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Abstract. The convective heat transfer on a rotating sphere in theepoesof
magnetic field, buoyancy forces and impulsive motion is éraththeoretically
and numerically in this paper. We apply a boundary layer rhodmprising
the balance equations for and y direction translational momentum and
heat transfer, and solve these coupled non-linear paifferehtial equations
using Blottner’s finite-difference method [1]. The numalticolutions are
benchmarked with the earlier study by Lee [2] on laminar lofzum layer flow
over rotating bodies in forced flow and found to be in excellagreement.
The effects of magnetic field, buoyancy parameter, Pranaitiber and thermal
conductivity parameter on translational velocities anthderature and other
variables (shear stress etc) are presented graphicalljiscussed at length. The
problem finds applications in chemical engineering tecbgiels, aerodynamics
and planetary astrophysics.

Keywords: hydromagnetic, convection, rotation, Prandtl number,ntbal
engineering devices, industrial aerodynamics, impulsiaion, numerical,
finite difference, Blotther method.

*Dedicated to the memory of the late Professor E. E. Zukoski (19273 188%merly Professor
of Jet Propulsion, Combustion Laboratories, California Institute of Aeldgy, USA, for his
encouragement with hydromagnetic fluid mechanics and its applicatioesddymamics.
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1 Introduction

The topic of convection heat transfer from rotating bodies has rateweside-
rable attention over the past several decades. Studies were conbduciakhar

and Whitelaw [3] who used asymptotic analysis to investigate the higher order
heat transfer from a rotating sphere. lateal. [2] studied the laminar boundary
layer flow over rotating bodies in forced convection conditions. Surma Dev
et al. [4] examined the transient convection flows on a rotating axisymmetric
body. The subject of magnetohydrodynamics (MHD) has also develapadny
directions and industry has exploited the use of magnetic fields in controlling a
range of fluid and thermal processes. Many studies of the influencegfatiam

on electrically-conducting flows have been reported with a plethora of pthe
sical phenomena. Poots [5] studied analytically the laminar natural comvectio
magneto-hydrodynamic flows between parallel plane surfaces and atsmith

a horizontal circular tube incorporating viscous and Joule electricaipdissn
effects as well as internal energy generation. He showed that veloaitigs
heat transfer rates were reduced by magnetic field. Soundalgekafa&hdr

[6] investigated the MHD oscillatory flow past a flat plate, showing numerically
that for flat plate flows magnetic field depresses heat transfer rat&barTand
Pop [7] examined the magneto-convection flow from a wedge at high t#rand
numbers. Niranjamt al.[8] examined the MHD free convection in a horizontal
channel with the effects of Hall currents. Takkral. [9] studied the unsteady
magnetohydrodynamic flow of a dusty viscous liquid in a revolving channel in
the presence of Hall currents. Bégal. [10] studied numerically the effects of
magnetic field on non-Darcy viscoelastic convection in porous media. Takha
et al. [11] also investigated the effects of electromagnetic field on Newtonian
convection in non-Darcy porous media. In the present problem westhdly the
effects of magnetic field, buoyancy parameter, thermal conductivity szwdi
number on impulsive thermal convection on a rotating sphere.

2 Flow model

Let us consider the unsteady laminar boundary layer flow of a viscocisietdly-
conducting fluid in the vicinity of the front stagnation point of a rotating spher
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in the presence of a magnetic field and a buoyancy force. Prior to the tm@

the sphere is stationary and immersed in an ambient fluid with surface temperatur
T Which is the same as that of the surrounding fluid. At tirae 0, an impulsive
motion is imparted to the ambient fluid and the sphere is suddenly rotated with
constant angular velocit2. At the same time the surface temperature of the
sphere is suddenly increased® (T, > Tw,). A constant magnetic fiel®

is applied in thez direction. It is assumed that the magnetic Reynolds number
R, = woRVL < 1, whereyy is the magnetic permeability? is the radius

of the sphere andV are the characteristic length and velocity respectively.
Under these conditions it is possible to neglect the effect of the inducedatiag
field as compared with the applied magnetic field. The wall and the free stream
temperatures are taken as constant. The viscous dissipation terms, Ohtiig hea
and surface curvature are neglected in the vicinity of the stagnation poia. T
hydrodynamic flow field is assumed to be axisymmetric and the fluid possesses
constant thermophysical properties with the exception of those caushbity
changes which generate the buoyancy force, under the Boussp@scianation.

It is also assumed that the effect of the buoyancy-induced streamvéssupe
gradient terms on the flow and temperature fields is negligible. In the vicinity
of the front stagnation pointy and dv/dx are of the order of unity, where

is a function ofz and designates the radius of a section normal to the axis of
the sphere and is assumed large in comparison to the boundary layer $isickne
Under these thermophysical assumptions, the boundary layer equatges, on

the conservation of mass, momentum and energy, describing the flow regime,
be cast as follows:

Continuity:
O(ux)/0x 4+ O(vx)/0z =0, (1)

z-direction Momentum:

Ou/ot + uou/dzx 4+ w du/dz — v*/x

2
= e due/dx + v 0%u/02% + gB(T — Two )|/ R] — [0B?/p)(u — ue), @)

y- direction Momentum:
v /ot +udv )0z + w Ov/dz + uv/x = v 0?0 /2% — [0 B?/p|v, (3)
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Energy (Heat):

OT /Ot + uwOT )0z + w OT )0z = 0, 0*T /2. (4)
Theinitial conditions for the flow regime are:

u(z, z,t) = v(x, z,t) = w(z,2,t) =0, T(x,2,t) =Ty fort<0. (5)
Theboundaryconditions fort > 0 are:

u(z,0,t) =0, wv(z,0,t) =Qr, w(z,0,t)=0, T(x,0,t)="Ty,

(6)
u(z,00,t) = ue(z), v(xr,00,t) =0, T(x,00,t)="Ts,

wherez denotes distance along a meridian of the sphere from the forward stagna-
tion point,y is the distance in the direction of rotationis the distance normal to

the surfacey, v andw are the velocity components along the; andz directions
respectivelyg is the electrical conductivity of the fluid; is the temperature,de-

notes time B is magnetic fieldp is the fluid densityy is the kinematic viscosity,

Q is the angular velocity of the sphekg,denotes gravitational acceleratien, is

the thermal diffusivity,3 is the coefficient of thermal expansion. The subscripts
e, w andoo denote conditions at the edge of the boundary layer, on the surface
and in the free stream, respectively.

3 Transformation of equations

It is possible and beneficial from a numerical solution viewpoint, to cdrier
partial differential equations of transport (1)—(4) and boundandd®ns (5) and
(6) with threeindependent variablgg, x, z) to dimensionless partial differential
equations withtwo independent variablgg, ) by applying the following trans-
formations:

t"=at, a>0, (7)
€ =1 exp(—t"), (®)
n=(2a/v)"/?¢ 1, ©)
Ue = az, (20)
Uy = O, (1)
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u(z,z,t) = ax (& n)/on, (12)
v(z, z,t) = Qus(&,n), (13)
w(z, 2,t) = —(2av) 22 f (€, m), (14)
T(x,2,t) = Too + (Tw — Too)g(&,m), (15)
A= (Q/a)?, (16)
Pr=v/a, a7
a = due/dz, (18)
M = oB?/pa, (29)
o = Grg/Rer?, (20)
Grr = ¢'B(T,y — Tro) R? /12, (21)
Rep = aR*/v. (22)

The governing equations are therefore transformed to the followingrsyste
collectively seventh order partial differential equations with reference(&, n)
coordinate system.

z-direction Momentum:

e = L [N

(23)
3 af . 1 0% f
+ §M[1 - (a_n) + 550‘9 =580 =9) [agan}’
y-direction Momentum:
s 1 ds ds  Of1 ¢ £ ds
o 1005 +E[f5 sy | - sMs=50-05 ], @9
Energy (Heat):
1 0% L § Jg
e+ 101 —5)—+£[f 1) =560-9]5] (25)
Boundary Conditions:
Fl6.0) = 560 =0, s(6.0) = gl6,0) =1, (26)
€00 =1, s(€.00) = gl6,0) =0 @)
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wheret* and¢ are the dimensionless timeg,is the transformed variable in the
direction,d f /On ands denote the dimensionless velocity components along the
x andy directions, respectively, is the dimensionless temperature functidhjs

the Hartmann hydromagnetic number (the magnetic field acts in thection),

A is a rotational parameter (identical to the paraméten the study by Leest

al. [2]), a is the velocity gradient at the edge of the boundary lager; is the
Grashof free convection numbeReg is the Reynolds numbety is the buoy-
ancy parameter”’r denotes Prandtl number. There are four key thermophysical
parameters dictating the flow regimé\£, o, Pr and .

4 Numerical solution by blottner difference scheme

The governing equations amount tosaventhorder set of nonlinear, coupled
partial differential equations with seven corresponding boundarglitons. The
Blottner method has been used in a wide range of thermoconvection and fluid
mechanics problems. Chamkha [12] studied the combined natural convection
heat and mass transfer from various geometries in a porous medium using th
Blottner scheme. Details of the numerics are to be found in this reference. We
shall therefore not relate these aspects heoe brevity we denoted/on by the
superscript)’ and this format is followed in the table and graphs plotted.

5 Results and discussion

We have computed profiles for the special cas€ of 1, « = M = 0 i.e.
zero buoyancy and no magnetic field i.e. purely hydrodynamic heat ¢ransf
respectively. The simplified equations correspond exactly to the earlietiegs
solved by Leeet al.[2], viz:

z-Momentum:

*f 0% 1 1,0f
§_§<_

2 1 9

+f

y-Momentum:

9%s Os 8_f B

8—772+fa—n—8877—0, (29)
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Thermal Energy (Heat):

2
g—nngPrfg—z_O. (30)
The computations have been tabulated at 1 for three combinations of the
Prandtl number and the thermal conductivity parameter. The results oét_ee
al. [2] for z-direction shear stresg’(¢,0), y-direction shear stress(¢,0) and
surface heat transfer rag& ¢, 0) are therefore tabulated fétr = 1,10 and100.
The case in Leet al’'s model [2] foré = 0 andA = 0.5 reduces their equations
to the set given above i.e. (28), (29) and (30). In the top section déTglwe
observe that for all values of rotation parametér.e. 1, 4, 10) with Pr = 1.0, the
values forf”(&,0), s'(£,0) andg’ (¢, 0) are identical to three decimal places. Lee
et al.[2] used a fourth order Runge Kutta numerical method to generate solutions
to equations (28), (29) and (30) subject to appropriate boundamitaoms. We
have in addition plotted th¢”(£,0), s'(£,0) and ¢’(&,0) distributions for the
special case oM = a = 0 at¢ = 1 for Prandtl numbersRr) with values of10
and 100, for all three cases of the rotational parametet 1.4,10. For the case
of Pr = 1.0 (saturated water at 440 Kelvins — see Incropera and De Witt [18] as
is increased from through4 to 10, thez-direction shear stres®’ (¢, 0) increases
in magnitude since the flow becomes more vigorous and accelerates withr greate
rotation. This increases the shear stress at the surface of the s@ieitarly

Table 1. Comparison of the resultg”(¢,0), s'(£,0), ¢'(£,0)) with those of
Leeetal.[2]form=a=0at{ =1

Pr | A Leeetal.[2] Present results
f"(€,0)  s'(&,0)  ¢'(§,0) | f"(&,0) $'(,0)  ¢'(£0)
1| 1.1129 -0.7849 0.5536 1.11292 -0.78489 0.55361
1| 4| 16233 -0.8463 0.5897 1.62316 -0.84639 0.58973
10 | 2.5216 -0.9362 0.6432 2.52141 -0.93624 0.64324

1 - - 1.2911| 1.11292 -0.78488 1.29095

10| 4 - - 1.4180| 1.62318 -0.84636 1.41776
10 - - 1.6003| 2.52139 -0.93624 1.60004

1 - - 2.8796| 1.11291 -0.78488 2.87944

100| 4 - - 3.2172| 1.62316 -0.84636 3.21673
10 - - 3.6860 | 2.52143 -0.93622 3.68484
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the magnitude of the-direction shear stregs— s'(£,0)| and the surface heat
transfer rate—¢’(£,0) is also enhanced with rising parameter. Similar trends
are observed for the case Bf~ = 10 (which corresponds to saturated water at
440 Kelvins) and forPr = 100 (which corresponds to Ethylene Glycol fluid at
310 Kelvins and also to unused engine oilstad Kelvins). We note that for more
viscous fluids e.g. oils, the Prandtl number is significantly higher and mush les
energy is therefore transferred by diffusion as compared with momenamsfer.

For the full mathematical model, equations (23), (24) and (25) with boyndar
conditions (26) and (27), we study initially the effects of magnetigron the flow
regime. Fig. 1illustrates the-direction shear streg¥' (¢, 0) versus dimensionless
time ¢ for a fixed Pr = 0.7 (i.e. air at350 Kelvins or Hydrogen gas &50
Kelvins), A = 1, a = 1. As M rises we observe that thedirection shear stress
is enhanced. This trend agrees with a similar behaviour in hydromagnetic flow
on a spinning disk studied by Takhetral.[14]. Fig. 2 shows that thg-direction
shear stress-s'(¢, 0) is also boosted in value by increasing magnetic parameter
M from 0 to 5, as again this stress is not affected adversely by the magnetic field.
The case folM = 0 clearly corresponds to purely thermal convection flow and in
this case the-direction shear stress is a minimum. We have used in all Figs. 1 to
12 a dimensionless time abcissa rangé.of In both Figs. 1 and 2, the maximum
values forf”(£,0) and—s'(€,0) are at a maximum where= 1.0 i.e. at the end
of the dimensionless time range. Hence shear stresses are increasing&multa

€0 5

—
[

0.2

0 025 ¢ 05 0.75 1

Fig. 1. Variation off” (£, 0) with £ for A = « = 1 andPr = 0.7.
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0 025 & 05 0.75 1

Fig. 2. Variation of—s’(¢,0) with ¢ for A = o = 1 andPr = 0.7.

0 025 ¢ 0.5 0.75 1

Fig. 3. Variation of—¢’(&,0) with ¢ for A = o« = 1 and Pr = 0.7.

ously with magnetic field and also time. The Prandtl number for Fig. 2 is &gain
and) anda both have unity values. Fig. 3 shows the variation of non-dimensional
surface heat transfer i.e. temperature gradieqt{,0) with x for various M
values. Again we observe arise #y’(£,0) magnitude asV/ is increased from
0 to 5. The increase however is not as substantial ag'f¢¢, 0) and —s'(€,0).
This is explained by the fact that the magnetic param&feappears explicitly in
both 2 andy direction momentum equations (23) and (24) where the magnetic
terms are respectively.5 M (1 — f) and—0.5 £ M s respectively. No magnetic
term appears in the thermal energy equation (25) and therefore magektic fi
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effects are indirectly applied to the thermal field by first affectingatkdirection
andy direction momentum fields which via coupled terms then affect the energy
equation.

The effects of the buoyancy parameter, on x direction andy direction
shear stresses and also surface heat transfef’i(¢, 0), —s'(¢,0) and—g’(¢,0)
respectively versug are shown in Figs. 4, 5 and 6. The buoyancy parameter
only appears in the transformeddirection momentum equation (23) in the term
0.5&ag. This term couples this equation to the heat (thermal energy equation
(25)) and the flow regime is therefore a natural or mixed convection flgwne

2.6

a=5

£2(&,0)

—_
T

0.2

0 025 ¢ 0.5 0.75 1

Fig. 4. Variation off”(£,0) with £ for M = A = 1 andPr = 0.7.

0 025 ¢ 0.5 0.75 1

Fig. 5. Variation of—s’(¢,0) with £ for M = A =1 andPr = 0.7.
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0.6

0 025 ¢ 0.5 0.75 1

Fig. 6. Variation of—¢’(&,0) with ¢ for M = A = 1 andPr = 0.7.

i.e. not forced convection. For forced convectiwn= 0 and this de-couples the
momentum and thermal fields. The coupling of (23) and (25) is valid acaprdin
to the Boussinesq approximation as discussed by Incropera and De BYittrl
Figs. 4, 5 and 6 all plots have been producedX¥6r= XA = 1 and Pr = 0.7.
Hence the flow is weakly magnetohydrodynamic with weak rotation as) and

M > 0. These constituta laminar magneto-convection flow field.

Fig. 4 shows that direction surface shear stress rises considerablyrases
from0to 1. Rising buoyancy factor adds vigour to the flow regime and momentum
is also boosted considerably. Consequently the flow is acceleratedjtiesloc
and shear stresses are thus elevated. Values are also a maximgim-faras
buoyancy effects exert greater influence withe. A similar trend is observed
for the variation of—s'(£,0) in Fig. 5, i.e.y direction shear stress increases also
with dimensionless timé&. The profiles rise more steeply in this case than they
do for z direction shear stresg’(¢£,0) and again they peak at a maximum value
of ¢ i.e. at the end of the range. Variation of surface heat transféf¢, 0) with
¢ for different a parameters is plotted in Fig. 6. Once again increasingamegy
(o) elevates the heat transfer rate which rises from a maximum value of @Bout
for a = 0, to a value 0f).58 approximately forx = 5 (strong buoyancy).

The effects of rotation paramet&ron f”(¢,0), —s'(£,0) and—g'(€, 0) ver-
sus¢ are plotted in Figs. 7, 8 and 9 respectively. An increase in the rotational
parameter substantially boosts theirection shear streg¥’(¢, 0) which approxi-
mately quadruples in peak value from= 1 and\ = 20. The magnetic parameter
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ES

A=20

w £7(6,0) o

0 025 ¢ 0.5 0.75 1

Fig. 7. Variation off” (¢, 0) with £ for M = o« = 1 andPr = 0.7.

1.25 =20

0 025 e 05 075 1
Fig. 8. Variation of—s’(&,0) with £ for M = a = 1 andPr = 0.7.

M and buoyancy parameter a are both equal amd Pr is 0.7 corresponding to
weakly buoyant aerodynamic hydromagnetic convection. ¢ @ection shear
stress (Fig. 8) increases less noticeably with a risk. itncreasing\ from 1 to

20 only boosts the-s'(¢,0) magnitude froml.1 approximately to about.24 at

the end of the range. The lesser effects are explained by the facttldates not
occur explicitly in the y direction momentum equation (24). It only occurs in the
x direction momentum equation where it appear®.ag\s2. This term serves

to strongly couple the: direction andy direction momentum equations ass
present in this term. Th& parameter therefore indirectly affects thelirection
velocity, s, andy direction shear stress;s’(¢,0), via thex direction momentum
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equation.

Fig. 9 depicts the distribution of local surface heat transfef(¢, 0) with
¢ for various A values. As with they direction momentum equation (24), the
rotational parametex does not appear in the heat equation (25) but dimensionless
temperaturey is coupled with stream functiofi via the buoyancy term.5 £ag
which occurs in the: direction momentum equation (23). Consequentffects
the z direction flow equation and these effects are transferred through t@#te h
equation via the f ¢’ term in this equation (25). The plots far= 1, 4, 10 and20
are less different therefore ardy’ (£, 0) increases from a peak value of abOui
for A = 1 to about0.6 for A = 20 i.e. the difference (increase) is less ttevso.

0.62 20
10
4
1
0.52
)
b
=0
0.42
0.32 . .
0 0.25 £ 0.5 0.75 1

Fig. 9. Variation of—¢’ (£, 0) with £ for M = o« = 1 andPr = 0.7.

Figs. 10 to 12 illustrate the variation gf’(¢,0), —s'(£,0) and —g'(&,0)
versust for various Prandtl number$¢). In all three plotsh is fixed atl as isa.
Pr = 0.7 corresponds to air @50 Kelvins but risingPr corresponds to saturated
water at330 Kelvins (Pr = 3) and Pr = 7 is approximately the value for
saturated water @00 Kelvins Pr = 15 implies certain oils and lubricants. Fig. 10
shows thatr direction surface shear stref§(¢, 0) is decreased by increasitty
from 0.7 to 15. Pr is defined as the ratio of momentum and thermal diffusivities.
For higherPr fluids the flow regime is decelerated (greater viscosities) and this
decreases shear stresses at the surface of the sphere. A éacrgalirection
shear stress-s/(¢,0) is seen in Fig. 11, a®r rises from0.7 to 15. We note the
effect of Pr on bothf”(£,0) and—s'(¢,0) as Pr only appears in the heat equa-
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tion, but sincef also appears in the heat equation (25) it is affected more strong-
ly than s, by Pr. The effects on-s'(¢,0) are indirectly caused by the coupling
of f and¢ with they direction momentum equation. There isqi@rm in equation
(24) ors term in equation (25) i.e. they are not coupled viaglu#rection velocity
or temperature fields.

As expected Fig. 12 shows a dramatic rise-igf (£,0) from Pr = 0.7 to
Pr = 15 asPr boosts the convection heat transfer and increases the rate of energy
(thermal) transferred from the surface of the sphere to the engulfilg fli =
A = « = 1 for this flow scenario which physically implies a weak hydromagnetic
field, slow rotation and weak buoyancy forces. Temperatures wouldalsadth

1

0.8

[

-3(8,0)

o
=N

0.35

0 025 & 05 0.75 1

Fig. 11. Variation of-s'(¢,0) with{for M = A =a = 1.
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Pr=15

1.15
\—//

0.7

/%

0 025 & 05 0.75 1

0.25

Fig. 12. Variation of—¢’(£,0) with  for M = A = o = 1.

rising Pr but these have not been plotted agaihsthese results concur with the
earlier analysis of Takhaat al.[11].

Figs. 13 to 15 plot the non-dimensionalzedirection velocity f'(n), y di-
rection velocitys(n) and temperature(n) with n coordinate for various values
of £ i.e. dimensionless time. As expectg¢t{n) rises with¢ increasing from)
to 0.5 to 1.0 since the fluid is accelerated with timel/ = a« = A = 1 and
Pr = 0.7 for all plots14 to 16. y direction velocity is depressed (Fig. 15) with
rising ¢ i.e. maximumy direction velocities occur at the start of the impulsive
motion ¢ = 0.0). The effects of this impulse are reduced with time and exhibited
by a substantial depressiongndirection velocity. A similar trend is observed

0.5

fEn)

e
W

0 2 n 4 6
Fig. 13. Velocity profilef’(¢,n) for M = A =« = 1andPr = 0.7.
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—_

£=0
0.5

s(&m)

0

0 2 n 4 6

Fig. 14. Velocity profiles(¢,n) for M = A = a =1 andPr = 0.7.

§=0
0.5

gEmn)

0

0 2 n 4 6
Fig. 15. Velocity profileg(¢,n) for M = A = a =1 andPr = 0.7.

for Fig. 15 where dimensionless temperaty(®) is plotted against. In all
three plots 13, 14 and 15, we have utilised ramange of [2] as this allows
convergence with a high degree of accuracy for the Blottner numeritée fi
difference method. Temperatures are depressed as time proceeds ¢e- the
profiles are significantly lower than tife= 0 profiles.

6 Conclusions

A mathematical model has been derived for the rotating heat transfe afspiner-
ical body in the presence of strong magnetic field and impulsive and bapyan
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effects. A benchmarked numerical solution has been obtained to theotnaiesf
boundary layer equations using a robust finite difference scheme liceddboy
Blottner [1] for aerodynamics simulations. The numerical code has be#ede
by comparison with previous computations by Leteal. for the non-magnetic
case. Our computations indicate:

1. Increasing magnetic fieldl{) enhances magnitudes of thedirection
shear stressf('(£,0)) is enhanced and also thedirection shear stresss’(¢,0)
is also boosted in value by increasing magnetic parandétéiom 0 to 5.

2. Non-dimensional surface heat transfer i.e. temperature gradig(g, 0)
is also increased with a rise in magnetic field paramaterThe increase however
is not as substantial as fgt’(£,0) and —s(&,0) as convection is only affected
indirectly by the influence of the magnetic field on the flow fields.

3. Rising buoyancy factora accelerates the flow and increases heth
direction shear stresg’((¢,0)), and they-direction shear stress-¢'(£,0)). The
profiles however ascend more steeply in the latter case than they ddifection
shear stressf”(£,0). This can have significant influence in chemical treatment
processes involving very high rotational velocities as described bgtak[2].

4. Increasing buoyancyj elevates the heat transfer rate i.e.¢’(¢,0),
which is beneficial in rotational process control in chemical engineesistgms
as described by Takhar and Whitelaw [3].

5. Rising rotational parametei) greatly enhances the direction shear
stressf”(£,0) and also increases thedirection shear stress i.e-s’(£,0) mag-
nitude, although to a much lesser extent. Primary flow is therefore consigera
accelerated by the increase in rotational velocity whepe@station parameter)
only weakly affects the secondary flow regime.

6. The non-dimensional surface heat transfer ratg(¢,0) is positively
affected by a rise in rotation parametey) put to a much lesser extent than the
flow fields.

7. Increasing Prandtl numbeP¢) strongly decreases thedirection surface
shear stresg” (£, 0) and also the/-direction shear stresss’(¢, 0).

8. Rising Pr largely increases the non-dimensional surface heat transfer
rate,—g¢' (&, 0) since largerPr values augment convection heat transfer and boost
heat transferred from the surface of the sphere to the engulfing flindrefore
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in industrial applications highePr fluids are more effective in enhancing heat
transfer to ambient fluids with the converse apparent for lofervalues. Such
results concur also with the case for a rotating flat plate as describeddogtBé
al. [15].

The present study is currently being extended to examine the heat transfe
and flow field characteristics of more complex non-Newtonian fluids, thdtses
of which will be communicated in future research (B#ial.[16, 17]).
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