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Abstract. The problem of combined free-forced convection and masstea
flow over a vertical porous flat plate, in presence of heat gdiom and thermal-
diffusion, is studied numerically. The non-linear partitifferential equations
and their boundary conditions, describing the problem undasideration, are
transformed into a system of ordinary differential equagidy using usual
similarity transformations. This system is solved numahc by applying
Nachtsheim-Swigert shooting iteration technique togethigh Runge-Kutta
sixth order integration scheme. The effects of suctionmpatar, heat generation
parameter and Soret number are examined on the flow field ofleoggn-air
mixture as a non-chemical reacting fluid pair. The analy$ithe obtained
results showed that the flow field is significantly influencgdhese parameters.

Keywords: combined convection, mass transfer flow, heat generatiomug
plate, numerical solution.

1 Introduction

It is known that a flow situation where both free and forced convectitecisf
are of comparable order is called mixed convection. The study of such @ mixe
convection flow finds application in several industrial and technicalge®ees such
as nuclear reactors cooled during emergency shutdown, solar certedlers
exposed to winds, electronic devices cooled by fans and heat exaisgrigced
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in a low-velocity environment. The simplest physical model of such a flow is
the two dimensional laminar mixed convection flow along a vertical flat plate and
extensive studies have been conducted on this type of flow [1-4]. Aspiolics

of this model can be found in the areas of reactor safety, combustion flmdes
solar collectors, as well as building energy conservation [5]. This ntuaeblso
been used by many investigators to analyze the combined free-forceelctiva
boundary layer flow, for micropolar fluids, or for the flow through peranedia
[6-12]. However, in the above studies mass diffusion due to temperaadegt,
called thermal-diffusion has not been taken into account. Jha and Sigpard
Kafoussias [14] have noted the importance of the effects of this therniabidif.
Recently Alam and Sattar [15] included the thermal-diffusion effect on MHD
free convection and mass transfer flow. Very recently, Akral. [16] studied

the above mention effect on unsteady MHD free convection and masg$etrans
flow past an impulsively started vertical porous plate. Hence, the olgeatithe
present paper is to study the above mentioned thermal-diffusion effeuislas

as heat generation effects on steady combined free-forced comvactiibmass
transfer flow past a semi-infinite vertical porous flat plate embedded imaupo
medium. The volumetric heat generation term may exert a strong influence on th
heat transfer and as a consequence, also on the fluid flow.

2 Mathematical analysis

A two-dimensional steady combined free-forced convective and massfdéra
flow of a viscous, incompressible fluid over an isothermal semi-infinite verti-
cal porous flat plate embedded in a porous medium is considered. The flow
is assumed to be in the-direction, which is taken along the vertical plate in
the upward direction and thg-axis is taken to be normal to the plate. The
surface of the plate is maintained at a uniform constant temperaijyr@nd a
uniform constant concentratiati,,, of a foreign fluid, which are higher than the
corresponding valueg,, andC,, respectively, sufficiently far away from the flat
surface. Itis also assumed that the free stream velbGityparallel to the vertical
plate, is constant. The flow configuration is shown in the following Fig. 1.

Then under the boundary layer and Boussinesq’s approximationspviee-g
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Fig. 1. Flow configuration and coordinate system.

ning equations are given by:

Continuity % + g—z =0, (@D)

ou ou 0%u
Momentum u% + 'Ua—y = I/a—y2 + gﬂ(T — Too)
14
+90°(C = Cx) = 7571, 2

or — or  k 9*T Qo

E —tv—=——%+—(T - Tx),
nergy ug- + U@y oy O + pcp( ) (3)
e oC oC 9*C 92T

Diffusion U% + ’Ua—y = DM _Oy_Q + DT 3y2 5 (4)

whereu, v are the velocity components in the andy- directions respectively;
is the kinematic viscosity is the acceleration due to gravity,s the density of
the fluid, 3 is the coefficient of volume expansigff; is the volumetric coefficient
of expansion with concentratioff;, T, andT,, are the temperature of the fluid
inside the thermal boundary layer, the plate temperature and the fluid temperatu
in the free stream, respectively, white¢, C,, and C', are the corresponding
concentrations. AlsoK”’ is the permeability of the porous mediurh,is the
thermal conductivityc, is the specific heat at constant pressipg,is the heat
generation constantl,; is the coefficient of mass diffusivity an@d is the
coefficient of thermal diffusivity.

For the flow there is no-slip at the plate. For uniform plate temperature and
concentration the appropriate boundary conditions for the above pnadnie as
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follows:
u=0, v=uvyx), T=T, C=C, at y=0, (5a)
Uu=Uy, T=Ty, C=Cyx as y— . (5b)

In order to obtain similarity solution of the problem we introduce the fol-
lowing non-dimensional variables (see Schlichting [17], Rahman and §E&{ar

vx (6&)
0(n) = m,

Uso S
n=y ] w: VxUOOf(n)a
T—Tw C—Cx
T, T o(n)
wherey is the stream function.
Sinceu = 2 andv = — 3 we have from equation (6a)

U

u="Usxf and v=—
x

(f =nf"). (6b)

Here prime denotes differentiation with respectjto
Now substituting equation (6) in equations (2)—(4) we obtain

1
P ST = K g0+ e = 0, ™
0" + %Prf@’ + PrQ6 =0, (8)
1
¢"+§Scf¢'—|—50560":0. (9)

The boundary conditions (5) then turn into

f=fu, f=0 60=1¢=1, at n=0, (10a)
ff=1, 6=0, ¢=0, as n— oo, (10b)
where f,, = —2v,(x) Vgoo is the suction parameter. The dimensionless para-

meters introduced in the above equations are defined as follows:

vx
K = ——— isthe local Permeability parameter
KU yp 1
Ty — Teo)x3 .
Gr = 98(Tw 5 o) is the local temperature Grashof number
14
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. gﬁ*(cw - Coo)$3

Gm = 5 is the local mass Grashof number
v
U .
Re = is the local Reynolds number
14
Gr .
9s = poa is the temperature buoyancy parameter
ge = R—z is the mass buoyancy parameter
(&
pr=2P% s the Prandtl number
. Q().ZL‘ . .
Q = ——— isthe local heat generation parameter
PCpUoo
Se= -2 isthe Schmidt number
Dy
Dp(T,, — T .
and So= Dr(Ty — Teo) is the Soret number
v(Cy — Cx)

3 Numerical solutions

The system of non-linear ordinary differential equations (7)—(9) ttugyewith

the boundary conditions (10) are locally similar and solved numerically using
Nachtsheim-Swigert shooting iteration technique (guessing the missing value)
along with sixth order Runge-Kutta initial value solver.

In a shooting method, the missing (unspecified) initial condition at the initial
point of the interval is assumed, and the differential equation is then inéelyra
numerically as an initial value problem to the terminal point. The accuracy of the
assumed missing initial condition is then checked by comparing the calculated
value of the dependent variable at the terminal point with its given value.thfer
a difference exists, another value of the missing initial condition must beresku
and the process is repeated. This process is continued until the agtdetvesen
the calculated and the given condition at the terminal point is within the specified
degree of accuracy. For this type of iterative approach, one natungjlyres
whether or not there is a systematic way of finding each succeedingr{edsu
value of the missing initial condition.

The Nachtsheim-Swigert iteration technique thus needs to be discussed ela-
borately. The boundary conditions (10) associated with the non-linelamasy
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differential equations (7)—(9) are the two-point asymptotic class. Taiotjpoun-

dary conditions have values of the dependent variable specified atifferedt

values of independent variable. Specification of an asymptotic boundadi-

tion implies that the first derivative (and higher derivatives of the baunthyer
equations, if exist) of the dependent variable approaches zero agénspecified
value of the independent variable is approached.

The method of numerically integrating a two-point asymptotic boundary-
value problem of the boundary-layer type, the initial-value method is similar to
an initial-value problem. Thus it is necessary to estimate as many boundary
conditions at the surface as were (previously) given at infinity. Thesignng
differential equations are then integrated with these assumed surfanddrpu
conditions. If the required outer boundary condition is satisfied, a soltidsn
been achieved. However, this is not generally the case. Hence, a nmatisbthe
devised to estimate logically the new surface boundary conditions for thériadx
integration. Asymptotic boundary value problems such as those goverréng th
boundary-layer equations are further complicated by the fact that tiee looun-
dary condition is specified at infinity. In the trial integration infinity is numerically
approximated by some large value of the independent variable. Thera igriuvi
general method of estimating these values. Selecting too small a maximum value
for the independent variable may not allow the solution to asymptotically cgaver
to the required accuracy. Selecting large a value may result in divexgdribe
trial integration or in slow convergence of surface boundary conditi8aekecting
too large a value of the independent variable is expensive in terms of ¢empu
time.

Nachtsheim-Swigert [19] developed an iteration method to overcome these
difficulties. Extension of the Nachtsheim-Swigert iteration scheme to the system
of equations (7)—(9) and the boundary conditions (10) is straightfokwdn
equation (10) there are three asymptotic boundary conditions and heaweee th
unknown surface conditiong’(0), ¢’(0) and¢’(0).

Within the context of the initial-value method and Nachtsheim-Swigert iter-
ation technique the outer boundary conditions may be functionally repgeesen
as

P (1maz) = ®;(f7(0),0(0),4'(0)) =65, j=1,2,...,6, (11)
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where®, = f/, &y =0, &3 = ¢, P4 = ', &5 =0, &g = ¢'. The last three of
these represents asymptotic convergence criteria.

Choosingf”(0) = ¢1, ¢'(0) = g2 and¢’(0) = g3 and expanding in a first-
order Taylor’s series after using equations (11) yield

3
0D, ,
®;(Nmaz) = 5. (maz) + a—;Agi =4;, j=12,...,6, (12)
i=1 7

where subscriptC” indicates the value of the function af,,, determined from
the trial integration.

Solution of these equations in a least-square sense require determining the
minimum value of

6
E=) ¢ (13)
7=1

with respect tgy; (i = 1,2, 3).
Now differentiatingFE with respect tgy; we obtain

6
> 0% <o, (14)
=1 9i

Substituting equation (12) into (14) after some algebra we obtain
3

§ azk’Agk = bi7 1= 17 27 37 (15)
k=1
where
0. 00, 00, 6 9%
j j i
ik = : , bi=— E Cic—, 1,k=1,23. 16
o dgi  Ogx = % 0g; (16)

Now solving the system of linear equations (15) using Cramer’s rule wénobta
the missing (unspecified) values gfas

gi = g; + Ag;. a7

Thus adopting the numerical technique aforementioned, the solution of the
nonlinear ordinary differential equations (7)—(9) with boundary dorns (10)
are obtained together with sixth-order Runge-Kutta initial value solver atet-d
mine the velocity, temperature and concentration as a function of the cordina

7.
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4 Skin-friction coefficient, Nusselt number and Sherwood nmber

The parameters of engineering interest for the present problem doetieskin-
friction coefficient, local Nusselt number and the local Sherwood numberh
indicate physically wall shear stress, rate of heat transfer and ratessftnaasfer
respectively.

The equation defining the wall skin-friction is

ou Uso .1

Hence the skin-friction coefficient is given gy, = /)2{}15 or

SCy(Re)t = 1(0). (19)

Now the heat flux4,,) and the mass fluxi;(,,) at the wall are given by

or U
= k() = kAT 20 2
w= k(G ),_, = ~FATY =00, (20)

and

oc Us .,
M, = —DM(a—y)y:O = —DyACY == ¢(0), (21)

whereAT =T, — T, andAC = C,, — Cw.
Hence the Nusselt numbeN () and Sherwood numbef{) are obtained as
Nu= 2 — _(Re)26/(0) i.e.,

Nu(Re)"z = —0/(0) (22)

andSh = 2. = —(Re)3¢/(0) i.e.,

Sh(Re)"2¢/(0). (23)

These above coefficients are then obtained numerically and are sortaiolénlT
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Table 1. Numerical values afy, Nv and Sh for Pr = 0.71, Sc = 0.22,
gs = 1.0,g. = 0.1 andK = 0.05

Q fw So Cy Nu Sh

0.5 0.5 0.2 1.8022 0.1057 0.2893
1.0 0.5 0.2 2.3286 -0.6636 0.3460
2.0 0.5 0.2 4.6052 -5.1781 0.5962
2.0 1.0 0.2 4.5945 -4.7310 0.6071
2.0 15 0.2 4.4999 -4.1595 0.6119
2.0 15 0.8 4.5007 -4.1846 1.1379
2.0 15 2.0 4.5056 -4.1868 2.1804

5 Results and discussion

Numerical calculations have been carried out for different valueg,of?, and
So and for fixed values oPr, Sc, gs andg.. The value ofPr is taken to bé).71
which corresponds to air and the value%fis chosen to represent hydrogen at
25" C and1atm. The dimensionless parametgris used to represent the free,
forced and combined (free-forced) convection regimes. The gase 1 corres-
ponds to pure forced convectionp, = 1 corresponds to combined free-forced
convection andj; > 1 corresponds to pure free convection. As the local mass
Grashof number is a measure of the buoyancy forces (due not tenpebatu
to concentration differences) to the viscous forces, the dimensionlezsgter

gc has the same meaning as the parameferThe non-dimensional parameter
gs, takes the valué.1 for low concentration. With the above-mentioned flow
parameters, the results are displayed in Figs. 2—4, for the velocity, tetmmera
and concentration profiles.

The effects off,, on the velocity field are shown in Fig. 2(a). It is seen from
this figure that the velocity profiles decrease monotonically with the incrdase o
suction parameter indicating the usual fact that suction stabilizes the brgunda
layer growth. The effects of,, on the temperature and concentration fields are
displayed in Figs. 2(b) and 2(c) respectively. We see that both the tatopeand
concentration profiles decrease with the increasg,ofSucking decelerated fluid
particles through the porous wall reduce the growth of the fluid bouridgey as
well as thermal and concentration boundary layers.
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Curve Q

o2
O

Fig. 2. Variations of (a) velocity, Fig. 3. Variations of (a) velocity,
(b) temperature and (c) concentration (b) temperature and (c) concentration
across the boundary layer fgr = 1.0,  across the boundary layer fgr = 1.0,

ge = 0.1, Pr = 071, Q = 05, g. = 0.1, Pr = 0.71, f, = 0.5,
Se=10.22, K = 0.05andSo = 0.2. Se=10.22, K = 0.05andSo = 0.2.
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The effect of) on the velocity profiles is shown in Fig. 3(a). From this figure
we see that when the heat is generated the buoyancy force incrdasksngduces
the flow rate to increase giving rise to the increase in the velocity profilesn Fr
Fig. 3(b), we observe that temperature increases significantly with theaser
of Q. On the other hand, from Fig. 3(c) we see that the concentration profiles
decrease with the increase of the heat generation parameter.

Fig. 4(a) shows the variation of dimensionless velocity profiles for differe
values ofSo. It is seen from this figure that velocity profiles increase with the
increase of5o from which we conclude that the fluid velocity rises due to greater
thermal-diffusion. Fig. 4(b) represents the concentration profiles ifterent
values ofSo. From this figure we observe that the concentration profiles increase
significantly with the increase of Soret number.

0 2 4 6

n
(a)
Fig. 4. Variations of (a) velocity and (b) concentrationaas the boundary
layer forg, = 1.0, g. = 0.1, Pr = 0.71, Q = 0.5, S¢ = 0.22, K = 0.05 and
fuw =0.5.

Finally the effects of the above-mentioned parameters on the skin-friction
coefficients, Nusselt number and Sherwood number are shown in Tafdlael
behavior of these parameters is self evident from Table 1 and henderamgr
discussions about them seem to be redundant.

6 Conclusions

In this paper we have studied numerically the steady two-dimensional combined
free-forced convection and mass transfer flow over a semi-infinite aepiorous
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plate embedded in a porous medium in presence of heat generation andlther
diffusion. The effects of various parameters have been examined douhigeld

for a hydrogen-air mixture as a non-chemical reacting fluid pair. Frorpribsgent
numerical investigation the following conclusions may be drown:

1. Wall suction stabilizes the velocity, thermal as well as concentration lasund
ry layer growth.

2. Both the velocity and temperature profiles increase whereas the t@ticen
profile decreases with the increase of heat generation parameter.

3. Both the velocity and concentration profiles increase with the increase of
Soret number.

4. In mixed convection regime, both the Skin-friction coefficient and Shedwv
number increases whereas the Nusselt number decreases with thearafrea
both heat generation parameter and Soret number.
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