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Abstract. In this review, the nonlinearities in different processesls as

spin glasses, finite field models, Hamiltonian functionsyiéng and storing
capabilities, mean field systems and others in the area dfighyelated to the
artificial neural networks namely the main brain structureiipreted as Ising
spin systems are discussed. It is shown that nonlineastege as exclusive
role in the applied physics field.
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1 Introduction

Nonlinearities in the nature, especially in the biology or neuroanatomy, as well
as in artificial technical systems and even in social life play a marked role in the
behavior either small separate particles or large-scale, massive,|gtirttegcon-
nected systems. The neuroanatomy systems included the central nerstaums s
with massive interconnected neural networks of the cerebral cortexrrhattag
to latter.

The neural networks approximately reflect the natural neurophyséialog
system and they are used by neurophysiologists and modelers-aybtsiestudy
real nature objects or construct new artificial systems more precisejyncpp
natural being’s behavior.

In this review, | would like to pay attention to different nonlinearities that
influence to the processes in neural networks as the brain main struattine o
one hand and as an Ising spin system on the other hand.
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In the statistical physics as well as in the ferromagnetism or even in crystal
physics, the simplified model, which is wide used, is based on an Ising spin sys
tem. The original work on the theory of the Ising spins related the ferroetesyn
is the paper of Nowell and Montroll published in 1953 [1]. | would like to pay
attention to applying this theory to the artificial neural systems or, in general,
to the brain science, especially underlying the role of aspects of noritiasar
referring to the works of Little [2—4]. Though these issues are devotdHeto
specific problem related to the memory storage capacity in the brain, the tlebb r
determines the basis of learning in the neural networks and defines theidreh
of the networks by the nonlinear laws.

The spin glass phase of neural networks as an Ising spin system with some
moments of nonlinearities in Section 2 is discussed. In Sections 3 and 4 the
finite-field nonlinear models as well as the results of the practical experiments
are considered. The Hamiltonian function as a main description of a behavior
of complex systems in Section 5 is represented. The exponential, learnthg, a
storing nonlinearities in Sections 6—8 are characterized. The proposadlism
of the mean field description is analysed in Section 9. The brief discussion is
presented in the separate Section 10.

2 Spin glass nonlinearities

One of the important and difficult to forecast phases of the Ising spiesys

the spin glass phase [5-7]. The spin glass systems with macroscopic magnetic
moments according to EA (Edwards and Anderson [5] hereafter eeféa as

EA) are dilute magnetic alloys CuMn or AuFe with weak magnetic concentration.
They are able to show the surprising properties, one of which is a dilstigp
having the cusp as the existence of preferred orientation of the spiresatttbal
temperaturd.. This property is result of a change of the sign between magnetic
atoms due to the so-called the Rudermann-Kittel-Kasuya-Yosida (RKKY)OB—
interaction. According to the RKKY interaction the sign depends on the distanc
between the atoms. Note that Mn challenges a slight anisotropy and it should
therefore correspond to the Heisenberg spin glasses. Under th8ugpiration
effects at zero temperature, the effective impurity moments are vanishiag at
lower magnetic concentration. At a high concentration (ferromagnetictdeian
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romagnetic), the spin glass properties are impaired.

Spin glasses have a sharp thermodynamic phase transition at temperature
T = T4, such that forl’ < T, the spins freeze in some random-looking
orientation. The spin glasses susceptibility is defined as

Xsg = 1/NZ[<5i3j>2T]ava )
ij

wheres;, s; are the spins at sitésndj, (- - - ) denotes a thermal average,: |,
indicates averaging over a Gaussian distribution of exchange interadtiogashe
number of spin elements.

The susceptibility has a consequent cusp, which has been foundragper
tally [11]. The EA susceptibility (1) diverges. Since the susceptibility is naalin
it can be defined by the coefficient/at in the expansion of the magnetization

m=X—- anh3 + O(h5)v (2)

whereh is an external magnetic field. It is expected that the nonlinear suscep-
tibility, x,. = %277;‘ diverges less strongly because of cancelatiors,atsuch
as

X~ (T_ng)i’ya (3)

where~ is a critical exponent. This divergent behavior has been observeeé in th
experiment on the alloy within in Cu mentioned in [5].

The dynamics in the spin glasses at low temperature b&lgws never in-
complete equilibrium because the energy function landscape is very cotaglica
It has many valleys separated by barriers. The values of free eaktigy valleys
can be similar while the spin configurations rather different. Since the brain
systems are large-scale, spin glass energy excitation becomes low.

3 Practical experiments of susceptibility

A spin-glass transition was studied on the basis of practical experiments and
Monte-Carlo simulation with alloys fo€CuGa2O,4 [12]. The magnetic suscep-
tibility, magnetization measurements in the fields up to 50 kOe, specific heat and
muon-spin relaxation{SR) measurements were carried out in the cubic spins of
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CuGay Q4. Transition undergoing from the paramagnetic to the spin glass phase
was established @y = 25 K. As a result of experiments the phenomena of
nonlinearities in results of experiments are preferred everywhere.

The magnetization dependence@iGa,O4 as a single crystal versus tem-
perature is nonlinear and even the curves diverge below the bifurgadion The
bifurcation point tends nonlinearly to a lower temperature by increasingsa bia
field.

The ac susceptibility dependence on temperature in the absence of a bias
field (H = 0 kOe) is strongly nonlinear, while with an increase in the bias field
(H = 5 KOe, H = 10 kOe), the dependence becomes almost linearly decrea-
sing versus temperature. The nonlinearities disappear because theimfgioe
suppresses the cusp of susceptibility. It has been also shown thatitaetehn of
nonlinearities of susceptibility does not change dependent on difféneien-
cies, only the cusp moves to higher temperatures. Specific heat and pinon-s
relaxation curves do not distinguish in mere nonlinearities.

Analogous results of studying the spin-glass behavior have been abtaine
for an ordered transition of metal alldyeAl, [13]. The ac susceptibility (at
the ac field amplitude of Oe and frequency of25 Hz) versus temperature is
represented by the curve with a cusp at lower temperatures. The irowerge
follows the Curie-Weiss law = C/(T — ©), where© is the Weiss temperature,
C'is a constant defined by the nonlinear part and the straight-line.

4 Finite field nonlinear models

Nonlinearities play an important role in the main characteristics used for evalu-
ating the behavior of spin glass states and the transition line called an Almeida-
Thouless (AT) line [14] in the infinite-range (mean field) Sherrington-gatkick
model [15] and in finite field models (as more realistic one) with short range
interactions. In the latter, it is confirmed that the SOPT is valid for infinite range
interactions as well as for finite-range ones, though the latter has netdoro
The proves of an existence of the SOPT line for finite-range interacti@nse w
performed in [14]. The Almeida-Thouless (AT) line separates the panastiag
phase from the spin glass phase (Fig. 1(a)).

About existence AT line in finite range there is a controversial point of view
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(a) | (b)
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Fig. 1. (a) SOPT according to RSB scenarios (SG means sps, @& means
paramagnetic phase), (b) SOPT according to droplet picau®G achieves
only for H = 0 (pictures from [16] modified).

The RSB approach presented by Parisi [17, 18], and others posttitetethe
AT line occurs at infinite — range (SK) interaction as well as at finite-raomgees
(Fig. 1(a)), while the droplet picture approach followers Fischer,[i&jore [20]
claim that for finite size scaling AT line occurs only at the zero field (Fig))1(b

The AT line, which divides the spin glass domain from the paramagnetic
phase or the ferromagnetic one, is nonlinear as a complicated phase tmansitio
limit. The line existence and form the mostly depends on the strength of the
external field, for example, even in small fields there is no AT line in one- or
three-dimensional spin glasses [16, 21]. In short range interactiaiestuhe
couplingsJ;; are given by
eij

—= 4
2 (4)

Jij = c(0)
wheree;; are the random values and are chosen, as a rule, according to the
Gaussian distribution with zero mean and the standard deviation ity
(L/m)sin|(w|t — j|)/L] and represents the geometric distance between the spins
on the ring of lengthl, ¢(o) ~ L=(1=29)/2 for the largeL, whereo is the expo-
nent which the range of changes defines whole list of different mogg]s All
these values distinguish themselves by strong nonlinearities determineémtiffer
complex spin glass laws.

The next important nonlinear function in this area of investigation is corre-
lation length divided by the system siZ¢L. It satisfies the finite-size scaling
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form
(/L =a(L'NT - T.(h)), 5)

wherez is a scaling functionT.(h) is the critical (transition) temperature for

the external field strength, and- is the correlation length exponent [16]. The
presence of nonlinearities in (5) leads to the simplified method of defining the
critical point of the second order transition depending on temperaturevthe
changing data of different sizé causes intersection of the functioQsL(T).

The two quantities are mostly connected with overlap in the finite size scaling
spin glass systems. The AT line existence and form the mostly depends on the
strength of the external field, for example, even in small fields there is nmAT

in one- or three-dimensional spin glasses [16, 21].

The next important nonlinear function in this area of investigation is corre-
lation length divided by the system size. It satisfies the finite-size scaling, for
where the critical (transition) temperature for the external field strengtheis th
correlation length exponent [16, 21]. The presence of nonlineariges leads
to the simplified method of defining the critical point of the second order transi-
tion depending on temperature, where the changing data of differentaises
intersection of the correlation functions (Fig. 2).
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Fig. 2. Relative correlation length depends on temperdturdd,, = 0 and
exponent parameter = 0.65 at different sized. (from Katzgraber and Young
[21] modified).
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The same authors [4] present the modeling results for 1D finite-range inter
action which shows that it also possible the crossing of the correlation Ength
for the magnetic fieldd,, = 0.1 in mean field case. The marginal behavior is
achieved for power-law exponeat= 0.65. It is necessary to underly, that short
range models are more realistic than the infinite range one.

/L
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104 k
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Fig. 3. Relative correlation length depends on temperdtrré/,. = 0.1 and
exponent parameter = 0.55 at different sized. (from Katzgraber and Young
[21] modified).

The overlappingg, defined by the formula
LS o0 @
1 2
¢= E_l S S, (6)

whereN is the number of spins(1)” and “(2)” refer to two replicas of the system
with the state valué; for the same spin, and the link overlappingy, defined as

N
1
=755, (7)
Z7‘7

where M is the number of bonds and the sumicdind j connected by bonds.
These nonlinear quantities characterize the followintinks with the volume of
the clusterg;, characterizes the surface of the cluster [22].
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5 Nonlinear Hamiltonian function

The next source of nonlinearities is the Hamiltonian function or the energy fu
tion, as usual, or the effective energy function for the system of Iimgss

1 N N
i) i=

and the effective energy function which characterizes the growth afribegy

R 1 N N
0= Zi:ln [2cosh (ﬂzj: Ji3S;)] 9)

If to interpret the Ising system as the neural one, the stafeS, = +1, represent
two levels of activity of thei, j-th neurons, the coupling$;; are the synaptic
efficiencies of pairs of the neurons; is the external field on thésite, N is the
number of neurons, andlis the inverse parameter of temperature.

The surface of the Hamiltonian, under an influence of nonlinearities jof
and the producht;S; of vectors of states, is very complicated. There are very
many valleys, barriers, complex boundary conditions, and other higmerphe-
nomena.

The Hamiltonian function is even more complicated under the influence a
random-anisotropy of the mixed-spin Ising model [23]. According to [213¢
mixed-spin Ising model is represented by a two-sublattice system with variable
o = =1 andS = 0,41 on sublattices A and B, respectively. The most general
spin Hamiltonian in the spin configuration space is described as

Hy=-J > o8+DY S, (10)
i€A, jEB jE€B

whereJ is a parameter of ferromagnetic exchange, the second member of (10)
characterizes the crystal field with the paraméd®er- 0, A and B are the sets of
sublattices.

The competition between ferromagnetic exchange and anisotropy leads to the
appearance of critical lines and a tricritical point (as a point at whiclethhases
simultaneously become identical) location.
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Nonlinear transition lines for the Curie-Weiss version of the mixed-spin Ising
model are given as a division of the ferro- and paramagnetic fields loaifbef
the phase diagrams [23].

An analogous study of the tricritical points for the spin-3/2 Ising model was
performed applying the ternary fluid mixtures by the authors in [24]. Hege th
strong nonlinearities challenge a nonsymmetrical model and Landau @xpans
from the fourth order to the eighth order which allows us to study the ftricritical
points and behavior of the multicomponent fluid mixtures.

6 Exponential nonlinearities

Most ideas of the statistical mechanics, as mentioned above, apply to tla neur
dynamics with quenched random couplings and typical exponential narities.

The long-time behavior of the dynamic models is governed by infinite-raig Is
spin glasses and monotonically decreases the valée (@), (10) with a decrease

of temperaturel’, and leads eventually to the stationary state which is the local
minimum of H. If we take into account the random couplings and states with
noise, the distribution of states will converges to the Gibbs distribution

P(S) x exp ( — ﬁH[S]) (11)

with H in (9) or (10).

It is interesting to investigate these models not only in the context of memory
images, but also in the context of nonlinear disordered statistical mech@nics
magnetic systems.

To solve such tasks, as usual, the Boltzmann distribution

1
P({7},{5}) = e PHIRESD, (12)
( )=z {7})
where the normalization constant is the partition function
Z({J}) = Z e PHAIIASH (13)
{s}

is used as well as Boltzmann machine algorithm.
The typical choice of thd;; for P({J},{S}) is a Gaussian distribution with
zero mean and the standard deviation unity, and ofShefor P({S}) is the
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uniform or Gaussian distribution, if we consider them separately. It isteashow
that thermodynamic quantities, like the free enef@y.J }) = —% InZ({J}), are
selfaveraging. It means that the free energy den&ify/ })/N reaches the limit
for large N. As usual, the solutions are found by partial differential equations in
searching for the saddle point values. The nondeterministic nature dtistical
systems can be replaced by a large system of deterministic systems andsolved
a system of determined nonlinear algebraic equations [25].

Some of authors [5, 6] represent the Boltzmann law equations as linearized
ones in order to build analytic expressions and to investigate stability problems.
Here one may put a question to what extent the analysis of the linearized mode
is relevant to the full nonlinear problem, which is much more complicated than
the 3D Ising problem. On the other hand, certain computer simulations indicate
a loose link between the behavior of the full nonlinear model. Howevergthes
arguments are insufficient to prove that behavior of the linear model witivthe
transitions has a set @f2 classes of transitions for the general nonlinear model.

7 Learning nonlinearities

Another area of the nonlinearities is displayed in the field of learning meahanis
of massive connectionistic neural networks in the brain by interpreting Hsem
physical Ising model modification. The main sub-system of the cerebraxco
matter is the synapse-dendrite-soma-axon chain. Experiments demonsitate th
all components of the chain are characterized by nonlinearities, someidi wh
are strongly nonlinear as neuron cells, others as synaptic excitat@ptoes or
inhibitory ones are weakly nonlinear. At first let us characterize themyn
nonlinearities. Note that synapses are not randomly distributed on theitdend
surface. Second, the synapses both excitatory and inhibitory typicadisatep
by changing the conductance of postsynaptic membrane opening ionethiann
The time course of synaptic conductance changes and, as a corssqten
electrical current changes are different and depend on the typmapses. Fast
excitatory (non-NMDA) and inhibitory (GABAa) synapses operate withinsl
and peak conductance on the other of 1nS. The conductance isldptitoes
higher than slow excitatory (NMDA) and inhibitory (GABAb) within a time scale
of 10-100 ms. There is a domain where the slope is of negative conductance.
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The learning processes in neural networks are connected with the raedific
tion of synapses, as a rule, of the type introduced by D. Hebb [26]e dathe
Hebb’s neurophysiological postulate: “When an axon of cell A is neaugh
to excitate a cell B and repeatedly or persistently takes part in firing it, some
growth process of metabolic change takes place in one or both cells suétstha
efficiency as one of the cells firing B is enhanced”.

Itis known that, when the input potential of the neuron achieves the thicgsh
a series of impulses is generated by the output (axon) with some firing tais, T
the firing rate of each output neuron is forced to the value determined hypthie
This means that, for any neuren

Si = [(ei), (14)

which indicates that the firing rate is a function of the dendrite activatjomhis

function is as a sigmoidal one, i.e., strongly nonlinear with saturated ardatsan

precise form is irrelevant at least during the learning phase. Theidon@4) is

frequently approximated by the discrete function like the Ising spin Sits +1.
The Hebb rule can be then represented as follows

AWy = kS;S;, (15)

where AW;; is the change of the synaptic weighit;; which depends on the
conjunctive presence of the presynaptic firifigand the postsynaptic ons;,

andk is the learning rate which characterize how many the synapses alter on any
pairing. The Hebb rule is expressed in the product (nonlinear) forrefkect the

Hebb postulate above.

In the Ising spin system with energy function (8), the bouglsare the
synaptic efficiency of the paifij) of neurons for the neural networks. Now the
Hebb learning rule is represented as the accumulated effect of lea2dihghich
after a some changes is as follows

1A L,
Ty =—> ¢, (16)
p H

wherep is the number of patterng}; }, {¢;} as the embedded memories, besides
the patterns are random with equal probability §r= +1. Then, according to
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the work [27], the networks defined by the Hamiltonian (8) are charaeténizth
the nonlinear modified synapses

Jij = cf (Tiy) + vij, (17)

where f(T;;) is a nonlinear functiony;; is a possible noise, andis a constant.
It should be noted that ionic current of synapses is also honlinearsypotential
as shown in the works [25, 28].

If we compare the nonlinear function with the linearized one, the first on
is preferred in the sense that it provides a narrower range of egehanand
SO is more reasonable because the Hamiltonian surface, in this case, l®as mor
expressed local minima. According to [27], when the number of patternstis n
large, nonlinear learning rules can be used to increase the computataimlitegs
of neural networks as the area of Ising spins applied physics.

8 Storing nonlinearities

The capacity of memory in a neural network as an Ising spin system depend
on the number of synapses rather than on increasing the number ohaevith

the same percentage [3]. It is important to show, that apart from iriogetse
number of synapses or neurons, the synapse nonlinearities influercagpidbility

of memory because of much more expressed local minima of the Hamiltonian
function. According to the work [29] the percentage of retrieval erdecreases
nonlinearly and very rapidly to zero with decreasing of the relation betwaen
plemented patterns and the number of neurens; p/N. The similar law was
noticed in [29] for the average of number of errors.

In the paper [25], | have tried to include a nonlinear synaptic functionsand
strong nonlinear current-voltage relation of the neuron soma and haessdone
computational experiments. The modeling results have shown that the nonlinea
synapse strength provides a smaller number of errors than the lineanizedral
the nonlinear synapse strengths crucially decrease the number of erribre
retrieval processes of the neural network systems.
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9 Mean field nonlinearities

I will demonstrate the last episode of nonlinearities in the context of the staltistica
mechanics of disordered magnetic systems. The Hamiltonian defined by (8) is
a case of infinite spin glasses, where each coupling of spins is connéated
quenched randoni;; and the external field is not included for simplicity. | will
follow the work [29], however, the coupling;; will be changed to more realistic
and closer to the main idea of the Hebb’s postulate above, i.e.,

1 p
== gt (18)
it

which is as that of (16) only with the new indication of couplings. Then, after
substituting (18) into (8) without the second member, the Hamiltonian becomes

1 L

H=—-3" 3¢t sisi. (19)
Loy R

Whereqfcjf‘ are independent random variables with zero mean. The system will
be considered in the thermodynamic limit — oo and finitep. The free energy
function is defined by the partition function, for a given realizatior(t§', as
follows

Z =Trsexp(—BH) = Trsexp (% Z [zpz Cf(ﬂ SZ-S]-). (20)

i#j p=1

Using the identity

p
S Zg ¢t8;S;]
pn=1

the equation (20) becomes as follows:

ol e GE ()
(22)
_(BN) 2 / 1/2 [—ﬁim +Zln2cosh ﬁméz)]

Uy yse] - (21)

p=1i=1

l\3|H
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Regarding to
InZ
f==N5 = Jim V(i Troexp(-pH)) @

and substituting (22) into (23), the free energy density becomes the méhn fie
equation as follows

N

"=

m? — Niﬂ zl: In2 cosh(ﬂrﬁg_;). (24)

The order parameter vectat is defined by the saddle point equations for
each of componenta*

o

s (25)
After finding partial derivatives, the vector
7 = % (G Ztanh(gm@)] (26)
or
i = %é« tanh(Bmd;))), 27)

where((- - - )) is the average ovd[; }.

Equations (26), (27) have been obtained in the such a form first, agd the
include the fractiorp/N which is the parameter. On the other hand, equation
(26) is strong nonlinear.

Thus, the phenomena of nonlinearities in the field of the artificial brain func-
tions, interpreted as an extension of the Ising spin physics, play an execiote
in thermodynamic investigations.

10 Discussion

It needs to remark, that the progress in understanding and qualifyiisgitnglass
problem has used an artificial replica theory. Indeed, the physicalos@mpic
measurements on equivalent random systems are dominated by their me&an valu
(23). For finite-range interactions the effective Hamiltonian expres$@ipmwith
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replicas cannot be evaluated exactly. By analogy with the magnetism, it is better
to consider first a mean field approximation in which an iteraction problem is
replaced by the effective non-interacting systems with the self-consistiatdy-
mined solutions. For infinite-range systems with scalingf/ with the numbers
of spins N such a consideration can be performed exactly. The infinite-range
models are usually proved by the procedure of mapping to macroscojzblesr
with dominated generating functionals.

As concerns phenomenon of nonlinearities that is great interesting pheno
ena in the technical systems, physics, biophysics, neurobiology, gcotedicine
and other scientific fields. This phenomenon frequently arises evenhichpao-
cesses influences to the attractor structures and behavior of the dyneteins
states, self-organized topological structures as the dissipative drolees. Many
physical as well as biophysical systems are characterized by noitiiegafhey
frequently have a control parameter dependent on its value in evolutstatek,
the systems must be stable or unstable.

Many questions connected with phenomenona of nonlinearities and their in-
fluence in the different areas of the applied Ising physics have bewsideved
in the review, however, the topic of nonlinearities in the technical, physiadl, a
other systems is rather wide and, of course, cannot consider in onle.akive
hope that this review though partially fills the insufficient discussed scieatiia
of the nonlinear applied physics.
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