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Department of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
jonas.siaulys@mif.vu.lt; kocetova@gmail.com

Received:24.05.2006 Revised:24.09.2006 Published online: 30.10.2006

Abstract. It is considered the classical risk model with mixed exponential claim
sizes. Using known results it is obtained the explicit expression of the Gerber-
Shiu discounted penalty function

ψ(x, δ) = E
(

e−δT
1(T <∞)

)

,

by some infinite series. Hereδ > 0 is the force of interest,x – the initial reserve
andT – ruin time.

The dependance of the discounted penalty function on the main parameters
x, θ, λ, δ, α, σ, ν is presented in diagrams, whereλ > 0 is the parameter of
Poisson process,θ > 0 is the safety loading coefficient,0 ≤ α ≤ 1 andσ, ν > 0
are the parameters of the mixed exponential distribution.

Keywords: classical risk model, time to ruin, Gerber-Shiu discountedpenalty
function, mixed exponential distribution.

1 Introduction and main result

In 1957, E. Sparre Andersen [1] proposed a mathematical model, which was

applied to the risk business of an insurance company. This model can be char-

acterized in the following way. Suppose, that the premium rate of an insurance

company isc. Claims occur at the times0 < T1 < T2 < . . .. The i-th claim

arriving at timeTi causes the claim severityYi. Then the capital of the company

413



J. Šiaulys, J. Kǒcetova

at a given timet is defined by

U(t) = x+ ct−
N(t)
∑

n=1

Yn, where N(t) = max{k : Tk ≤ t}

andx is an initial reserve atT0 = 0. The timeT when the capitalU(t) falls the

first time below zero is called ruin time:

T = inf
{

t > 0: U(t) < 0
}

.

The function

ψ(x) = P (T <∞)

is called the probability of ruin. In described model, we suppose thatY, Y1, Y2, . . .

is the sequence of i.i.d. random variables.T1, T2 − T1, T3 − T2, . . . is another

sequence of i.i.d. random variables. In addition, sequences of r.v.Y, Y1, Y2, . . .

andT1, T2 − T1, T3 − T2, . . . are mutually independent. IfT1 has the exponential

distribution with positive parameterλ > 0, thenN(t) is the Poisson process with

the same parameterλ. Usually such model is called theclassicalor Lundberg’s

model.

In 1998, H. Gerber and E. S. Shiu [2] proposed, instead of the probability of

ruin ψ(x) = P (T < ∞) in the classical risk model, to analyze the discounted

penalty function

ψ(x, δ) = E
(

e−δT
1(T <∞)

)

, δ > 0,

which describes the expectation of the present (current) value of future bankruptcy.

Hereδ is the force of interest andT is the ruin time. In this case the penalty at the

momentT is accepted to be unitary. It is clear, that

ψ(x, 0) = P (T <∞) = ψ(x).

Therefore,ψ(x, δ) is more general thanψ(x).

In the work we analyze the classical model with mixed exponential claims.

Our purpose is to find the explicit expression of the Gerber-Shiu penalty function

ψ(x, δ) in this case.
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In 2000, a lot of fundamental results about the properties ofψ(x, δ) were

presented by X. S. Lin and G. E. Willmot [3]. For example, it is known that

the Laplase transform of the Gerber-Shiu penalty function satisfies the defective

renewal equation and thatψ(x, δ) can be expressed by the tail of compound

geometric distribution. We formulate one of these assertions below.

Theorem 1. [3] (see also[4,5]) Assume that claim sizesY1, Y2, . . . in the classi-

cal model have absolutely continuous distributionY with a d.f.H(y) and a mean

EY . Let the premium rate bec = λEY (1 + θ), with θ > 0. Then

ψ(x, δ) =
∞
∑

n=1

(1 − φ)φnF̄ ∗n(x), (1)

where

F̄ (x) =

∞
∫

0

e−ρyH̄(x+ y)dy

∞
∫

0

e−ρyH̄(y)dy

, (2)

φ =

∞
∫

0

e−ρyH̄(y)dy

(1 + θ)EY
, (3)

andρ is the unique non-negative root of the Lundberg equation

λ

∞
∫

0

e−ρyH(y)dy = λ+ δ − cρ. (4)

In 2003, S. D. Drekic and G. E. Willmot [6] obtained the expression forψ(x, δ)

[6] (see also [3, 7] and [8]) under exponential claim sizes. They have demon-

strated, that

ψ(x, δ) = φe−µx(1−φ),

where

φ =
µ

(1 + θ)(µ+ ρ)
and ρ =

λ+ δ − cµ+
√

(λ+ δ + cµ)2 − 4cλµ

2c
.
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Using this equation, in mentioned paper they obtained the expression for the

density function of time to ruin.

In 1999, X. S. Lin and G. E. Willmot [9] considered functionψ(x, δ) in the

classical risk model with the individual claimY having the mixed exponential

distribution. Unfortunately, the proposed expression depends on the roots of the

Lundberg equation and it is rather difficult to calculate the values ofψ(x, δ) for

the concrete parametersx, δ, λ, ν, σ, α.

In 2005, using the double Laplace transform, J. M. A. Garcia [8] obtained the

expression for the density function of time to ruin in the case when claimY has

mixed exponential distribution and whenY has Erlang(2) distribution.

In this work, we establish the explicit expression forψ(x, δ) in case of mixed

exponential claim sizesY1, Y2, . . .. More precisely, we examine the case, when

for all y ≥ 0

P (Y ≤ y) = H(y) = α(1 − e−σy) + (1 − α)(1 − e−νy), (5)

whereν, σ > 0, 0 ≤ α ≤ 1. In Section 3, we present several graphs of

discounted penalty function. We can see from these graphs howψ(x, δ) depends

on initial capitalx, interest rateδ, security loadingθ, intensity of the Poisson

processλ and parameters of individual claim distributionσ, ν, α.

The next statement is the main result of this paper.

Theorem 2. Let individual claims in the classical model has d.f.H(y) defined

by [5]. Let, further, the parameter of Poisson process beλ > 0 and the relative

security loadingθ > 0. Then

ψ(x, δ) =
∞
∑

n=1

(1 − φ)φn

(a+ b)n

[

bne−νx
n−1
∑

j=0

(xν)j

j!
+ ane−σx

n−1
∑

j=0

(xσ)j

j!

+
n−1
∑

k=1

(

n

k

)

(aσ)k(bν)n−k

(

(−1)k−1

(k − 1)!
V1 +

(−1)n−k−1

(n− k − 1)!
V2

)

]

,

(6)

where

V1 =
e−σx

(n− k − 1)!

k−1
∑

i=0

(

(

k − 1

i

)

(n− k + i− 1)!(σ − ν)k−n−i

σk−i

×
k−1−i
∑

j=0

(xσ)j(k − 1 − i)!

j!

)

,

(7)

416



On the Discounted Penalty Function for Claims Having Mixed Exponential Distribution

V2 =
e−νx

(k − 1)!

n−k−1
∑

i=0

(

(

n− k − 1

i

)

(i+ k − 1)!(ν − σ)−i−k

νn−k−i

×
n−k−1−i
∑

j=0

(xν)j(n− k − 1 − i)!

j!

)

,

(8)

a = α(ρ− ν), b = (1 − α)(ρ− σ),

φ =
σν
(

αν + (1 − α)σ + ρ
)

(1 + θ)
(

αν + σ(1 − α)
)

(ρ+ σ)(ρ+ ν)
,

ρ =
1

6

3

√

E + 12
√
F − 2C − 2

3B
2

3
√

E + 12
√
F

− B

3
,

E = 36BC − 108D − 8B3,

F = 12C2 − 3B2C2 − 54BCD + 81D2 + 12B3D,

B = (ν + σ) − λ+ δ

c
,

C = νσ − (λ+ δ)(σ + ν)

c
+
λ

c

(

ασ + (1 − α)ν
)

,

D = −δνσ
c
,

c =
λ
(

αν + (1 − α)σ
)

νσ
(1 + θ).

2 Proof of Theorem 2

In this section, applying the equality (1) we will prove equality (6). Let

H̄(y) = 1 −H(y) = αe−σy + (1 − α)e−νy, y ≥ 0.

The expectation of the claimY is

EY =
α

σ
+

1 − α

ν
=
αν + (1 − α)σ

σν
.

The proof of (6) we split into three steps.
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Step 1.Firstly we will find the quantityφ. From (3) we have that

φ =
σν

(1 + θ)
(

αν + (1 − α)σ
)

∞
∫

0

e−ρy
(

αe−σy + (1 − α)e−νy
)

dy

=
σν
(

αν + (1 − α)σ + ρ
)

(1 + θ)
(

αν + σ(1 − α)
)

(ρ+ σ)(ρ+ ν)
,

(9)

whereρ is non-negative root of the Lundberg equation (4):

λασ

ρ+ σ
+
λ(1 − α)ν

ρ+ ν
= λ+ δ − cρ, (10)

with

c =
λ
(

αν + (1 − α)σ
)

νσ
(1 + θ).

Equation (10) is equivalent to

cρ3−
(

λ+δ−c(ν+σ)
)

ρ2+
(

λ
(

ασ+(1−α)ν
)

−(λ+δ)(σ+ν)+cνσ
)

ρ−δνσ = 0.

Let

B =(ν + σ) − λ+ δ

c
, D = −δνσ,

C =νσ − (λ+ δ)(σ + ν)

c
+
λ

c

(

ασ + (1 − α)ν
)

.

The last equality implies

ρ3 +Bρ2 + Cρ+D = 0. (11)

From the graph in Fig. 1, we note, that the equation (7) has the unique non-

negative root.

Consequently, the equation (11), which is equivalent to (10), also has the

unique non-negative root. Applying Kardan’s formula we find this root

ρ =
1

6

3

√

E + 12
√
F − 2C − 2

3B
2

3
√

E + 12
√
F

− B

3
,

where

E =36BC − 108D − 8B3,

F =12C2 − 3B2C2 − 54BCD + 81D2 + 12B3D.
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Fig. 1. Roots of equation (10).

Step 2.Now the distribution functionF (x) will be found. Applying (2) we get

F̄ (x) =
α(ρ+ ν)e−σx + (1 − α)(ρ+ σ)e−νx

α(ρ+ ν) + (1 − α)(ρ+ σ)
.

Let

a = α(ρ+ ν), b = (1 − α)(ρ+ σ).

Then we can rewritēF (x) as

F̄ (x) =
ae−σx + be−νx

a+ b
,

and consequently,

F (x) =
a(1 − e−σx) + b(1 − e−νx)

a+ b
.

Step 3. In this part, the expression for̄F ∗n(x) will be obtained. In our case the

density function of the distribution functionF (x) is

p(x) = F ′(x) =
aσe−σx + bνe−νx

a+ b
,

and the characteristic function

ϕ(t) =

∞
∫

0

eitxp(x)dx =
1

a+ b

(

aσ

σ − it
+

bν

ν − it

)

.
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The characteristic function ofF ∗n(x) is

ϕ̂(t) =
1

(a+ b)n

(

aσ

σ − it
+

bν

ν − it

)n

=
1

(a+ b)n

n
∑

k=0

(

n

k

)(

aσ

σ − it

)k(
bν

ν − it

)n−k

.

Applying the inversion formula, we get that the density function of the distribution

functionF ∗n(x)

p̂(x) =
1

2π

∞
∫

−∞

e−itxϕ̂(t)dt

=
1

(a+ b)n

n
∑

k=0

(

n

k

)

(aσ)k(bν)n−k 1

2π

∞
∫

−∞

e−itx

(σ − it)k(ν − it)n−k
dt.

(12)

To obtain the expression of̂p(x) we have to calculate the integral

J =
1

2π

∞
∫

−∞

e−itx

(σ − it)k(ν − it)n−k
dt=

1

2πi
lim

R→∞

∫

LR

e−sx

(σ − s)k(ν − s)n−k
ds,

where the integration contourLR = {it : t ∈ [−R,R]}. Adding segments

l1, l2, l3 to the contourLR we get the closed contourγR (see Fig. 2).

Fig. 2. The contourγR.
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It is clear, that:

∣

∣

∣

∣

∫

l1

e−sxds

(s− σ)k(s− ν)n−k

∣

∣

∣

∣

≤
R
∫

0

e−uxdu
(
√

(u− σ)2+R2
)k(√

(u− ν)2+R2
)n−k

<
1

Rn

R
∫

0

e−uxdu <
1

xRn
.

Analogously,
∣

∣

∣

∣

∫

l3

e−sx

(s− σ)k(s− ν)n−k
ds

∣

∣

∣

∣

<
1

xRn

and
∣

∣

∣

∣

∫

l2

e−sx

(s− σ)k(s− ν)n−k
ds

∣

∣

∣

∣

<
2e−Rx

Rn−1
.

Hence, according to residues’ theorem,

J =
1

2πi
lim

R→∞

∫

γR

e−sx

(σ − s)k(ν − s)n−k
ds

= (−1)n+1

(

Res
s=σ

e−sx

(s− σ)k(s− ν)n−k
+ Res

s=ν

e−sx

(s− σ)k(s− ν)n−k

)

.

We remark thats = σ is thekth order pole, ands = ν is the(n−k)-th order pole,

so we get

Res
s=σ

e−sx

(s− σ)k(s− ν)n−k
=

1

(k − 1)!
lim
s→σ

(

e−sx

(s− ν)n−k

)(k−1)

and

Res
s=ν

e−sx

(s− σ)k(s− ν)n−k
=

1

(n− k − 1)!
lim
s→ν

(

e−sx

(s− σ)k

)(n−k−1)

,

for k = 1, . . . , n− 1. As

(

e−zx(z − d)−m
)(l)

= (−1)le−zx
l
∑

i=0

(

l

i

)

xl−i
(m+ i− 1)!

(m− 1)!
(z − d)−(m+i)
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we have

1

(k − 1)!
lim
s→σ

(

e−sx

(s− ν)(n−k)

)(k−1)

=
(−1)k−1e−σx

(k − 1)!

k−1
∑

i=0

(

k − 1

i

)

xk−1−i (n− k + i− 1)!

(n− k − 1)!
(σ − ν)k−n−i

and

1

(n− k − 1)!
lim
s→ν

(

e−sx

(s− σ)k

)(n−k−1)

=
(−1)n−k−1e−νx

(n− k − 1)!

n−k−1
∑

i=0

(

n− k − 1

i

)

xn−k−1−i (i+ k − 1)!

(k − 1)!
(ν − σ)−i−k

for k = 1, . . . , n− 1. If k = 0 we get

1

2πi
lim

R→∞

∫

γR

e−sxds

(ν − s)n
= (−1)n+1Res

s=ν

e−sx

(s− ν)n

= lim
s→ν

(−1)n+1

(n− 1)!
(e−sx)(n−1) =

e−νxxn−1

(n− 1)!
.

If k = n, similarly

1

2π
lim

R→∞

∫

γR

e−sxds

(σ − s)n
=
e−σxxn−1

(n− 1)!
.

Thus, obtained equalities and (12) imply

p̂(x) =
1

(a+ b)n

[

(bν)n e
−νxxn−1

(n− 1)!
+ (−1)n+1

n−1
∑

k=1

(

n

k

)

(aσ)k(bν)n−k

×
(

(−1)k−1

(k − 1)!
U1 +

(−1)n−k−1

(n− k − 1)!
U2

)

+ (aσ)n e
−σxxn−1

(n− 1)!

]

,

where

U1 = e−σx
k−1
∑

i=0

(

k − 1

i

)

xk−1−i(σ − ν)k−n−i (n− k + i− 1)!

(n− k − 1)!
,
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U2 = e−νx
n−k−1
∑

i=0

(

n− k − 1

i

)

xn−k−1−i(ν − σ)−i−k (k + i− 1)!

(k − 1)!
.

Therefore, the expression for the tail of the distribution functionF ∗n(x) is

F̄ ∗n(x) =

∞
∫

x

p̂(y)dy =
1

(a+ b)n

[

(bν)n

(n− 1)!

∞
∫

x

e−νyyn−1dy

+ (−1)n+1
n−1
∑

k=1

(

n

k

)

(aσ)k(bν)n−k

(

(−1)k−1

(k−1)!

∞
∫

x

U1dy+
(−1)n−k−1

(n−k−1)!

∞
∫

x

U2dy

)

+
(aσ)n

(n− 1)!

∞
∫

x

e−σxxn−1dy

]

.

Note, that

∞
∫

x

e−µyymdy =
e−µx

µm+1

m
∑

j=0

(xµ)jm!

j!
.

Using this expression, we get

F̄ ∗n(x) =
1

(a+ b)n

[

bne−νx
n−1
∑

j=0

(xν)j

j!

+
n−1
∑

k=1

(

n

k

)

(aσ)k(bν)n−k

(

(−1)n+k

(k − 1)!
V1 +

(−1)k

(n− k − 1)!
V2

)

+ ane−σx
n−1
∑

j=0

(xσ)j

j!

]

,

(13)

where the quantitiesV1 andV2 are defined by (7) and (8).

The desired relation (6) follows from (9) and (13).

3 Graphs

In this section, we present several plots of the discounted penalty functionψ(x, δ).

We examine the dependence of the functionψ(x, δ) on the main parameters such

as the initial capitalx (graphs:I, II ), security loadingθ (graphs:III, IV ), intensity
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λ (graphs:V, VI ), force of interestδ (graphs:VII, VIII ) and parameters of claims

distributionsα, σ, ν (graphs:IX, X, XI, XII ).

In the cases when the initial capitalx (graphsI, II ), the safety loadingθ (graphs

III, IV ), the force of interestδ (graphsVII, VIII ) and the parametersν, σ (graphsXI,

XII ) vary, we note the decreasing behavior of the functionψ(·). Looking more

closely at the parameter settings in these examples, we may examine the known

function in detail. While the fixed values ofx andθ remain large (graphsII, III,

VIII ), we observe that the value of future bankruptcy is less than in the caseswhen

these parameters are small (graphsI, IV, VII ).

Further, from graphsV andVI we note that functionψ(·) increases, when the

claim intensityλ grows. Moreover, comparing these two graphs, we see that the

value of future bankruptcy is visibly smaller whenx is bigger (graphVI). The

same tendency may be observed in the graphsIX andX. As we see, the increase of

the parameterα causes the increase of the functionψ(·).

Fig. 3. ψ(x, δ) dependance on parametersδ, σ, ν, x, θ, λ.
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Fig. 4. ψ(x, δ) dependance on parametersδ, α, σ, ν, x, θ, λ.
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