton have significant influence in controlling oscillations, coexistence, survival
or extinction of the zooplankton population. Further studies are needed to ascertain if this
defence mechanism suppresses chaotic dynamics in model aquatic systems.

Keywords: dynamical complexity, toxin producing phytoplankton, chaotic dynamics,
functional response, specialist predator, generalist predator.

1 Introduction

It is a challenge to understand the dynamical complexities of an ecological system. Field
and laboratory studies are hard to design and implement. Oneof the main reasons for this
is the fact that there has not been a theory which can guide theexperiments and one finds
hardly any experiment to corroborate the predictions of an ecological model. In recent
years, the success of efforts by an interdisciplinary team [2] has made us believe that
complex dynamics in ecological data could be the result of simple rules. Thetribolium
project indeed corroborates May’s hypothesis [3]. This encourages us to repose more
faith in models based on a set of established ecological principles. The resulting models
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are non-linear and deterministic and can be explored using concepts and notions from
non-linear dynamics.

Mathematical models have been designed and studied since the pioneering work of
Sir Robert May [3, 4]. In population ecology, the practice has been to design either the
difference or differential equation models. The difference equation models describe the
evolution of biological populations with non-overlappinggenerations. On the other hand,
the differential equation models correspond to populations with overlapping generations.
The success of these models depends on the underlying ecological principles. The iden-
tification of general ecological principles in itself is a great challenge. Of late, there have
been some thoughts on this issue [5, 6]. Two ecological principles that form the skeleton
of the model systems that we study in this paper are:

1. A specialist predator population decays exponentially fast in the absence of its lone
prey.

2. The generalist predator switches to an alternative food option as and when it faces
difficulty to find its favorite prey. The per capita growth of ageneralist predator is
limited by dependence on its favorite preys and severity of this limitation is inversely
proportional to per capita availability of preys at any instant of time.

In the present paper, we study and compare the dynamical complexity of two nonlinear
deterministic prey-predator models of aquatic ecosystems. The first model has both kinds
of predators: specialist as well as generalist. The second one has only one kind of
predator; that is the specialist predator. In our earlier work [7], similar type of model
systems are considered for terrestrial ecosystems and suggested that the biology of the
top predator would be a crucial factor for the determinationof food chain dynamics. In
the proposed work, we modify the model system of Upadhyay andRai [7,8] and Hastings
and Powell [9] for aquatic environment by introducing the toxin liberation process of
TPP population for which the mortality of zooplankton increases. It should be noted that
we assume these populations to be submerged in a homogeneousenvironment, therefore,
diffusive processes present in marine environments are ignored [10]. To observe the role
of TPP, Holling type I, II and III functional response forms are considered for the descrip-
tion of consumption of prey by its predator. We investigate the dynamical complexity in
these model systems with the help of bifurcation study. In order to defend themselves
against grazing by zooplankton, phytoplankton release toxins. These toxins weaken the
rate at which zooplankton graze [1]. Recently, it has been shown that the toxin production
by phytoplankton suppresses chaotic dynamics [11, 12]. These authors added an extra-
mortality term to the rate equation for the middle predator in the Hastings and Powell
model [9] and Upadhyay and Rai model [8] to incorporate the effect of toxin release by
phytoplankton. We study the dynamical complexities of suchmodel systems in detail.
One of the main objectives of our study is to investigate how dynamical complexities of
a model given by Upadhyay and Rai [8] and Hasting and Powell [9] changes their basic
character in response to different types of toxin release functions.

It is observed that toxin producing phytoplankton (TPP) population do not release
toxic chemical always, release only in the presence of densezooplankton population
around it. This phenomenon has been included in the interaction of Holling type I and
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type II functional form respectively. But as liberation of toxin reduces the growth of
zooplankton, causes substantial mortality of zooplanktonand in this period TPP pop-
ulation is not easily accessible, hence a more common and intuitively obvious choice
is of Holling type II or type III functional form to describe the grazing phenomena in
the presence of toxic substances [13, 14]. The Holling type II and III predation form
is an obvious choice to represent the hunting behavior of predator [15, 16]. A realistic
description of zooplankton grazing with functional responses to phytoplankton abundance
was introduced by Ivlev [17] with a modification by Mayzaud and Poulet [18]. Holling
type response term are also in use [19, 20]. Edwards and Brindley [21] observed that
the choice of functional form and mortality of zooplankton has a major influence in the
dynamics of excitable nature of blooms. Now we propose two model of TPP-Zooplankton
– fish/molluscs interaction.

The plan of the paper is as follows: in the next section, we present details of these
two model systems. The third section describes stability analysis and Hopf-bifurcation
for the given model systems. Numerical results are presented in Section 4. Section 5
concludes this paper.

2 Model systems

Consider a situation where TPP population (prey) of sizex is predated by individuals
of specialist predator zooplankton populationy. This zooplankton population, in turn,
serves as a favorite food for the generalist predator molluscs population of sizez. This
interaction is represented by the following system of a simple prey – specialist predator –
generalist predator interaction [12]

dx

dt
= a1x − b1x

2 −
wxy

x + D
, (1a)

dy

dt
= −a2y +

w1xy

x + D1
−

w2yz

y + D2
− θf(x)y, (1b)

dz

dt
= cz −

w3z
2

y
, (1c)

wherea1, a2, b1, w, w1, w2, w3,D,D1,D2, c andθ are positive constants. The detailed
description of the model system is given in the paper by Upadhyay et al. [12]. Since the
generalist predatorz in (1c) are assumed to be sexually reproducing species, their growth
has two phases: a linear phase and a quadratic phase [22]. So in this case, the last equation
(1c) is modified to

dz

dt
= cz2 −

w3z
2

y + D3
, (1d)

whereD3 represents the residual loss inz population due to severe scarcity of its favorite
food y. The typical situation represented by this model is presented in Fig. 1. Equations
(1a), (1b) and (1d) represent model system (1). We choose to study the nonlinear phase
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(model system (1)) as the linear phase does not support the chaotic behaviour at all. The
sexually reproducing population are covered by this phase when they are under Allee
effect [23].

Fig. 1. Typical ecological situation presented by food-chain model system (1).

Hastings and Powell [9] produced a new example of chaotic population system in
a simple tri-trophic food chain model with Holling type II functional responses. Chat-
topadhyay and Sarkar [11] modified the Hastings and Powell model by introducing an
extra mortality term in zooplankton population and studiedthe reduction of propensity
of chaotic dynamics as described by Hastings and Powell. Both Hastings and Powell [9]
and Chattopadhyay and Sarkar [11] have used half saturationconstant of zooplankton as
key parameter in their model to study the system dynamics from order to chaos. Mandal
et al. [24] studied the modified Hastings and Powell model by considering different body
sizes of zooplankton and accordingly the growth rate and half saturation constant have
changed. This interaction is represented by the following system of a simple prey –
specialist predator – specialist predator interaction. The basic mathematical model can
now be represented by a set of three ordinary differential equations describing the rate of
change of TPP, zooplankton and fish population over time [11,24] given by

dx

dt
= a1x − b1x

2 −
wxy

x + D
, (2a)

dy

dt
= −a2y +

w1xy

x + D1
−

w2yz

y + D2
− θf(x)y, (2b)

dz

dt
= −cz +

w3yz

y + D3
, (2c)

wherew2 measures the maximum value attainable by the per-capita functional response
of the specialist predatorz which feeds only ony. The parameterc is the decay rate of the
predatorz in absence of its preyy andw3 is a measure of its assimilation efficiency. In
case ofθ = 0, the model has been studied by many researchers [5,7,9]. These equations
(2a)–(2c) describe model system (2). The real world examplefor this model is presented
in Fig. 2.

To characterize interface between phytoplankton and zooplankton populations in the
presence of toxic chemical, Holling type I, II, and III functional responses forf(x) have
been considered to study the behavior of the system [13,16,25].

3 Stability analysis and Hopf bifurcation

The model system (1) has the following equilibrium points:
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Fig. 2. Typical ecological situation presented by food-chain model system (2).

• The trivial equilibrium pointE0 = (0, 0, 0) always exists.
• The equilibrium pointE1 = (a1/b1, 0, 0) exists on the boundary of the first octant.
• E2 = (x̄, ȳ, 0) is the planer equilibrium point onx− y plane, wherēx is the positive

root of the equation
(

w1 − a2 − θf(x̄)
)

x̄ − D1

(

a2 + θf(x̄)
)

= 0,

and

ȳ =
1

w
(a1 − b1x̄)(x̄ + D).

ClearlyE2 exists provided the following condition satisfied

0 < x̄ <
a1

b1
.

• The nontrivial equilibriumE3 = (x∗, y∗, z∗) exists if and only if there is a positive
solution to the following set of equations:

f1(x, y, z) = a1 − b1x −
wy

x + D
= 0, (3a)

f2(x, y, z) = −a2 +
w1x

x + D1
−

w2z

y + D2
− θf(x) = 0, (3b)

f3(x, y, z) = cz −
w3z

y + D3
= 0. (3c)

Straight forward computations show that

y∗ =
w3

c
− D3,

x∗ is a positive root of the quadratic equation

x∗2 +
(

D −
a1

b1

)

x∗ −
a1D

b1
+

wy∗

b1
= 0

and

z∗ =
y∗ + D2

w2

[ w1x
∗

x∗ + D1
−

(

a2 + θf(x∗)
)

]

.
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Therefore,E3 = (x∗, y∗, z∗) is positive equilibrium point under the following conditions:

D3 <
w3

c
, (4a)

0 <

(

a2 + θf(x∗)
)

D1

w1 −
(

a2 + θf(x∗)
) < x∗. (4b)

Now, in order to investigate the local behavior of model system (1) around each of the
equilibrium points, the variational matrixV of the point(x, y, z) is computed as

V =















x
∂f1

∂x
+ f1 x

∂f1

∂y
x

∂f1

∂z

y
∂f2

∂x
y
∂f2

∂y
+ f2 y

∂f2

∂z

z
∂f3

∂x
z
∂f3

∂y
z
∂f3

∂z
+ f3















.

Let Vi, i = 0, 1, 2, 3 denotes the variational matrix atEi, i = 0, 1, 2, 3 respectively.
Hence

V0 =







a1 0 0

0 −a2 0

0 0 0






,

From the above variational matrix, it is observed that thereis an unstable manifold along
x-direction and a stable manifold alongy-direction. Therefore, the equilibrium pointE0

is a saddle point. The variational matrix forE1 is

V1 =











−a1 −
wa1

a1 + b1D
0

0 −a2 +
w1a1

a1 + b1D
− θf

(a1

b1

)

0

0 0 0











,

From the variational matrixV1, it is found that the equilibrium pointE1 is locally asymp-
totically stable provided w1a1

a1+b1D1

< a2 + θf(a1

b1
). The variational matrix about another

equilibrium pointE2 is

V2 =











x̄
(

− b1 +
wȳ

(x̄ + D)2

)

−
wx̄

x̄ + D
0

w1D1ȳ

(x̄ + D1)2
− θf ′(x̄)ȳ 0 −

w2ȳ

ȳ + D2

0 0 0











.

From the variational matrixV2, it is observed thatE2 is locally asymptotically stable
providedθf ′(x̄) < w1D1

(x̄+D1)2
anda1 < b1(D + 2x̄).
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Therefore, the linearized systems aboutE0, E1 and E2 have zero eigen values.
Therefore, these are non-hyperbolic points and hence the dynamical behavior near them
can be stable, periodic, or even chaotic.

However, for the positive pointE3 = (x∗, y∗, z∗) the variational matrix is

V3 =















x∗

(

− b1 +
wy∗

(x∗ + D)2

)

−
wx∗

x∗ + D
0

w1D1y
∗

(x∗ + D1)2
− θf ′(x∗)y∗

w2y
∗z∗

(y∗ + D2)2
−

w2y
∗

y∗ + D2

0
c2z∗2

w3
0















.

According to Routh-Hurwitz criterion,E3 = (x∗, y∗, z∗) is locally asymptotically stable
provided the following conditions are satisfiedA1 > 0, A3 > 0, andA1A2 > A3; where
Ai, i = 1, 2, 3 are the coefficients of the characteristic equation ofV3 = ⌊aij⌋, i, j =
1, 2, 3:

λ3 + A1λ
2 + A2λ + A3 = 0

with

A1 = −(a11 + a22),

A2 = a11a22 − a23a32 − a12a21,

A3 = a11a23a32.

Straight forward computations show that,A1 > 0 andA3 > 0 if and only if the following
condition is satisfied:

wy∗

(x∗ + D)2
+

w2y
∗z∗

x∗(y∗ + D2)2
< b1. (5)

Also since,

A1A2 − A3 = (a11 + a22)(a12a21 − a11a22) + a22a23a32.

Therefore, the necessary condition forA1A2 − A3 > 0 is a12a21 − a11a22 < 0, or
equivalently

b1 <
w

x∗ + D

[

w1D1(y
∗ + D2)

2

w2z∗(x∗ + D1)2
+

y∗

x∗ + D
−

θf ′(x∗)(y∗ + D2)
2

w2z∗

]

. (6)

Further more, by substituting the values ofaij , i, j = 1, 2, 3, we get

A1A2 − A3 =
x∗y∗

α4β2γ4

[

M1M2 −
w2

2c
2α4β2γy∗z∗3

w3x∗

]

,
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whereα = x∗ + D, β = x∗ + D1, γ = y∗ + D2,

M1 = ww1D1αγ2 − w2b1α
2β2z∗ + ww2β

2y∗z∗ − wθαβ2γ2f ′(x∗),

M2 = b1α
2γ2x∗ − wγ2x∗y∗ − w2α

2y∗z∗.

Clearly, M1 > 0 provided that condition (6) is satisfied andM2 > 0 provided that
condition (5) is satisfied. Hence, if conditions (5) and (6) hold, then the necessary and
sufficient condition forA1A2 − A3 > 0 is

c2 <
w3x

∗M1M2

w2
2α

4β2γy∗z∗3 . (7)

Finally, due to the above analysis, the local stability analysis of the positive equilibrium
pointE3 = (x∗, y∗, z∗) can be summarized as the following theorem.

Theorem 1. Suppose that the positive equilibrium pointE3 = (x∗, y∗, z∗) of model
system(1) exists. Then conditions(5), (6), and (7) are the necessary and sufficient
conditions for locally asymptotically stable ofE3 = (x∗, y∗, z∗).

Now, in order to investigate the Hopf bifurcation of model system (1), we will follow
the Liu approach [26]. According to Liu approach, the simpleHopf bifurcation atµ = µ∗

can occur provided that

A1(µ∗), A3(µ∗), and Ψ(µ∗) = A1(µ∗)A2(µ∗) − A3(µ∗),

are smooth functions ofµ in an open interval ofµ∗ ∈ R such that

1. A1(µ∗) > 0, A3(µ∗) > 0, andΨ(µ∗) = A1(µ∗)A2(µ∗) − A3(µ∗) = 0.

2.
dΨ(µ)

dµ

∣

∣

∣

µ=µ∗

6= 0.

Now, letc, the growth rate of the generalist predator, be the bifurcation parameter. There-
fore, if conditions (5) and (6) hold together with the following condition

c∗ =

(

w3x
∗M1M2

w2
2α

4β2γy∗z∗3

)1/2

. (8)

Then, obviouslyA1(c∗) > 0, A3(c∗) > 0 andΨ(c∗) = A1(c∗)A2(c∗)−A3(c∗) = 0.
Further it is easy to verify that

dΨ(c)

dc

∣

∣

∣

c=c∗
= −

2w2
2c∗y

∗2z∗3

w3γ3
6= 0.

Accordingly, the following theorem establishes the Hopf bifurcation conditions:

Theorem 2. Under the conditions(5), (6), and (8), there is a simple Hopf bifurcation
of the positive equilibrium pointE3 = (x∗, y∗, z∗) of model system(1) at some critical
value of the parameterc given by(8).
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4 Numerical results

Our primary interest is to explore the occurrence of chaoticdynamics in two model
systems which differ from each other in one essential way i.e., the top predator in model
system (1) is a generalist predator whereas that of model system (2) is a specialist predator.
We also try to observe the role of toxin producing phytoplankton on the chaotic dynamics
in such ecosystems. The role of TPP for controlling blooms orfor decreasing grazing
pressure is now well known but the functional forms for releasing toxic substances are
not known [16]. For this reason, we have considered Holling types I, II, and III functional
forms to describe the liberation of toxin production process, motivated by the literatures
available in this field [13, 14, 16, 25, 27]. For the followingform of the functional re-
sponses:

1. f(x) = x (Holling type I)

2. f(x) =
x

x + D4
(Holling type II)

3. f(x) =
x2

x2 + D2
4

(Holling type III).

Model system (1) and model system (2) are integrated numerically using six-order
Runge-Kutta method along with predictor corrector method.It is observed that model
system (1) has a chaotic solution at the following set of parameter values (see Fig. 3).
These parameter values are selected on the basis of paper by Letellier and Aziz-Alaoui
[28].

a1 = 1.93, b1 = 0.06, w = 1, D = 10, a2 = 1, w1 = 2,

D1 = 10, w2 = 0.405, D2 = 10, c = 0.003, w3 = 1, D3 = 20.
(9)

Fig. 3. Phase plane diagram for model system (1) depicting chaotic attractor for θ = 0,
other parameters are same as given in equation (9).

However, Hastings and Powell [9] and Rai and Upadhyay [7] observed that, for the
following set of parameter values, model system (2) exhibits a chaotic dynamics (see
Fig. 4).
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a1 = 1.75, b1 = 0.05, w = 1, D = 10, a2 = 1, w1 = 2,

D1 = 10, w2 = 1.45, D2 = 10, c = 0.1, w3 = 1, D3 = 20.
(10)

Fig. 4. Phase plane diagram for model system (2) depicting chaotic attractor for θ = 0,
other parameters are same as given in equation (10).

Our approach is to observe the exchanging of the states (chaos, period doubling, limit
cycle, stable point) for different values ofθ and also for different types of functional
response forms. In real life situation, it has been observedthat increasing the strength of
toxic substances has a stabilizing effect. So, in this paperwe like to see whether this is
true or not in our considered model systems and then discuss the effect of different types
of functional forms on the liberation of toxin production process.

There exists empirical evidence that the level of nutrientsin an ecological system
is coupled with toxin release by phytoplankton [29]. Thus, it is important to examine
the dynamical complexity of the model system. The common tool used for the study of
dynamical complexity of two considered model systems is bifurcation diagrams withθ
as the bifurcation parameter. For different types of functional response forms, we have
plotted the successive maxima of top predatorz as a function of the parameterθ (rate of
toxin substances released by TPP population) keeping otherparameters fixed as given in
equation (9) for model system (1) and equation (10) for modelsystem (2).

The figures, Fig. 5, Fig. 6, and Fig. 7, are representing the bifurcation diagrams
of model system (1) with functional response of Holling typeI, II, and III respectively.
However, for model system (2), the bifurcation diagrams arealso drawn for functional
response given by Holling type I, II, and III, and are presented in Fig. 8, Fig. 9, and Fig. 10
respectively. All these figures show clearly the transitionfrom chaos to order through
sequence of period halving bifurcation. Therefore, for both the models and for different
forms of toxic substance liberation process (i.e.f(x)), it is observed that, increase of
value of toxic substances released by TPP population (i.e.θ) has a stabilizing effect.
The blow-up bifurcation diagrams show that the model systempossesses rich variety of
dynamical behaviour for bifurcation parameterθ in the ranges[0, 0.0029] for Holling type
I (see Fig. 5(b)),[0, 0.07] for Holling type II (see Fig. 6(b)) and[0, 0.06] for Holling type
III (see Fig. 7(b)) functional responses. In all the three cases, a period-doubling cascade
is observed.
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(a) (b)

Fig. 5. (a) Bifurcation diagram as a function ofθ for model system (1) withf(x) of
Holling type I. (b) Blown up bifurcation diagram of (a) in the range0 ≤ θ ≤ 0.008.

(a) (b)

Fig. 6. (a) Bifurcation diagram as a function ofθ for model system (1) withf(x) of
Holling type II. (b) Blown up bifurcation diagram of (a) in the range0 ≤ θ ≤ 0.2.

(a) (b)

Fig. 7. (a) Bifurcation diagram as a function ofθ for model system (1) withf(x) of
Holling type III. (b) Blown up bifurcation diagram of (a) in the range0 ≤ θ ≤ 0.15.
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Fig. 8. Bifurcation diagram as a function ofθ for model system (2) withf(x) of Holling
type I.

(a) (b)

Fig. 9. (a) Bifurcation diagram as a function ofθ for model system (2) withf(x) of
Holling type II. (b) Blown up bifurcation diagram of (a) in the range0 ≤ θ ≤ 0.3.

(a) (b)

Fig. 10. (a) Bifurcation diagram as a function ofθ for model system (2) withf(x) of
Holling type III. (b) Blown up bifurcation diagram of (a) in the range0 ≤ θ ≤ 0.3.
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Further, Table 1 and Table 2 describe the dynamical behaviorof model system (1)
and model system (2) respectively according to the above mentioned bifurcation dia-
grams. From Table 1, it is found that chaos was observed in theranges[0.001 − 0.0026],
[0.0038− 0.0047] for Holling type I, in the ranges[0.001− 0.0111], [0.0124− 0.059] for
Holling type II and in the ranges[0.001 − 0.0094], [0.011 − 0.049] for Holling type III
functional responses. Similar results are obtained for model system 2 but for the different
ranges ofθ values.

Table 1. Dynamical behavior (DB) of model system (1) depending on the results of
bifurcation diagrams given in Fig. 5, Fig. 6 and Fig. 7. Pi – limit cycle of periodi
(i = 2, 3, 4, 5, 6), SF – stable focus, LC – limit cycle, LP – long period, SCA – strange

chaotic attractor, EX – extinction

Results of model (1) for Results of model (1) for Results of model (1) for
Holling type I: Holling type II: Holling type III:

f(x) = x f(x) = x/(x + D4) f(x) = x2/(x2 + D2

4)
D4 = 10 D4 = 10

θ DB θ DB θ DB
0.001–0.0026 SCA 0.001–0.0111 SCA 0.001–0.0094 SCA
0.0027 P6 0.0112 P6 0.0095 LP
0.0028–0.0037 P3 0.0113–0.0115 P5 0.0066–0.0097 P4
0.0038–0.0047 SCA 0.0116–0.0123 P4 0.0098–0.0099 LP
0.0048–0.005 P4 0.0124–0.059 SCA 0.01 P4
0.0051–0.0055 P2 0.06 LP 0.011–0.049 SCA
0.0056–0.0057 LP 0.061 P6 0.05–0.054 P4
0.0058–0.0162 P2 0.062–0.068 P4 0.055–0.135 P2
0.0163–0.0164 SF 0.07–0.16 P2 0.14 LP
0.017 EX 0.17 LP 0.15–0.32 LC

0.18–0.39 LC 0.33–0.5 SF
0.4–0.6 SF 0.55 EX
0.7 EX

From Tables 1 and 2, it has been also observed that the gradualincrease of toxin
values of phytoplankton in the model systems which turn the system dynamics from chaos
to doubling state to different order limit cycles and the system finally settles down to an
equilibrium state. If we increase more toxin to the model systems then the dynamics
shows the extinction of zooplankton. It will be a subject of further study to examine if
chaotic dynamics is robust against changes in other system parameters in model ecolog-
ical systems which include the effect of toxin production byphytoplankton. Dynamical
complexities of these model systems as manifested in bifurcation diagrams (Figs. 5–10)
possess many subtleties. Because of the coexistence of non-chaotic attractors, i.e., two,
three, four or six-periodic attractors, in ecological interaction, the presence of chaotic
attractor cannot be judged solely on the basis of the sensitivity dependence of initial
conditions. One can clearly see that chaotic dynamics is robust to changes against the
rates in toxin production by phytoplankton as it exists in large range ofθ values.
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Table 2. Dynamical behavior of model system (2) depending on the results of
bifurcation diagrams given in Fig. 8, Fig. 9 and Fig. 10. Pi – limit cycle of periodi
(i = 2, 3, 4, 5, 6), SF – stable focus, LC – limit cycle, LP – long period, SCA – strange

chaotic attractor, EX – extinction

Results of model (2) for Results of model (2) for Results of model (2) for
Holling type I: Holling type II: Holling type III:

f(x) = x f(x) = x/(x + D4) f(x) = x2/(x2 + D2

4)
D4 = 10 D4 = 10

θ DB θ DB θ DB
0.0010–0.0019 SCA 0.001–0.04 SCA 0.001–0.048 SCA
0.0020–0.0022 P6 0.041 LP 0.049 LP
0.0023–0.0057 SCA 0.042—0.043 P4 0.05–0.051 P3
0.00571 LP 0.044 LP 0.052 P5
0.00572–0.00574 P5 0.045–0.075 SCA 0.053–0.056 P3
0.00575–0.00576 P3 0.076–0.077 LP 0.057 LP
0.00577–0.00578 P5 0.078–0.087 P6 0.058–0.092 P3
0.00579–0.007 P3 0.088–0.114 P3 0.093–0.1412 SCA
0.0071 P6 0.115–0.17 SCA 0.1413–0.1415 P6
0.0072–0.0073 P4 0.18–0.19 P4 0.1416–0.1417 LP
0.0074–0.0084 P2 0.2–0.26 P2 0.1418–0.152 SCA
0.0085–0.0098 LC 0.27–0.66 LC 0.153–0.155 LP
0.0099–0.011 P3 0.67–0.7 SF 0.156–0.171 P4
0.012 LP 0.71 EX 0.172–0.23 P2
0.0125–0.014 P2 0.24–0.54 LC
0.015 LC 0.55–0.59 SF
0.016 EX 0.6 EX

5 Conclusions

According to the above discussion for the dynamical behavior of model system (1) and
model system (2) (see the bifurcation diagrams and Tables 1 and 2), it is clear that in-
creasing the strength of toxic chemical released by TPP population reduce the prevalence
of chaos, therefore, our observation is that the toxin released by TPP population acts as
a bio-control by changing the state of chaos to order. Further, From Table 1 and Table 2,
extinction has been observed for higher values ofθ in Holling type II and III functional
responses. However, in case of Holling type I, extinction was observed very earlier at
θ = 0.017 for model system (1) andθ = 0.016 for model system (2). Therefore, the rate
of toxic substance released by TPP is to be high for type I functional form than those of
type II and type III functional form. These observations indicate us that to maintain the
order of an ecosystem functioning, type II or type III functional form for toxin liberation
process is more appropriate. We have also observed that for different ranges ofθ, the
rate of toxin release by TPP, the systems locally stable as well as oscillate around the
equilibria related to planktonic blooming. The phenomenonof dynamic stabilization
of a locally unstable equilibrium point can also be observedfor certain rate of toxin
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production. Different Holling type mortality function of zooplankton due to TPP has
significant influence in controlling oscillations, coexistence, survival or extinction of
zooplankton. The rate of toxin production by TPP plays an important role for controlling
oscillation in plankton systems.

The consequences of toxin production by phytoplankton are of great interest both for
intrinsic scientific merit and also because of its possible detrimental effect on fisheries.
In our earlier work [7], we had suggested that the biology of the top predator would be a
crucial factor for the determination of dynamical complexity in food chain models. The
dynamical complexity depends on the nature (e.g., inter-specific competition vs predation)
and degree (e.g., the number of interacting components) of complexity of trophic interac-
tions. On the basis of present study, we opine that the natural systems with first kind of
food chains (i.e., chain ending at specialist predator as inmodel system (1)) would present
difficult challenges as far as program of quantification of their dynamical complexity is
concerned. The other kind of systems (the chain ending at generalist predator as in model
system (2)) seems to allow such program to be implemented smoothly. This conjecture is
to be tested in the laboratory and in the field.
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