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Abstract. We investigate dynamical complexities in two types of chaotic tri-trophic
aquatic food-chain model systems representing a real situation in tireerearironment.
Phytoplankton produce chemical substances known as toxins to rgchmeg pressure
by zooplankton [1]. The role of toxin producing phytoplankton (TPP)tlue chaotic
behavior in these food chain systems is investigated. Holling type I, lljlafuhctional
response forms are considered to study the interference betweéoplaimkton and
zooplankton populations in the presence of toxic chemical. Our study sshiost
chaotic dynamics is robust to changes in the rates of toxin release assvib# toxin
release functions. The present study also reveals that the rate of tmdagtion by
toxin producing phytoplankton plays an important role in controlling oscillationthe
plankton system. The different mortality functions of zooplankton duexio faroducing
phytoplankton have significant influence in controlling oscillations, coexigtesurvival
or extinction of the zooplankton population. Further studies are needsdédain if this
defence mechanism suppresses chaotic dynamics in model aqusinsys

Keywords: dynamical complexity, toxin producing phytoplankton, chaotic dynamics,
functional response, specialist predator, generalist predator.

1 Introduction

It is a challenge to understand the dynamical complexitiesacological system. Field
and laboratory studies are hard to design and implemento©the main reasons for this
is the fact that there has not been a theory which can guidexperiments and one finds
hardly any experiment to corroborate the predictions of @iaogjical model. In recent
years, the success of efforts by an interdisciplinary teajrhfis made us believe that
complex dynamics in ecological data could be the resultropt rules. Theribolium
project indeed corroborates May’s hypothesis [3]. Thisoemages us to repose more
faith in models based on a set of established ecologicatiptes. The resulting models
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are non-linear and deterministic and can be explored usimgepts and notions from
non-linear dynamics.

Mathematical models have been designed and studied siaqedheering work of
Sir Robert May [3, 4]. In population ecology, the practices li@en to design either the
difference or differential equation models. The differemzjuation models describe the
evolution of biological populations with non-overlappiggnerations. On the other hand,
the differential equation models correspond to populatiwith overlapping generations.
The success of these models depends on the underlying eadlpgnciples. The iden-
tification of general ecological principles in itself is agt challenge. Of late, there have
been some thoughts on this issue [5, 6]. Two ecological jies that form the skeleton
of the model systems that we study in this paper are:

1. A specialist predator population decays exponentialéy in the absence of its lone
prey.

2. The generalist predator switches to an alternative fquib as and when it faces
difficulty to find its favorite prey. The per capita growth ofjaneralist predator is
limited by dependence on its favorite preys and severithisflimitation is inversely
proportional to per capita availability of preys at any argtof time.

In the present paper, we study and compare the dynamicalleritypof two nonlinear
deterministic prey-predator models of aquatic ecosystditne first model has both kinds
of predators: specialist as well as generalist. The secordhas only one kind of
predator; that is the specialist predator. In our earlierkw@], similar type of model
systems are considered for terrestrial ecosystems ancstieghthat the biology of the
top predator would be a crucial factor for the determinatbfood chain dynamics. In
the proposed work, we modify the model system of UpadhyayRaidi7, 8] and Hastings
and Powell [9] for aquatic environment by introducing theimoliberation process of
TPP population for which the mortality of zooplankton irases. It should be noted that
we assume these populations to be submerged in a homogearreaanment, therefore,
diffusive processes present in marine environments amégh{10]. To observe the role
of TPP, Holling type I, Il and Il functional response formeaonsidered for the descrip-
tion of consumption of prey by its predator. We investig&ie dynamical complexity in
these model systems with the help of bifurcation study. bfeoto defend themselves
against grazing by zooplankton, phytoplankton releasm$oxThese toxins weaken the
rate at which zooplankton graze [1]. Recently, it has beemwstthat the toxin production
by phytoplankton suppresses chaotic dynamics [11, 12].sdlaithors added an extra-
mortality term to the rate equation for the middle predatothe Hastings and Powell
model [9] and Upadhyay and Rai model [8] to incorporate tliectiof toxin release by
phytoplankton. We study the dynamical complexities of soadel systems in detail.
One of the main objectives of our study is to investigate hgwaginical complexities of
a model given by Upadhyay and Rai [8] and Hasting and PowglH@nges their basic
character in response to different types of toxin releasetfons.

It is observed that toxin producing phytoplankton (TPP)uafion do not release
toxic chemical always, release only in the presence of densplankton population
around it. This phenomenon has been included in the interaof Holling type | and
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type Il functional form respectively. But as liberation afxin reduces the growth of
zooplankton, causes substantial mortality of zooplankind in this period TPP pop-
ulation is not easily accessible, hence a more common andivety obvious choice
is of Holling type Il or type Il functional form to describén¢ grazing phenomena in
the presence of toxic substances [13, 14]. The Holling typend 11l predation form
is an obvious choice to represent the hunting behavior afgice [15, 16]. A realistic
description of zooplankton grazing with functional respesto phytoplankton abundance
was introduced by Ivlev [17] with a modification by MayzaudddPoulet [18]. Holling
type response term are also in use [19, 20]. Edwards and IByiri@d1] observed that
the choice of functional form and mortality of zooplanktaasha major influence in the
dynamics of excitable nature of blooms. Now we propose twdehof TPP-Zooplankton
— fish/molluscs interaction.

The plan of the paper is as follows: in the next section, wagmedetails of these
two model systems. The third section describes stabiliphyeis and Hopf-bifurcation
for the given model systems. Numerical results are predant&ection 4. Section 5
concludes this paper.

2 Modéd systems

Consider a situation where TPP population (prey) of size predated by individuals
of specialist predator zooplankton populatign This zooplankton population, in turn,
serves as a favorite food for the generalist predator mmlpepulation of size. This
interaction is represented by the following system of a &&nppey — specialist predator —
generalist predator interaction [12]

dx 5  wzy

b _ — 1

o a1z — bz ot (1a)

dy w1y Wolyz

— =— — -0 1b

=yt R (e, (1b)
L2

dz — - 32 , (1c)

dt y

whereay, as, by, w, wy, wa, w3, D, D1, Do, c andé are positive constants. The detailed
description of the model system is given in the paper by Upaght al. [12]. Since the
generalist predator in (1c) are assumed to be sexually reproducing species giaith
has two phases: alinear phase and a quadratic phase [22]tlB®dase, the last equation
(1c) is modified to

dz , w3z’
— =cz — ,

(1d)

whereDj represents the residual losszipopulation due to severe scarcity of its favorite
foody. The typical situation represented by this model is preskit Fig. 1. Equations
(1a), (1b) and (1d) represent model system (1). We chooseidy the nonlinear phase
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(model system (1)) as the linear phase does not support dwictbehaviour at all. The
sexually reproducing population are covered by this phaservthey are under Allee
effect [23].

TPF .| Zooplankton N Molluscs

Prev) {Specialist predator) {Generalist predator)

Fig. 1. Typical ecological situation presented by food-chain modéésy$l).

Hastings and Powell [9] produced a new example of chaotiuladipn system in
a simple tri-trophic food chain model with Holling type lldational responses. Chat-
topadhyay and Sarkar [11] modified the Hastings and Powetlainby introducing an
extra mortality term in zooplankton population and studieel reduction of propensity
of chaotic dynamics as described by Hastings and Powelh Bastings and Powell [9]
and Chattopadhyay and Sarkar [11] have used half saturadiastant of zooplankton as
key parameter in their model to study the system dynamices fsader to chaos. Mandal
et al.[24] studied the modified Hastings and Powell model by caer#ig) different body
sizes of zooplankton and accordingly the growth rate antidadlration constant have
changed. This interaction is represented by the followiygtesn of a simple prey —
specialist predator — specialist predator interactione basic mathematical model can
now be represented by a set of three ordinary differentiaations describing the rate of
change of TPP, zooplankton and fish population over time4Jlgiven by

dx

2 wxy

- — — 2
g e e = e (23)
dy w1 TY Wolyz
7 _ —0f(x 2b
G = et e 0y (2b)
dz W3Yz

= _ 2c
T (2c)

wherew, measures the maximum value attainable by the per-capitdifmal response
of the specialist predatarwhich feeds only ory. The parametetis the decay rate of the
predatorz in absence of its prey andws is a measure of its assimilation efficiency. In
case ofy = 0, the model has been studied by many researchers [5, 7, %eBwations
(2a)—(2c) describe model system (2). The real world exarfigplthis model is presented
in Fig. 2.

To characterize interface between phytoplankton and amégpbn populations in the
presence of toxic chemical, Holling type |, Il, and Ill furaal responses fof (x) have
been considered to study the behavior of the system [135].6, 2

3 Stability analysis and Hopf bifurcation

The model system (1) has the following equilibrium points:
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TFF — | Zooplankton Fish

L

Prev) (Specializt predator) (Specializt predator)

Fig. 2. Typical ecological situation presented by food-chain modeéey$2).

e The trivial equilibrium pointE, = (0, 0,0) always exists.

e The equilibrium pointE;, = (a;/b1,0,0) exists on the boundary of the first octant.

e F> = (Z,7,0) is the planer equilibrium point on — y plane, wheret is the positive
root of the equation

(w1 —ag — 0f(z))Z — Dy(az + 0f(2)) =0,
and
g = l(al —b0Z)(z + D).
w
Clearly E; exists provided the following condition satisfied

_ ay
0<zr < —.
by

e The nontrivial equilibriumFEs = (x*, y*, 2*) exists if and only if there is a positive
solution to the following set of equations:

—a — b Y _
filz,y,2) = a1 — bz D% (3a)
_ w1 _ Waz _ _
fg(l',y,Z) = —az + T+ D1 y + D2 Gf(IE) 07 (3b)
wszz
s Y = - = 3c
fala ) = ez = (30)

Straight forward computations show that
y* = - D3a

x* is a positive root of the quadratic equation

*

2 aq a1D  wy
T+ ( by x by + by

and

.l +D2[ wyz”

|

w2
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Therefore E5 = (x*,y*, z*) is positive equilibrium point under the following conditis:

D3<_7 (4a)

(4b)

Now, in order to investigate the local behavior of model eysi(1) around each of the
equilibrium points, the variational matriX of the point(z, y, z) is computed as

8f1 8f1 8fl
Tor T Ty, e
_ ofa ofa afs
v ox Y y + /2 4y
0f3 0f3 0f3
oz “ay 5, TP

LetV;, ¢ = 0,1,2,3 denotes the variational matrix &;, i = 0,1, 2, 3 respectively.
Hence

aq 0 0
Vo=10 —az 0f,
0 0 0

From the above variational matrix, it is observed that thean unstable manifold along
z-direction and a stable manifold alogedirection. Therefore, the equilibrium poitf,
is a saddle point. The variational matrix fBY, is

—a __ v 0
1 SFhD
Vi=| o = WM g (2 of,
a2+a1+b1D f(bl)
0 0 0

From the variational matri¥7, it is found that the equilibrium poinf; is locally asymp-
totically stable provide% < as+ Hf(‘bl—ll). The variational matrix about another
equilibrium pointEs is

wyY wT
_b ) _
‘T( T Z D)y Z+D 0
Vo= | _wiDiy g 0 _ w2y
Gro @ 7+ Dy
0 0 0

From the variational matriX5, it is observed thatf’; is locally asymptotically stable
providedd f'(z) < 445> anday < by (D + 2).
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Therefore, the linearized systems abdit, F; and E> have zero eigen values.
Therefore, these are non-hyperbolic points and hence thandigal behavior near them
can be stable, periodic, or even chaotic.

However, for the positive points = (z*, y*, z*) the variational matrix is

*( b+ wy* ) wr*

24 — _

YU (@ + D)? x*+ D

w1 Dyy* , woy*2* woy”*

@ oy T D Ty

022*2
0 0

w3

According to Routh-Hurwitz criterionfzs = («*, y*, z*) is locally asymptotically stable
provided the following conditions are satisfidd > 0, A3 > 0, andA; As > As; where
A;, i = 1,2,3 are the coefficients of the characteristic equatioVpt= |a;;], i,5 =
1,2,3:

AN+ AN+ AN+ A5=0
with

Ay = —(a11 + az),
Az = a11a22 — a3a32 — G12021,

Az = aj1a23a32.

Straight forward computations show thdt, > 0 and A3 > 0 if and only if the following
condition is satisfied:

wy* woy*z*

< by. 5
(JU* _|_D)2 + ﬂf*(y* +D2)2 1 ( )

Also since,
A1As — As = (a11 + a22)(a12a21 — a11a22) + az2a23a32.

Therefore, the necessary condition fdf A — A3 > 0iS ajza21 — ajiase < 0, Or
equivalently

b <

w {w1D1<y*+D2>2 v 0f’(m*)(y*+D2)2} (6)

x*+ D | waz*(ax*+ D)2 z*+ D B wWoz*

Further more, by substituting the valueswf, 4, j = 1,2, 3, we get

A1A2 — Ag = & |:M1M2 -

wcal By s
o324 ’

wsxT*
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wherea = z* + D, B=a"+ D1, v=y"+ Do,

My = wwi Dyoy® — waby o 22" + wwa 82y 2* — wha 3>y f(a*),

My = bia?y*z* — wy’s*y* — waaly*2*.
Clearly, M; > 0 provided that condition (6) is satisfied add, > 0 provided that
condition (5) is satisfied. Hence, if conditions (5) and (6)dh then the necessary and
sufficient condition ford; A — A3 > 0is

Cz < ng*MlMQ

)

w§a4627y*z*3 :
Finally, due to the above analysis, the local stability gsial of the positive equilibrium
point E5 = (z*,y*, 2*) can be summarized as the following theorem.

Theorem 1. Suppose that the positive equilibrium poiif = (z*,y*, z*) of model
system(1) exists. Then condition&), (6), and (7) are the necessary and sufficient
conditions for locally asymptotically stable 8f = (z*, y*, 2*).

Now, in order to investigate the Hopf bifurcation of modetwm (1), we will follow
the Liu approach [26]. According to Liu approach, the sintptef bifurcation atu = p.
can occur provided that

Ar(ps), As(ps), and W(p) = Ay (pe) Az (p) — As(p),
are smooth functions qf in an open interval of., € R such that
L Ay(u) > 0, As(p) > 0, andW(p,) = A; () Aa () — As(ps) = 0.
AV ()

. dp ‘M:H*
Now, letc, the growth rate of the generalist predator, be the bifizsngtarameter. There-
fore, if conditions (5) and (6) hold together with the follmg condition

waz* My My \ Y2
ch=|—5—"—"= .
w§a452’yy*z*3

£0.

(8)

Then, obviouslyA;(c.) > 0, As(cs) > 0 and¥(c,) = Aq(cs)Aa(cy) — As(e) = 0.
Further it is easy to verify that

2w%c*y*2z*3

=S40

c=cy w37y

d¥(c)
dc

Accordingly, the following theorem establishes the Hogfitation conditions:

Theorem 2. Under the conditiong5), (6), and (8), there is a simple Hopf bifurcation
of the positive equilibrium poinEs = (z*, y*, 2*) of model systerfil) at some critical
value of the parametergiven by(8).
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4 Numerical results

Our primary interest is to explore the occurrence of chadyinamics in two model
systems which differ from each other in one essential waythe top predator in model
system (1) is a generalist predator whereas that of modiemsy(&) is a specialist predator.
We also try to observe the role of toxin producing phytoptanion the chaotic dynamics
in such ecosystems. The role of TPP for controlling bloom$otecreasing grazing
pressure is now well known but the functional forms for releg toxic substances are
not known [16]. For this reason, we have considered Hollypgs I, 11, and 11l functional
forms to describe the liberation of toxin production pra;enotivated by the literatures
available in this field [13, 14, 16, 25, 27]. For the followifgrm of the functional re-
sponses:

1. fz)==z (Holling type 1)
2. f(a)=

71 Dy (Holling type 11)
2

3. (Holling type 11I).

X
flz) = 2+ D3
Model system (1) and model system (2) are integrated nualbriasing six-order
Runge-Kutta method along with predictor corrector methtids observed that model
system (1) has a chaotic solution at the following set of peter values (see Fig. 3).
These parameter values are selected on the basis of papetddiidr and Aziz-Alaoui
[28].
a1 =193, b1 =0.06, w=1, D=10, as =1, wy = 2,

9
D; =10, ws = 0.405, Dy =10, ¢ =0.003, w3 =1, D3 = 20. ©

Molluscs

Zooplankton TFPP

Fig. 3. Phase plane diagram for model system (1) depicting chaotictattfact = 0,
other parameters are same as given in equation (9).

However, Hastings and Powell [9] and Rai and Upadhyay [7}eoked that, for the

following set of parameter values, model system (2) exhibitchaotic dynamics (see
Fig. 4).
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a1 =1.75, by =005, w=1, D=10, ag =1, wy =2,

(10)
Dy =10, wy =145, Dy =10, ¢=0.1, wy =1, D3 = 20.

Fish
=]

40

Zooplankton TPP

Fig. 4. Phase plane diagram for model system (2) depicting chaotictattfact = 0,
other parameters are same as given in equation (10).

Our approach is to observe the exchanging of the statesgcpadod doubling, limit
cycle, stable point) for different values éfand also for different types of functional
response forms. In real life situation, it has been obsettvatincreasing the strength of
toxic substances has a stabilizing effect. So, in this pagelike to see whether this is
true or not in our considered model systems and then dishasffect of different types
of functional forms on the liberation of toxin productiorogess.

There exists empirical evidence that the level of nutriémtan ecological system
is coupled with toxin release by phytoplankton [29]. Thudsiimportant to examine
the dynamical complexity of the model system. The commohueed for the study of
dynamical complexity of two considered model systems igrbdtion diagrams wittd
as the bifurcation parameter. For different types of fuoral response forms, we have
plotted the successive maxima of top predatass a function of the parametéi(rate of
toxin substances released by TPP population) keeping pdrameters fixed as given in
equation (9) for model system (1) and equation (10) for megstem (2).

The figures, Fig. 5, Fig. 6, and Fig. 7, are representing thedation diagrams
of model system (1) with functional response of Holling typd, and Il respectively.
However, for model system (2), the bifurcation diagramsaise drawn for functional
response given by Holling type I, 1l, and 1, and are preeednh Fig. 8, Fig. 9, and Fig. 10
respectively. All these figures show clearly the transiti@mm chaos to order through
sequence of period halving bifurcation. Therefore, fohibe models and for different
forms of toxic substance liberation process (i£x)), it is observed that, increase of
value of toxic substances released by TPP population @)ehas a stabilizing effect.
The blow-up bifurcation diagrams show that the model sygtessesses rich variety of
dynamical behaviour for bifurcation paramefien the range$0, 0.0029] for Holling type
| (see Fig. 5(b))[0,0.07] for Holling type Il (see Fig. 6(b)) anf®, 0.06] for Holling type
[l (see Fig. 7(b)) functional responses. In all the thregesa a period-doubling cascade
is observed.
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Max (z)

Max (z)

0.004 0.008 0.012 0.016 0 o 1 2 3 5 B 4 8

(a) (b) 0 x10°

Fig. 5. (a) Bifurcation diagram as a function @ffor model system (1) witty (x) of
Holling type I. (b) Blown up bifurcation diagram of (a) in the range 6 < 0.008.

il

0

Max (z)

=

0

30

20

01 02

04 05 0B

(@ ’ ) ’

Fig. 6. (a) Bifurcation diagram as a function @ffor model system (1) withy (z) of
Holling type Il. (b) Blown up bifurcation diagram of (a) in the range< 6 < 0.2.

Max (z)

01 02 03 04 06 0 0.04 012 016

@) ’ ©) g

Fig. 7. (a) Bifurcation diagram as a function @éffor model system (1) withy (z) of
Holling type lll. (b) Blown up bifurcation diagram of (a) in the range< 6 < 0.15.
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1] 0002 0004 0006 0008 001 0012

0014 0016
(4

Fig. 8. Bifurcation diagram as a function®for model system (2) witlf () of Holling
type I.

1) D.‘1 D.‘E III.I3 Clld D.‘E Elf? o ‘25 03
(@) ’ (b) ’
Fig. 9. (a) Bifurcation diagram as a function @ffor model system (2) withy (z) of
Holling type II. (b) Blown up bifurcation diagram of (a) in the range< 6 < 0.3.

06 0 005 01 015

2)

Max (

Max (z)

0 01 02 03 0.4 05

06 1) 0.05 01 0.15 02 025

@) ’ (b) !

Fig. 10. (a) Bifurcation diagram as a function®for model system (2) wittf (x) of
Holling type Il1. (b) Blown up bifurcation diagram of (a) in the ran@e< 6 < 0.3.
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Further, Table 1 and Table 2 describe the dynamical beha¥inrodel system (1)
and model system (2) respectively according to the abovetiomen bifurcation dia-
grams. From Table 1, it is found that chaos was observed irettigeg0.001 — 0.0026],
[0.0038 — 0.0047] for Holling type I, in the rangef).001 — 0.0111], [0.0124 — 0.059] for
Holling type Il and in the range®.001 — 0.0094], [0.011 — 0.049] for Holling type IlI
functional responses. Similar results are obtained forehsygstem 2 but for the different

ranges of) values.

Table 1. Dynamical behavior (DB) of model system (1) depending erréisults of

bifurcation diagrams given in Fig. 5, Fig. 6 and Fig. 7i -Plimit cycle of periodi

(1 =2,3,4,5,6), SF —stable focus, LC — limit cycle, LP — long period, SCA — strange
chaotic attractor, EX — extinction

Results of model (1) for; Results of model (1) forj Results of model (1) for
Holling type I Holling type II: Holling type IlI:
f@) =z f@)=z/(x+Ds) | f(z)=2/(z*+ D})
Dy =10 Dy =10
0 DB 0 DB 0 DB
0.001-0.0026  SCA| 0.001-0.0111  SCA| 0.001-0.0094  SCA
0.0027 P6 0.0112 P6 0.0095 LP
0.0028-0.0037 P3 | 0.0113-0.0115 P5 | 0.0066-0.0097 P4
0.0038-0.0047 SCA| 0.0116-0.0123 P4 | 0.0098-0.0099 LP
0.0048-0.005 P4 | 0.0124-0.059 SCA| 0.01 P4
0.0051-0.0055 P2 | 0.06 LP 0.011-0.049 SCA
0.0056-0.0057 LP | 0.061 P6 0.05-0.054 P4
0.0058-0.0162 P2 | 0.062-0.068 P4 | 0.055-0.135 P2
0.0163-0.0164 SF | 0.07-0.16 P2 0.14 LP
0.017 EX 0.17 LP 0.15-0.32 LC
0.18-0.39 LC 0.33-0.5 SF
0.4-0.6 SF 0.55 EX
0.7 EX

From Tables 1 and 2, it has been also observed that the grambwehse of toxin
values of phytoplankton in the model systems which turn yiséesn dynamics from chaos
to doubling state to different order limit cycles and thetegsfinally settles down to an
equilibrium state. If we increase more toxin to the modelteays then the dynamics
shows the extinction of zooplankton. It will be a subject wftfier study to examine if
chaotic dynamics is robust against changes in other syséeamyeters in model ecolog-
ical systems which include the effect of toxin productionghytoplankton. Dynamical
complexities of these model systems as manifested in fifiorc diagrams (Figs. 5-10)
possess many subtleties. Because of the coexistence athamtic attractors, i.e., two,
three, four or six-periodic attractors, in ecological natgtion, the presence of chaotic
attractor cannot be judged solely on the basis of the seitgitiependence of initial
conditions. One can clearly see that chaotic dynamics igstold changes against the
rates in toxin production by phytoplankton as it exists mgérange of) values.

135



R. K. Upadhyay, R. K. Naji, N. Kumari

Table 2. Dynamical behavior of model system (2) depending on theltsesf

bifurcation diagrams given in Fig. 8, Fig. 9 and Fig. 10. -Plimit cycle of periodi:

(: =2,3,4,5,6), SF — stable focus, LC — limit cycle, LP — long period, SCA — strange
chaotic attractor, EX — extinction

Results of model (2) for | Results of model (2) for; Results of model (2) for

Holling type I Holling type II: Holling type IlI:
f@) =z f)=a/(@+Ds) | f(z)=2%/(a®+ D3)
Dy =10 Dy =10

0 DB 0 DB 0 DB
0.0010-0.0019 SCA 0.001-0.04 SCA | 0.001-0.048 SCA
0.0020-0.0022 P6 | 0.041 LP 0.049 LP
0.0023-0.0057 SCA 0.042—0.043 P4 0.05-0.051 P3
0.00571 LP | 0.044 LP 0.052 P5
0.00572-0.00574 P5 | 0.045-0.075 SCA | 0.053-0.056 P3
0.00575-0.00576 P3 | 0.076-0.077 LP 0.057 LP

0.00577-0.00578 PS5 | 0.078-0.087 P6 0.058-0.092 P3
0.00579-0.007 P3 | 0.088-0.114 P3 0.093-0.1412 SCA

0.0071 P6 | 0.115-0.17 SCA | 0.1413-0.1415 P6
0.0072-0.0073 P4 | 0.18-0.19 P4 0.1416-0.1417 LP
0.0074-0.0084 P2 | 0.2-0.26 P2 0.1418-0.152 SCA
0.0085-0.0098 LC | 0.27-0.66 LC 0.153-0.155 LP
0.0099-0.011 P3 | 0.67-0.7 SF 0.156-0.171 P4
0.012 LP 0.71 EX 0.172-0.23 P2
0.0125-0.014 P2 0.24-0.54 LC
0.015 LC 0.55-0.59 SF
0.016 EX 0.6 EX

5 Conclusions

According to the above discussion for the dynamical behasfionodel system (1) and
model system (2) (see the bifurcation diagrams and Tablesl 12y it is clear that in-
creasing the strength of toxic chemical released by TPPIlptipn reduce the prevalence
of chaos, therefore, our observation is that the toxin ssldey TPP population acts as
a bio-control by changing the state of chaos to order. Fyrfrem Table 1 and Table 2,
extinction has been observed for higher values of Holling type Il and Il functional
responses. However, in case of Holling type I, extinctiors whserved very earlier at
6 = 0.017 for model system (1) anl = 0.016 for model system (2). Therefore, the rate
of toxic substance released by TPP is to be high for type Itfonal form than those of
type Il and type Il functional form. These observationsidade us that to maintain the
order of an ecosystem functioning, type Il or type Ill fuectal form for toxin liberation
process is more appropriate. We have also observed thatffieredt ranges of), the
rate of toxin release by TPP, the systems locally stable disasenscillate around the
equilibria related to planktonic blooming. The phenomemdrdynamic stabilization
of a locally unstable equilibrium point can also be obserf@dcertain rate of toxin
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production. Different Holling type mortality function ofobplankton due to TPP has
significant influence in controlling oscillations, coexiste, survival or extinction of
zooplankton. The rate of toxin production by TPP plays andrtant role for controlling
oscillation in plankton systems.

The consequences of toxin production by phytoplankton Bgeaat interest both for
intrinsic scientific merit and also because of its possild&ichental effect on fisheries.
In our earlier work [7], we had suggested that the biologyheftop predator would be a
crucial factor for the determination of dynamical comptgxin food chain models. The
dynamical complexity depends on the nature (e.g., intecifip competition vs predation)
and degree (e.g., the number of interacting components)roptexity of trophic interac-
tions. On the basis of present study, we opine that the datyséems with first kind of
food chains (i.e., chain ending at specialist predator asidel system (1)) would present
difficult challenges as far as program of quantification @itldynamical complexity is
concerned. The other kind of systems (the chain ending &rgkst predator as in model
system (2)) seems to allow such program to be implementedthiyoThis conjecture is
to be tested in the laboratory and in the field.
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