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1

A large number of non-parametric methods designed for statistical estimation of
the density function of random vectors are used in the modern data andliysis
kernel density estimators are the most common ones [1, 2]. Spline [3, 4] and
semi-parametric [5, 6] algorithms are also popular. Application of many popula
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Abstract. This paper discusses a multimodal density function eskimat
problem of a random vector. A comparative accuracy anatyfsseme popular
non-parametric estimators is made by using the Monte-Qathod. The
paper demonstrates that the estimation quality increagedficantly if the
sample is clustered (i.e., the multimodal density funci®m@pproximated by
a mixture of unimodal densities), and later on, the denstinration methods
are applied separately to each cluster. In this paper, thplsds clustered using
the Gaussian distribution mixture model and the EM algarithThe highest
efficiency in the analysed cases was reached by using tlaiveeiprocedure
proposed by Friedman for estimating a density componenesponding to
each cluster after the primary sample clustering mention&tle Friedman
procedure is based on both the projection pursuit of multit@ observations
and transformation of the univariate projections into thendard Gaussian
random values (using the density function estimates oktpegjections).
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I ntroduction

non-parametric estimation procedures in practice encounters a probtgrtinél
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parameter selection. The most important element of the kernel density esimator
is the smoothing bandwidth. Spline knots selection for spline estimators is also
a difficult task. Though there exists a lot of adaptive proceduresdigcton
of mentioned parameters [2, 7-9], the efficiency is low in the case of a small
sample size. It is advisable to apply the data projection technique [10-123%in th
case, because the parameter selection problem becomes more difficulthghe
dimension of the observed random vectors increases.

Let X be ad-dimensional random vector with a density functipfx). Let
T c R< be a unit sphere. For eaehec T, the scalar product’ X will denote
the projection of a random vectoY onto a directionr. Its density function
will be denoted byf,(u),u € Rl LetX = (X(1),...,X(n)) be a sample
of independent copies of . The density functiorf(z) could be estimated using
the two-stage procedure:

1. The estimateg}(u) are calculated for each € Ty, whereTj is a finite set
of random points of".

2. The density functiorf(z) is estimated by f,(-), 7 € Tp}.

The multivariate density function estimate could be obtained using the in-
version formula [12] if we have density function estimates for the large gimou
number of the univariate projections. One of such estimators is analysed in th
paper (expressions (2) and (3); Section 2).

The idea proposed by J. H. Friedman [10] is more delicate. It facilitates ove
coming much difficulty in applying the previously mentioned inversion formula,
namely: selection of a smoothing parameter, a large number of projecteitydens
estimates, etc.

Friedman has developed the idea of Huber [13], who considered thesiaau
distribution to be least “interesting” (because it is so common), and prdpose
an iterative algorithm, based on both the sequential search of univarate p
jections, whose distribution function is most different from the Gaussia on
and transformation of those projections into the Gaussian random valuets. L
Z be a standardized random vector (i.e., random vector with zero mean and
unit covariance matrix) with an unknown density functifte). The valueZ
is transformed after each steﬁ,(k) = Qr(Z2), k = 1,2,.... Let us define
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ZO) = z. z*) is obtained fromz (1) by the following procedure. Lej(u),

u € R! denote the density function of univariate projectider *~1), where the
direction vectorr = 7(k) is selected so thaf; differs most from the standard
normal densityy. Let us denote the corresponding distribution functiong-hy
and®. We define

7% = 20D (¢ zE=Dyr 4 o7 (G (7' 20 1)) 7

Thus, the random vectdf(*~1) is transformed in such a way that the projection
of Z(*) onto the directionr would have the distribution functio®, and the
projection to the direction orthogonaltavould remain unchanged. Friedman has
proved [10] that the random vectdt*) converges in distribution to the standard
Gaussian random vector As— oc. Thus, for large enought/,

M (k) z(k=1)
f2) =" T a0 )

S EC) @

wherez(*) = Q,(z). Friedman’s statistics is obtained by substituting statistical
estimates for the unknown univariate density functignsnto the right side of
expression (1). Many-sided analysis results obtained by the authdrether
scientists has showed sufficiently good properties of this density funcsitin e
mator [14]. It is evident that, the more the analysed multivariate distribution
is similar to the Gaussian distribution, the more accurate the estimator is. |If
this method is used to estimate multimodal density functions, larger errors are
obtained. This conclusion can also be applied to other estimation methods under
investigation.

One of the possible ways to increase the estimation accuracy is to reduce the
problem of a multimodal density analysis to the estimation of unimodal densities
by treating the density analysed as a mixture of unimodal densities. The swuthor
suggest performing sample clustering at the first stage of analysis &nthes
ting each component of distribution mixture separately at the second sthge. T
constructive procedure [15] based on approximation of the sample distrib
by the Gaussian mixture can be used for sample clustering. The clustening ca
also be performed by EM algorithm with a random start. The idea of preliminary
clustering is not new. Originally it has been used only for the popularekern
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density estimator. The authors are thankful to the referee for taking aofote
papers [16] and [17]. The aim of this paper is to determine whether thgeusa
of the preliminary sample clustering decreases estimation errors of multimodal
densities. For such density functions, a comparative accuracy anafysisous
non-parametric estimators is made by the Monte-Carlo method. This paper com-
prises the following sections: Section 2 reviews the density estimators; S8ction
describes the EM algorithm used for sample clustering; Section 4 contains the
simulation results and conclusions. The accuracy of the estimators is f@esen
(by means of figures and tables) in appendices.

2 Theanalysed algorithms

The comparative analysis of estimation accuracy was made using fivesdiffer
methods. The density function estimators were selected as represerafpiees
pular different technique estimators which were studied experimentally gy oth
researchers. The exception is the first procedure which is new. DméeMCarlo
method was used to analyse the following statistical estimators of the density
function:

1. The inversion formula-based density estimator (IFDE), which is pexpby
the authors of this paper.

2. The method based on projection pursuit and sequential normalizatioo-of p
jections proposed by Friedman (PPDE).

3. Silverman’s adaptive kernel density estimator (AKDE). A separatewiaith
is used for each observation.

4. The semi-parametric kernel density estimator (SKDE) analysed by Hibti an
Holmstrém, who decomposed a random vector into two subvectors. The
density of one of these vectors is estimated by the kernel density estimator,
while the density of the other is approximated by the normal density function.

5. The log-spline density estimator (LSDE) proposed by Kooperber&tore.
The logarithm of the analysed density is approximated by the sum of cubic
B-splines.
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Before applying the above methods, the sample is standardized (except fo
the last method), i.e., the sample is transformed to have a zero mean and a unit
covariance matrix. Let us describe these methods in more detail.

2.1 |IFDE algorithm

Using the inversion formula and passing to spherical coordinates, wigobta

f(x) =c(d) / ds/e_imlzd)(zn)ud_l du,z € R?, 2)

{reT} 0

wherey(z) < Eeit'X is the characteristic function(d) = d 2=%r % /T(4 + 1),
I' is a Gamma function, and the outer integral is the surface integral overithe un
sphere. Using expression (2), we obtain the estimator (originally prdpo$&2])

o0

fla) = c(d) Z /ewr’x@(u)udle,\ﬁ du 3)

T€TH 0

here the sef} consists ofA// random points uniformly distributed on the sphere
T, the factore=*" is used for additional smoothing anﬁ(-) is the Fourier
transform of the univariate projectiof X density function estimatg?r. The
estimateﬁ was obtained by AKDE procedure with the Gaussian kernel function.
This enables us to calculate the integral on the right side of the expre&ion (
analytically. For each € Ty,

F) =1 Zso(”‘;—fm)/hj, hy = hy(r) @

=1

and
@T(u) = % Zexp (iut' X (j) — hjzu2/2).
j=1

The smoothing parametarwas selected using the cross-validation method [18],
for M = 10000.
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2.2 PPDE algorithm

This estimator is defined by equality (1). The projective estimator, on the tfasis
the Legendre orthogonal polynomial, was used for estimating dengitiesthe
univariate projections. This estimator is identical to that used by Friedman. Le
&1,...,&, be univariate random values with a density functigm). Applying

the transformatiom;, = 2®(¢;) — 1, v = 2®(u) — 1, we obtain random values
n,- - ., N, With densityg*(v) = 9(w_\vhich is supported on the interviat1,1].

T 2p(u)’
Using the expansion in the Legendre polynomial b@&a}s};‘ia

g W) = bitr(v)
§=0

and replacing the coefficients = (j+1/2)Ew;(n;) by their empirical analogues,
we obtain the estimator

90) =00 Y LTS (). (5)
y=0 k=1

According to the recommendations [1], the order of expansion (5) was as
sumed to bes < 6. Projection directions, assuring the maximal absolute values
of empirical skewness and kurtosis, were selected.

2.3 AKDE algorithm

The kernel density estimator with the variable bandwidth is defined by the follo-
wing expression

-~ I ~1 _[(z2-2Z(4)

f(z)—;j;h—?f((ihj ) (6)
The algorithm is identical to the procedure defined in [1]. The standaud$tan
kernel functionp is used. The bandwidth is defined by

n=h(F(zG)/a)

whereh = (m)ﬁ, f(~) is the kernel density estimator (6) obtained by
substitutingh for h;, ¢ = exp(%log Z;;l f(Z(j))) and v is the sensitivity
parameter. As proposed in [1], values of the parametare chosen from the
set{0.2,0.4,0.6,0.8} using the cross-validation method.
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2.4 SKDE algorithm

The observed-dimensional random vectdf is decomposed into two sub-vectors
X = (}). Thus, the sample is decomposgd= (). The density functiorfy (-)

is presented as the product of the density function of random véttand a
conditional density function of random vectgt i.e.,

fx(@) = fy®) fzy(zly), where x = (y> € RY.

z

The density functioryy (y) is estimated using the kernel method, analogous
to (6), with the constant kernel bandwidih Subvectory” and the kernel band-
width h are selected by the cross-validation method [19] as suggested in [6].
The conditional densityzy (-|y) is approximated by the Gaussian distribution
N(m(y),C(y)). The conditional meamn(y) and the conditional covariance
matrix C(y) of the random vectoyY” are defined by the equalities

my) =Y Wiy, Y)Z(5)
Jj=1
and
Cly) =D Wiy, Y)(2() — m(y)) (Z2(5) — m(y))
j=1

o( y=Y(j) )
whereW}, ;(y,Y) = b

" Lp('y*i}:(j)) '

2.5 LSDE algorithm

The log-spline density estimator approximates the logarithm of the multivariate
density function by the sum of splines

Fla) = exp (éﬂij(x) ).

for the given set of basis function3,, ..., B; with the coefficient vectog =
(61,-..,03s) and the normalizing factof’(3). The procedure proposed by Ko-
operberg and Stone applies the cubic B-splines to estimate univariate densitie
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The spline knots are selected using the Akaike information criterion [2@, an
the spline coefficients are calculated using the maximum likelihood method. The
estimate of the multivariate density function is the product of univariate spline
density estimates. To calculate this estimate, the software [21] is used.

3 Sampleclustering using the EM algorithm

If the density function of the random vectdr hasq maxima, it can be approxi-
mated by a mixture of unimodal densities

f@) =" pror(). ()
k=1

Let the distribution ofX depend on the random variablethat assumes
valuesl, ..., ¢ with probabilitiespy, ..., p,, respectively. In the classification
theory, v is interpreted as the number of the class the object belongs to, and
each observatioX (¢), t = 1,...,n has a corresponding class numbgt).

The functionsp;, are treated as conditional densities giver= k. Using this
approach, the soft clustering problem is equivalent to the estimation pnaifle
posterior classification probabilities

mp(z) =P{v = k| X =k}

for eachz € {X(1),...,X(n)}. A hard clustering problem is equivalent to
the estimation problem of random variabked ), ...,v(n). In this paper, hard
clustering is used for the density function estimation. The sample is decomposed
into subsets using the following decision rule

v(t) = arg max T (X (1)). (8)

The estimate&), are obtained applying the approximation of unknown den-
sity components;. by the normal density function and using the EM algorithm.
Let expression (7) be valid ang, be density functions of the normal distributions
N(M(k),R(k)), k = 1,...,q. In this case, let us denote the right side of the
expression (7) byf (z, 0), whered = (py, M (k), R(k),k = 1,...,q). Then the
following expression holds

_ prr()
k( )_ f(l',(g) 5

k=1,q. %)

400



Application of Clustering in the Non-Parametric Estimation of Distribution Density

Having the estimate of, the estimates of, are obtained from expression (9)
by the “plug-in” method, i.e., by replacing unknown values on the right sfde o
the expression with their statistical estimates. The EM algorithm is an iterative
procedure for finding the maximum likelihood estiméteof 6,

0" = argmax L(0), L(0) = [17(x@®).0) (10)

and the corresponding estimatgs Assume that the estimaté&s = 7?,(;) after

r iterations of the procedure. Then a new vale= 6(+1) is defined by the
equalities

Pe= > Rl(X(0)
) = 2o 33 (X(0) X0
R =L : 7 (X(0) [X(0) — M) [X(0) - M(B)]'
wherek = 1,...,q. By insertingé\(’"“) into the right side of expression (9),

we find7("+1 (X (¢)), k = T,¢, t = 1,n. Using the above iterative procedure,
we obtain a non-decreasing sequerlic@”), whose convergence to the global
maximum depends on the selection of the initial vai(fé (or 7(?)). The simplest
solution of the initial value selection problem is the random start technique. Th
EM algorithm is repeatedly applied, using the random initial vaftiés Finally

the estimatd is selected if it gives maximum tﬁ(@). The number of clusters

is selected, using the cross-validation method [18]. Sufficiently goodtsese
also obtained applying the automated procedure to sgféct

4 Monte-Carlo simulation

The comparative analysis of the mentioned density estimation methods has been
made exploring the data that was used by J.N. Hwang, S.R. Lay and A. Lippma
in their paper. Mixtures of the multivariatel (= 2,5) Gaussian and Cauchy
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distributions with independent components are used. So, the density fisofio
the data are defined as follows:

x) =Y pifn(z,M;,0;) (Gaussian mixture)
=1
or

q
v) =Y pifolx, M;,u;) (Cauchy mixture)
=1

with restrictions) 7, p; = 1,p; > 0,7 =1,q. Here

1 1 —myj)?
fN(x7Mi70-i):d7€Xp <_§Z Z] >7
H O’Z‘j\/27l’ J=1 U

fo(z, My, u;) = H

(fﬁ mm)z) .

Unimodal distribution

The very first data generated are of unimodal distribution with the following
parameters: for the Gaussian distribution,

p=1, m=(0.0,0.0,0.0,0.0,0.0), o= (0.84,1.02,0.70,1.20,0.96)’;
for the Cauchy distribution,
p=1, m=(0.0,0.0,0.0,0.0,0.0)", u = (0.84,1.02,0.70, 1.20,0.96)".

In cased = 2, 4, the parameters are defined by the fitstlements of the given
5-dimensional parameter.

Slightly overlapping bimodal distribution

Data of the second type are of slightly overlapping bimodal distribution with the
following parameters: for the Gaussian distribution,

p1=0.65, m1=(0.0,0.0,0.0,0.0,0.0)’, o> =(0.42,0.51,0.35,0.60, 0.48)’,
p2=0.35, my=(2.0,2.0,2.0,2.0,2.0)’, c2=(0.33,0.46,0.53,0.43,0.45)";
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for the Cauchy distribution,
p1=0.65, m;=(0.0,0.0,0.0,0.0,0.0)", u;=(0.42,0.51,0.35,0.60, 0.48)’,

p2=0.35, my=(2.0,2.0,2.0,2.0,2.0)", up=(0.33,0.46, 0.53,0.43,0.45)’.

Highly overlapping bimodal distribution

Data of the third type are og highly overlapping bimodal distribution with the
following parameters: for the Gaussian distribution,

p1=0.65, my =(0.0,0.0,0.0,0.0,0.0), o2 =(0.84,1.02,0.70, 1.20, 0.96)’,
p2=0.35, my=(2.0,2.0,2.0,2.0,2.0)’, o3=(0.66,0.92,1.06,0.86,0.90)';

for the Cauchy distribution,

p1=0.65, m1=(0.0,0.0,0.0,0.0,0.0)’, uy = (0.84,1.02,0.70, 1.20, 0.96)’,
p2=0.35, ma=(2.0,2.0,2.0,2.0,2.0)', up=(0.66,0.92, 1.06,0.86,0.90)".

For each type of data, for both distributions (Gaussian and Cauchyfpand
each dimensiond( = 2, 5), samples of sizes 200, 400, 800, 1600 and 3200 are
generated. In each case, simulation is repeated 100 times.

The deviation of the approximatignof function f is measured by

5 = E(g(X) - f(X))*/Df(X).

This measure was proposed in [1], and we make use of it in order to obtain
comparable results. We define

= Err/Var

by substituting the density function fgi, as well as the estimathrfor g, and by
taking empirical analogues of unknown values. Here = %Z?Zl(ﬁ — f1)?
stands for the mean square error, whére= f(X(¢)) is a value of the true
density at the observation point, ahdr = 2 3% | (f, — f)?, wheref signifies
the average of4, ..., fn.
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Simulation results

The results of errors of the analysed methods for the best selected wdiltie
parameters are presented in appendices A, B, and C. The typical models a
presented. For other data models, the accuracy analysis results are gimilar
the presented ones. For each method, the arithmetic mean of the errortealcula
using 100 simulations is presented in figures. Appendix A contains the density
estimation results for AKDE, PPDE, IFDE, LSDE, and SKDE methods when
the primary data clustering is used. The data clustering was performed, usin
automated clustering software (developed by Institute of Mathematics amd Inf
matics, Vilnius) which is based on the EM algorithm. Appendix B contains the
density estimation results for AKDE and PPDE methods, with the preliminary
data clustering in use and without it. Appendix C contains the accuracysimaly
results for the density estimators. The results, obtained by means of AK®E an
PPDE, are similar to those obtained by J.N. Hwang, S.R. Lay and A. Lippman,
i.e., in the case of small sample sizes and heavy tails (Cauchy samples), it is
better to use the kernel density estimators, in the case of large data dimensions
and large sample sizes (400 and more observations), or in the case @iitbgi@h
distribution, better results are obtained using the projection pursuit dessityee

tor. In the case of th&-dimensional Gaussian distribution, quite good results are
obtained using the IFDE method, based on the inversion formula. The pratimina
data clustering into homogeneous groups, using automatic EM algorithm, énable
us to reduce errors 2-3 times in the case of a small sample, and up to 5 times in
some other cases. For large samptes=( 1600, 3200), the error reduction ratio
equals 1.05-2. A conclusion can be drawn that unambigudeBIE is the best
estimator. For unimodal Gaussian and Cauchy distributions, estimation errors
decrease (especially in the case of small samples) up to 4.6 times, provided the
preliminary data clustering is applied. SKDE estimations are good enough in the
case of unimodal Gaussian densities. &a@limensional mixture densities, IFDE
turned out to be a good estimator either. It has been found out that, in sE®®, C
very accurate results could be obtained by the LSDE method, however in th
cases with outliers, LSDE yielded great errors that increased thellewezeaged

error of this method. The IFDE algorithm is very slow in comparison with other
methods.

404



Application of Clustering in the Non-Parametric Estimation of Distribution Density

Appendix A

The density estimation results are presented. Preliminary data clusteringlis use
Each figure corresponds to a different sample distribution.
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Appendix B

The efficiency analysis of the preliminary data clustering is presentedh. figare
corresponds to a different sample distribution.
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Appendix C

The tables illustrate the averaged errors (in bold) and their standardidevia

Table 1. Single mode 4-dimensional distributions

Method

Gaussian distribution

Cauchy distribution

n = 400

with
cluster.

without
cluster,

n =
with
cluster.

1600
without
cluster,

n = 400

with
cluster.

without
cluster,

n = 1600

with
cluster.

without
cluster.

AKDE

0.2055
0.0289

0.1178
0.0121

0.1455
0.0169

0.0845
0.0169

0.1994
0.0056

0.1787
0.0324

0.1283
0.0014

0.1052
0.0051

PPDE

0.1260
0.0088

0.0668
0.0141

0.0457
0.0061

0.0243
0.0061

0.1804
0.0034

0.1115
0.0109

0.0445
0.0073

0.0323
0.0031

IKDE

0.1764
0.0063

0.1661
0.0178

0.1260
0.0037

0.1159
0.0059

0.2099
0.0087

0.1900
0.0278

0.0777
0.0094

0.0719
0.0118

LSDE

0.1208
0.0066

0.1099
0.0126

0.1729
0.0107

0.0729
0.0045

SKDE

0.0993

0.0124

0.0541

0.0015

0.1908

0.0032

0.0647
0.0071
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Table 2. Bimodal slightly overlapping 4-dimensional mpdsi

Method

Gaussian mixture

Cauchy mixture

n = 400

with
cluster.

without | with
cluster,| cluster.

n = 1600

without

with

cluster,| cluster.

n =400 n = 1600

without| with  without
cluster| cluster. cluster.

AKDE

0.2963
0.0550

0.2531 | 0.2495
0.0166| 0.0706

0.1882

0.2173

0.0178| 0.1644

0.1755 | 0.1706 0.1257
0.0466| 0.0861 0.0214

PPDE

0.2219
0.0242

0.0928 | 0.0590
0.0137| 0.0229

0.0328
0.0148

0.2106
0.0804

0.2027 | 0.1834 0.1057
0.0598 0.0266 0.0224

IKDE

0.2530
0.0621

0.2531 | 0.1841
0.0017| 0.0316

0.1766
0.0017

0.2270
0.0685

0.2124 | 0.1851 0.1732
0.0037| 0.0847 0.0214

LSDE

0.1281
0.0148

0.0824
0.0136

0.2130 0.1378
0.0283 0.0077

SKDE

0.1393
0.0107

0.0759

0.0147

0.2011 0.1418
0.0313 0.0201

Table 3. Bimodal highly overlapping 4-dimensional mixtsire

Method

Gaussian mixture

Cauchy mixture

n =
with
cluster.

400 n = 1600
without| with  without

cluster| cluster.

cluster.

n =
with
cluster.

400 n = 1600
without| with  without
cluster) cluster. cluster.

AKDE

0.2526
0.0471

0.1049 | 0.2039 0.0629

0.0058| 0.0729

0.0094

0.2478
0.0889

0.1946 | 0.1416 0.1341
0.0123 0.0434 0.0109

PPDE

0.1684
0.0278

0.0512 | 0.0591 0.0412

0.0106| 0.0050

0.0063

0.1879
0.0078

0.1628 | 0.1403 0.0912
0.0429 0.0165 0.0021

IKDE

0.2563
0.0122

0.2321 | 0.1808 0.1644

0.0018 0.0050

0.0052

0.2496
0.0258

0.2239 | 0.1455 0.1427
0.0518 0.0373 0.0213

LSDE

0.1772 0.1213
0.0061 0.0055

0.2184 0.1352
0.0299 0.0106

SKDE

0.0801 0.0809
0.0078 0.0097

0.2193 0.1245
0.0047 0.0056

409



T. Ruzgas, R. Rudzkis, M. Kavaliauskas

References

1.

10.

11.

12.

13.

14.

15.

J.N. Hwang, S.R. Lay, A. Lippman, Nonparametric Multiaée Density
Estimation: A Comparative Study=EE Transactions on Sgnal Processing, 42(10),
pp. 2795-2810, 1994.

D.W. Scott,Multivariate Density Estimation: Theory, Practice, and Visualization,
New York: JohnWiley, 1992.

C. Kooperberg, Bivariate density estimation with an agpion to survival analysis,
Journal of Computational and Graphical Satistics, 7(3), pp. 322—-341, 1998.

. T. Takada, Nonparametric density estimation: A compagrastudy, Economics

Bulletin, 3(16), pp. 1-10, 2001.

A.R. Gallant, D. W. Nychka, Semi-nonparametric Maximuikelihood Estimation,
Econometrica, 55(2), pp. 363—-390, 1987.

F. Hoti, L. Holmstrém, Application of Semiparametric ity Estimation to
Classification, in1CPR, 3, pp. 371-374, 2004.

. C. Gu, C. Qiu, Smoothing spline density estimation: tiieAnnals of Satistics,

21(1), pp. 217-234, 1993.

W. Hardle, M. Miller, Multivariate and semiparametric kernel regression, New
York: Wiley, 2000.

C.J. Stone, M. Hansen, C. Kooperberg, Y.K. Truong, Patyiab Splines and
Their Tensor Products in Extended Linear Modelidgnnals of Statistics, 25(4),
pp. 1371-1470, 1997.

J.H. Friedman, W. Stuetzle, A. Schroeder, Projectiorsytidensity estimation,
Journal of the American Satistical Association, 79, pp. 599-608, 1984.

J.H. Friedman, Exploratory projection pursuiurnal of the American Satistical
Association, 82(397), pp. 249-266, 1987.

M. Kavaliauskas, R. Rudzkis, Projection-based Estomatof Multivariate
Distribution Density, Lietuvos matematikos rinkinys, 42(spec. nr.), pp.529-536,
2002.

P.J. Huber, Projection pursuftnnals of Statistics, 13(2), pp. 435475, 1985.

J.Cwik, J. Koronacki, Multivariate density estimation: A cparative studyNeural
Computing and Applications, 6(3), pp. 173-185, 1997.

R. Rudzkis, M. Radavicius, Statistical Estimations oMature of Gaussian
Distributions,Acta Applicandae Mathematicae, 38(1), pp. 37-54, 1995.

410



Application of Clustering in the Non-Parametric Estimation of Distribution Density

16.

17.

18.

19.

20.

21.
22.

23.

T. DuongBandwidth matrices for multivariate kernel density estimation, PhD thesis,
2004.

B. Jeon, D. A. Landgrebe, Fast Parzen Density Estimatging Clustering-Based
Branch and Bound EEE Transactions on Pattern Analysisand Machine Intelligence,
16(9), pp. 950-954, 1994.

M. J. van der Laan, S. Dudoit, S. Keles, Asymptotic Oplityaf Likelihood-Based
Cross-Validation Satistical Applications in Genetics and Molecular Biology, 3(1),
2004.

B.W. Silverman,Density Estimation for Statistics and Data Analysis, London:
Chapman and Hall, 1986.

H. Akaike, A new look at the statistical model identifioat |EEE Trans. AC, 19(6),
pp. 716-723, 1974.

http://bear.fhcrc.org/ clk/

M.H. Hansen, C. Kooperberg, Spline Adaptation in Exéehd.inear Models,
Satistical Science, 17(1), pp. 2—20, 2002.

M. C. Jones, J.S. Marron, S.J. Sheather, A Brief SurveBasfdwidth Selection
for Density EstimationJournal of the American Statistical Association, 91(433),
pp. 401-407, 1996.

411



