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Abstract. Itis considered the classical risk model with mixed expdiadolaim
sizes. Using known results it is obtained the explicit espien of the Gerber-
Shiu discounted penalty function

Y(x,d) = E(eiéTl(T < 00)),

by some infinite series. Hete> 0 is the force of interest; — the initial reserve
andT — ruin time.

The dependance of the discounted penalty function on the psaameters
x, 0, A\, 0, o, o, v is presented in diagrams, wheke> 0 is the parameter of
Poisson proces8,> 0 is the safety loading coefficiert,< o« < 1 ando, v > 0
are the parameters of the mixed exponential distribution.

Keywords: classical risk model, time to ruin, Gerber-Shiu discourgedalty
function, mixed exponential distribution.

1 Introduction and main result

In 1957, E. Sparre Andersen [1] proposed a mathematical model, whash w
applied to the risk business of an insurance company. This model carabe ch
acterized in the following way. Suppose, that the premium rate of an inseiran
company isc. Claims occur at the time® < T} < T» < .... Thei-th claim
arriving at timeT; causes the claim severilyj. Then the capital of the company

413



J. Siaulys, J. Kdetova

at a given time is defined by

N(#)
U(t) =z +ct—» Y, where N(t)=max{k: Ty <t}
n=1
andz is an initial reserve dy = 0. The time7" when the capital/ (¢) falls the
first time below zero is called ruin time:

T =inf {t >0: U(t) < 0}.
The function
W(z) = P(T < 0)

is called the probability of ruin. In described model, we supposeXthet, Yo, . ..
is the sequence of i.i.d. random variablés., Ty — T1,T3 — T, ... is another
sequence of i.i.d. random variables. In addition, sequences of yf¥i, Yo, . ..
andTy, Ty — 11,13 — Ty, ... are mutually independent. T; has the exponential
distribution with positive parameter > 0, thenN(¢) is the Poisson process with
the same parameter Usually such model is called th@assicalor Lundberg’s
model.

In 1998, H. Gerber and E. S. Shiu [2] proposed, instead of the piidigaf
ruin ¢ (x) = P(T < oo) in the classical risk model, to analyze the discounted
penalty function

P(x,8) = E(e*T1T < x)), >0,

which describes the expectation of the present (current) value oéfotunkruptcy.
Hered is the force of interest and is the ruin time. In this case the penalty at the
momentT is accepted to be unitary. Itis clear, that

¥(z,0) = P(T < 00) = ().

Thereforeg)(z, 0) is more general than ().

In the work we analyze the classical model with mixed exponential claims.
Our purpose is to find the explicit expression of the Gerber-Shiu penalttibn
¥ (x,d) in this case.
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In 2000, a lot of fundamental results about the properties (of, ) were
presented by X.S. Lin and G.E. Willmot [3]. For example, it is known that
the Laplase transform of the Gerber-Shiu penalty function satisfies fhetide
renewal equation and that(z, ) can be expressed by the tail of compound
geometric distribution. We formulate one of these assertions below.

Theorem 1. [3] (see alsd4, 5]) Assume that claim sizé§, Ys, . .. in the classi-
cal model have absolutely continuous distributionwith a d.f. H(y) and a mean
EY. Let the premium rate be= AEY (1 + ), with6 > 0. Then

o0

U(2,8) =Y (1 - )" F*(x), (1)
n=1
where
}Oe_”yﬁ(x +y)dy
F(z) =2 ; (2)

[ e PvH (y)dy
0

[ e i)y
0

CT By ®
andp is the unique non-negative root of the Lundberg equation
)\/e_pyH(y)dy =A+0d—cp. (4)

0

In 2003, S. D. Drekic and G. E. Willmot [6] obtained the expression/far, )
[6] (see also [3, 7] and [8]) under exponential claim sizes. Thee ltlamon-
strated, that

Y(x,0) = ¢6—W»‘(1—¢)7

where

A8 —cu+/(AN+3+cu)? —4dehu
2c '

B
(1+0)(u+p)

b= and p=
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Using this equation, in mentioned paper they obtained the expression for the
density function of time to ruin.

In 1999, X. S. Lin and G. E. Willmot [9] considered functigriz, ¢) in the
classical risk model with the individual claifi having the mixed exponential
distribution. Unfortunately, the proposed expression depends on tfe abthe
Lundberg equation and it is rather difficult to calculate the values(af §) for
the concrete parameterss, A, v, o, a.

In 2005, using the double Laplace transform, J. M. A. Garcia [8] obtkiine
expression for the density function of time to ruin in the case when clainas
mixed exponential distribution and whé&hhas Erlang(2) distribution.

In this work, we establish the explicit expression{drc, ) in case of mixed

exponential claim size¥y, Ys,.... More precisely, we examine the case, when
forally >0
PY <y)=H(y)=al-e)+(1-a)d—-e"), (5)

wherev,c > 0, 0 < a < 1. In Section 3, we present several graphs of
discounted penalty function. We can see from these graphs/tiewy) depends
on initial capitalz, interest ratey, security loading, intensity of the Poisson
process\ and parameters of individual claim distributienv, «.

The next statement is the main result of this paper.

Theorem 2. Let individual claims in the classical model has dH.(y) defined
by [5]. Let, further, the parameter of Poisson process\be 0 and the relative
security loading > 0. Then

> 1—-9)o" n—zxxn_l v)! ”_Cmn_l o)’
n=1 Jj=0 3=0 (6)
n—1
R Vi o Vi
<3 () oo (G ) |
where

k-1 ;

e " k — n—k+i—1)(c—v)k
ne e ()
Xk_zl_zwa —1—2))7

J=0
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yn—k—i

(8)

a=alp—v), b=(1-a)(p—o0),

ov(aw + (1 — a)o + p)
(1+0)(av+o(l—a))(p+o)(p+v)

1 2C-2B*> B
p:6\3/E+12\/_——3 -3

VE+12VF
FE = 36BC — 108D — 8B?3,
F

b=

= 12C? — 3B?C? — 54BCD + 81D?* + 12B3D,

B=@wto)- 22
C:VO'—(ALC(G—FV)ﬂ-%(aU-F(l—OZ)V),
. Mav + (1 - a)o) (1+0).

vo
2 Proof of Theorem 2

In this section, applying the equality (1) we will prove equality (6). Let

H(y)=1-H(y) =ae™ + (1 —a)e™, y=0.
The expectation of the claiii is

EY:g+1—a:av+(1—a)a.

o 1% oV

The proof of (6) we split into three steps.
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Step 1.Firstly we will find the quantityy. From (3) we have that

— ov Y (=Y 4+ (1 — a)e—"Y)d
¢ (1 + 9) (CVV + (1 _ CE)O') /6 (O[6 + ( O{)B ) y
0 9)
_ ov(av+ (1 —a)o + p)
1+ (v to(t-a)(pto)ptv)
wherep is non-negative root of the Lundberg equation (4):
Aao +)\(1—a)y:)\+5_cp’ (10)

pt+o pt+v
with
A 1-—
. (av + (1 — a)o) 116,
vo
Equation (10) is equivalent to

cp®— ()\+5—c(1/+a))p2—|— (Mao+(1—a)v)—(A+0)(c+v)+cvo) p—dvo = 0.

Let
B=(v+o)-— )\T—HS, D = —jvo,
C =vo — W—%—é(aa%—(l—aﬁ/).
c c

The last equality implies
p*+Bp*+Cp+D=0. (11)

From the graph in Fig. 1, we note, that the equation (7) has the unique non-
negative root.

Consequently, the equation (11), which is equivalent to (10), also feas th
unigue non-negative root. Applying Kardan'’s formula we find this root

20 — 2B2 B
VE+12VF — —_3— 3

VE +12VF

[

p:

where
FE =36BC — 108D — 8B3,
F =12C% — 3B%C? — 54BCD + 81D?* + 12B>D.
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]

A
—v o

Fig. 1. Roots of equation (10).

Step 2.Now the distribution functiorF'(z) will be found. Applying (2) we get

= o alp+v)e+(1-a)(pt+o)e "
o=+ -+ o

Let
a=alp+v), b=(1-a)p+o).

Then we can rewrité'(x) as

_ ae—O'CE _|_ be—ll$
Fol=—"r% —

and consequently,

a(l —e ) 4+ b(1 —e™"7%)
a+b '

)

F(x) =

Step 3. In this part, the expression fdr*” () will be obtained. In our case the
density function of the distribution functiofi(x) is

ace %% + byve VT

= F/ =
ple) = F'(x) —
and the characteristic function
o0

. 1 ao bv
t) = itx dr = .
e (t) /e p(z)de a+b<a—z’t+1/—it>
0
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The characteristic function df*"(z) is
5(1) = 1 aoc 4 by \"
v S (a+b)n\o—it  v—it

w6 ()

Applying the inversion formula, we get that the density function of the digicbu
function F*"* ()

o) =5 [ e
o, o« » (12)
= ar b <k> (o) ()" 5 / (o — i — i *

To obtain the expression gfx) we have to calculate the integral

o0

1 efitz 1 e~ 5%
S dt=— i ds,
=5 / (0 —it)F(v — )"k 2mi Roso | (0 — 8)F(v — sk

where the integration contoufp = {it: t € [-R,R]}. Adding segments
l1,12,13 to the contour p we get the closed contoyt; (see Fig. 2).

iR iR+R
ly

" ’
"
ls

AR 4R+R

-~

Fig. 2. The contoutyy.
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It is clear, that:

[t

Analogously,
e 5% 1
d
‘/ (s —o)(s — )| = 2Ry
I3
and
/ e 5% ds| < 267Rz
(s — o)f(s — )k ™| = Rt
la

Hence, according to residues’ theorem,

1 e—SI
S} d
J 20 Roobo (0 — s)k(v — s)n—Fk °
TR
_ _1 n+1 R 6751' R efsw '
" (R s =7 + B oy

We remark that = o is thekth order pole, and = v is the(n — k)-th order pole,
so we get

=0 (5 — 0)f(s —v)"F (k- 1)lsoo \ (s — )n—F
and

—sT 1 —sx (n—k—1)
Res ¢ = e
s=v (s—o)f(s—v)"F  (n—k—1!s=v\(s—o)k '

fork=1,...,n—1. As
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we have
L gose N\ ()
(k — 1)l s—a \ (s — ) —h)
k—1 .
_(pleon k=1\ 1 in—k+i—1) k—n—i
T k-1 ; i )" k-1 7Y
and

1 ’ e 5T (n—k-1)
(n—k—1)lsv \ (s — o)

YT e e NS k1 (i k= 1)
 (n—k—-1)! < i — 1)
k D= k !
fork=1,...,n—1.1f k =0we get

—SsT

1 —srd
— lim / ¢ - (—=1)""'Res ¢
21 R—oo ) (v — )" s=v (s — )"

TR
_1\n+1 —vz,n—1
— lim ( 1) (e—sm)(n—l) — € x )
s—v (n—1)! (n—1)!
If & = n, similarly
1o e 5% s _ efaxxnfl
2T R—oo (U— S)n N (n— 1)' .
TR

Thus, obtained equalities and (12) imply

i) = 1 v ne—uxxn—l _1\n+1 - n ao k v n—k
50 = | 0 G+ X () o)
(_1>k71 (_l)nfkfl nefa'mxnfl
(T i) o) ﬁ]
where
7oxk71 k—1 —1—4 ,n,in—kﬁ'f-’i—l!
U =e < ; )xkl (o —v)k ((n—k—l)!)’

422



On the Discounted Penalty Function for Claims Having Mixed Exponentialibigton

n—k—1

Uy =e ; ( ; >x (v—o0) I
Therefore, the expression for the tail of the distribution funcfitfi(z) is
_ OOA 1 (bv)™ T _ _1
F*n — dy = vy, n d
(x) /p(y) e oy /e y" T dy
nl., )1 yn—k-1
1)”+1Z<k)(aa)k(bl/ < /L{ dy —|— /Z/[Qd@/)
k=1
(a0>n 7 —ox,n—1
+ (n— 1)1 e dy
Note, that
[ o, e IS (ap)iml
/e uyy dy— #mH ZO j! .
x J=
Using this expression, we get
nfl
_ 1
F*TL TL 71/2?
(z) (a+b)n = J!
ek [ (=D 1
-3 (3) (o o) @

+
s
3
|
q
8
]!
—~
&
q
e
||

T
=0

where the quantitie®; and)), are defined by (7) and (8).
The desired relation (6) follows from (9) and (13).

3 Graphs

In this section, we present several plots of the discounted penalty foniio o).
We examine the dependence of the functidn, ) on the main parameters such
as the initial capitalz (graphs:i, 1), security loading (graphs:i, iv), intensity
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A (graphs:v, vi), force of interesty (graphs:vi, vii') and parameters of claims

distributionsa, o, v (graphs:x, x, xi, xi ).

In the cases when the initial capita(graphs, i), the safety loading (graphs
i, 1v), the force of interest (graphsvii, vin') and the parametets o (graphsxi,
xi1) vary, we note the decreasing behavior of the functign). Looking more
closely at the parameter settings in these examples, we may examine the known
function in detail. While the fixed values of and 6 remain large (graphs 1,
vii), we observe that the value of future bankruptcy is less than in the whses
these parameters are small (graphsvii).
Further, from graphs andvi we note that function)(-) increases, when the
claim intensityA grows. Moreover, comparing these two graphs, we see that the
value of future bankruptcy is visibly smaller whenis bigger (graphvi). The
same tendency may be observed in the graphsdx. As we see, the increase of

the parametet causes the increase of the functipf).

iz) wrix) II.
0.7 o=2 - o=2
15 v v=4
=1 a1 =10
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o 1 E] o 5 E
w8 w (@) IV.
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Fig. 3. ¢(z, 0) dependance on parametérs, v, z, 6, \.
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Fig. 4. ¢ (z, d) dependance on parametérs, o, v, x, 0, \.

425




J. Siaulys, J. Kdetova

References

1. E.S. Andersen, On the Collective theory of risk in the cafseontagian between
the claims, in:Transactions of the XVth International Congress of Actesiol. 11,
pp.219-229, 1957.

2. H. Gerber, E.S.W. Shiu, On the time value of ruborth American Actuarial
Journal,2(1), pp. 4878, 1998.

3. G.E. Willmot, X. S. Lin,Lundberg approximations for compuond distributions with
insurance applicationsSpringer-Verlag, 2000.

4. G.E. Willmot, D. C. M. Dickson, The Gerber-Shiu discouhtgenalty function in
the stationary renewal risk modéhsurance: Mathematics and Economi@&2(3),
pp.403-411, 2004.

5. S. Li, J. Garrido, On ruin for the Erlang(n) risk procdssurance: Mathematics and
Economics34(3), pp. 391-408, 2004.

6. S.D. Drekic, G. E. Willmot, On the density and moments & time to ruin with
exponential claimsAstin Bulletin,33(1), pp. 11-21, 2003.

7. S. AssmussemRuin probabilities World Scientific, Singapore, 2000.

8. J.M.A. Garcia, Explicit solutions for survival probab#és in the classical risk
model,Astin Bulletin,35(1), pp. 113-130, 2005.

9. X.S. Lin, G. E. Willmot, Analysis of a defective renewaluadion arising in ruin
theory,Insurance: Mathematics and Economi2$(1), pp. 63—84, 1999.

426



