Nonlinear Analysis: Modelling and Control, 2006, Vol. 11, No. 3, 24726

Modelling Complex Chemical Processes
in Homogeneous Solutions:
Automatic Numerical Smulation*

O.V. Klymenko, |. B. Svir

Mathematical and Computer Modelling Laboratory
Kharkov National University of RadioElectronics
14 Lenin Avenue, Kharkov, 61166, Ukraine

svir@kture.kharkov.ua

Received: 21.04.2006 Revised: 17.07.2006 Published online: 01.09.2006

Abstract. Two algorithms for the determination of the necessary liofit
local error for the numerical solution of ordinary diffetieth equation (ODE)

systems describing homogeneous chemical and biochemioakgses, and
for the evaluation of their stiffness are developed. Theraggh for finding

the necessary limit of local error of a numerical ODE solverjustified

by the proof of the corresponding theorems. The applicatibrthe new

algorithms implemented in version 2.1 of KinFitSim softedo the simulation
of real chemical systems is considered on the example oiBeleZhabotinsky
reaction.

Keywords: stiff ordinary differential equations, Gear's method, laganeous
chemical process, Belousov-Zhabotinsky reaction.

1 Introduction

Although mathematical models of real-world problems are becoming more and
more complex, many of them can still be formulated in terms of ordinary diffe-
rential equations (ODESs). The range of processes which are deddjpODESs
spans over mechanics, biology, medicine, chemistry and other areasdhdt a
great interest in modern science.

At present, particularly interesting and important problems are found in bio-
logy where the study of biochemical reactions continually taking place in living
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organisms is crucial to understanding their role in regulating biologicabss®s.
If all species patrticipating in a reaction mechanism are uniformly distributed in
space the corresponding mathematical model will consist only of rate laws, i.e
of ODEs. Biochemical processes are usually extremely complex and thius the
models are particularly demanding to the quality of numerical methods for their
solution. However, even simple chemical reactions may require the applicdtion
advanced numerical methods for their simulation due to correspondingrsyste
of ODEs being stiff [1]. This happens when rates of chemical reactioas a
very different which means that some components of the solution change muc
faster than others. In this case standard numerical methods such as-Ruitgy
methods and Adams methods [1] fail and stiff-stable methods must be used. In
addition to their enhanced stability these methods are typically more accurate
owing to their implicit nature. However, even the use of appropriate methods
cannot guarantee that a numerical solution is adequate as will be shiawin be
Consider a general homogeneous chemical process involvirspecies
(n > 2) which consists ofm elementary reaction steps( > 1). Another
assumption that we make here is that variations of temperature and pressoge
the observation period are insignificant and therefore rate constaimsivitiual
reactions do not vary with time. Formally, such process may be repredanted
matrix stoichiometric equation [1, 2]:

Ya =0, 1)

wherea € Z"*™ is the stoichiometric matrix whose columns correspond to
stoichiometric vectors of individual reactions akd = {Y1,Y>,...,Y,} is the
vector of symbolic species names. The matsgives proportions of reacting
species in elementary reaction steps and can be represented as trencliffer
of two matricesae = m — p wherem, p € Z*™ are the product and reagent
stoichiometric matrices respectively.

The generalised mathematical model of a homogeneous chemical prosess ha
been previously described [2] and using the notations introduced herebena
presented in the following form:

%:Z(W—ij)(kfnyf“—ijer”), k=T,n, )
=1

j=1 i=1
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wherey,, is the concentration of speci&$, m;; andp;; are the elements of the

product and reagent stoichiometric matrices respecti\@ykj‘ € R, are the

rate constants of the forward and reverse reactiofithislementary reaction step,

t € [0,7] whereT is the observation period length which is assumed finite.
The system of ODEs (2) is subject to the following initial conditions

y(0) = y°, (3)
wherey(t) = {y1(t),y2(t), ..., yn(t)}" is the vector of concentrations aptl =
{y1(0),42(0),...,9,(0)}T is the vector of initial concentrations.

The ODE system (2) is non-linear and therefore cannot be resohadgtian
cally in the general case. Hence there is a need to exploit approximateicaimer
methods for its solution. There exist a number of general and specialiseée-n
rical methods for the solution of systems of ODEs [1, 3-5]. The most popula
modern numerical methods for solving ODEs comprise linear multistep methods
[5] including different types of predictor-corrector schemes, expdind implicit
Runge-Kutta methods [1,5]. The backward differentiation formulae (B&fF
different orders [4, 7] (also known as the Gear's method) and implicitgeu
Kutta methods [1, 8] are widely used to treat stiff ODE systems. In computationa
practice these methods usually incorporate an algorithm for adaptive tinszgep
control, which provides a more or less uniform error distribution over these
of simulation. These algorithms determine the size of the next time step based on
the estimated value of local error at the current time step and a predefined limit
of local integration error. A typical algorithm of this sort utilises an exgi@s of
the form

1
g S+1
hk+1 = (.Uhk- (K_i_l) + N (4)

whereh;, andhy, are the successive time stepss the limit of local errory 1
is the estimate of local error & + 1)th step,w < 1 is a safety factor against
overestimation of the step size and the order of a method.

Yet, such an algorithm must also take into account the stability properties
of a numerical integration method when choosing the size of the next time step.
Stiff problems pose especially harsh restrictions on the size of the integtiatien
step and consequently special methods have been developed forrebtEnys.
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However, for some of these methods such as Gear's method [4] or implicifdRu
Kutta methods [1] the stability regions have not been determined or haveebeen
tablished only approximately. Hence, if during the process of numeritiati@o
the adaptive step selection algorithm that is unaware of the stability properties
of the pertinent numerical method selects a step size, which is outside of the
actual (but unknown) stability region, the simulation is likely to fail or lead to
a physically non-realistic solution. In particular, during numerical simulation o
a homogeneous chemical reaction mechanism some concentrations may become
negative while nevertheless satisfying the prescribed limit of local €Ftos. can
lead to obtaining wrong results even though the resulting concentration ahstrib
tions may look not unreasonable (see below).

Consider, for example, the Belousov-Zhabotinsky reaction mechanism [9
written in symbolic form as

A+y *ox, ki = 4.72 Imol~'s™!,

X+v 2 op ko = 3 x 10° Imol~'s™ 1,

B+ X ox 17 ky=15x10*Imolls7!, (5)
2x *4, 0, ky =4 x 107 Imol~1s71,

7z %y, ks =1s7!,

with the following initial concentrations of the speciést]y = [B]o = 0.066 M,
[Z]o = 0.002M, [Plo=[Q]o=[X]o=[Y]o=0M (1M=1molI~!). The mathema-
tical model of the reaction scheme (5) according to the generalised mgdel (2

da/dt = —kjay,

db/dt = —ksbzx,

dp/dt = koxy,

dq/dt = kyx?, (6)

dz/dt = kiay — koxy + ksbx — 2ks2?,
dy/dt = —kiay — kexy + ksz,
dz/dt = ksbx — ksz,

where concentrations of species are designated with correspondiegdagse
letters and initial conditions are as above.
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Fig. 1(a) shows the simulation results obtained using the Gear’s method with
the limit of local errore = 1075. Clearly the numerical solution in this case
does not exhibit rapid “jumps” that appear in the converged concentsatiih a
period of approximately6 s (the converged solution was obtained also using the
Gear's method with the limit of local errar = 10~'2; see Fig. 1(b). Instead,
non-physical oscillations with small amplitude emerge in the numerical solu-
tion around the time of appearance of the first “jump” in the converged sblutio
(Fig. 2). The concentrations of speciEsand Z become negative in this region
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Fig. 1. Computed concentration distributions for the BetmZhabotinsky

reaction:
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Fig. 2. Oscillations in concentrations &f and Z computed numerically with
limit of local errore = 107°.
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which causes the numerical solution to converge to some steady solutiordinstea
of that for the “oscillating” Belousov-Zhabotinsky reaction (Fig. 1(A)his how-

ever is not obvious from Fig. 1(a) where all shown concentration digtabs do

not look implausible.

This example shows that systems of ODEs of the form (2) (and especially
stiff systems) cannot be integrated properly with an arbitrarily set limit oflloca
error and there is a need in an algorithm for the determination of a threshold o
local error that would guarantee obtaining adequate numerical solutions.

In this paper, we formulate and justify two algorithms for the determination
of stiffness of the general model of a homogeneous reaction mechangm a
for the determination of the threshold of local error which guaranteesntga
physically meaningful results.

2 Apriori estimation of the stiffness of ODE systems

An ODE system is stiff if the stiffness coefficient defined by
S(t) = max Re(—)\i)/lglilglRe(—)\i), (7)

1<i<n
where);, i = 1,n are eigen-values of the Jacobian of the right-hand side (r.h.s.)
of (2), is much greater than unity [1]. In general it is impossible to determine
stiffness of an ODE system prior to its solution because the stiffnessaiepffis
a function of time. Therefore, even if its value evaluatet-at0 (this can be done
without solving the system) is close to unity an ODE system cannot be guedante
to be non-stiff since fot > 0 the value ofS(¢) can exceed 1 by several orders of
magnitude.

Nevertheless, a robust criterion for the determination of stiffness oflB O
system of the form (2) can be formulated on the basafiori knowledge of the
rate constants;j+ andk;, j = 1, m. Generally these rate constants have different
dimensions due to different reaction orders, the fact which prevenitsdinect
comparison. To avoid this difficulty we introdueguivalentrate constants in the
following way. First, we note that for each stgpn the mechanism its orders in
the forward (+) and reverse (-) directions are expressed regplgds

n n
pi = pij, Py =Y m (8)
i=1 =1
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Equivalentforward and reverse rate constants are then defined as

1
k+ — k‘+ P;
J.equiv — 'Vj yO,maw’

ki = k7 U0 9)

j,equiv 7 J0,mazx’

respectively wheregy .., is the maximum initial concentration among reacting
species. According to the definitions (9), equivalent rate constanesunats of

s~ and thus the introduction of these definitions may be interpreted as the re-
placement of all reaction steps in the mechanism with corresponding pfiestdo
order reactions. Obviously, not all multi-component reactions may be dreate
pseudo-first order ones but this approach allows one to (approxirhatetypare

the relative rates of different reaction steps in the mechanism.

Since the dimensions of all equivalent rate constants (9) are equalthey
can be directly compared with each other. Thus the followmtal stiffness
coefficient can be introduced

J’_ -
X X . . . .
ma. (lrgnjaém kj,equw’ 1%%);1 k],equzv)

So =

(10)

)
. . Jr . —
min ( 1glgnm kj,equiv’ 1g1§nm kj,equiv)
k;equiv>0 kj_,equiv>0
where the numerator equals maximum among all forward and reverseaksgiiv
rate constants and the denominator equals minimum non-zero equivalent rate
constant. We assume that an ODE system under consideration is Sgiffifl 00

and non-stiff otherwise.

In practice the value of calculated from (10) allows one to choose be-
tween the non-stiff (e.g. Adams-Moulton [1, 5]) and stiff (e.g. Gear $¢Jvers.
Although the suggested bound (10) usually overestimates the value of the stif
ness coefficient (7) it promptly detects problem stiffness which allow#lag
program breakdowns due to incorrect choice of the solution method.

Considering the above example of the Belousov-Zhabotinsky reaction one
can evaluateS, to be6.36 x 108 which clearly indicates that the ODE system (6)
describing this reaction scheme is stiff.
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3 Choosing the limit of local error

Let us rewrite the Cauchy problem (2), (3) in the following (vector) faion
simplify notations:

y = f(y), (11)

y(0) = y°. (12)

The autonomous ODE system (11) satisfies the conditions of the theorem of
existence and uniqueness of the solution [10] since the fungtign is continu-
ously differentiable in the area

G={y:0<y(t)<b,0<t<T,i=T1n}, (13)

i.e. f; € CHG), i = 1,n. It also follows from continuous differentiability of
fi, i =1,nin G that these functions and their derivatives are bounded:

dfi
‘f (y)\ 0 dy;
The constanbk in (13) is an appropriately chosen upper boundary of the variation
of all the functionsy;(t), i = 1, n, which may be estimated as

SMla te [OaT]v Z,le,n (14)

b= M,T. (15)

The exact solution to (11), (12) (or (2), (3)) thus satisfies the folloviay
sided inequalities

Ogyz(t) Sb, le [OvT]a i:17n7 (16)

since concentrations must remain non-negative and be bounded atdueé,
follows from continuous differentiability of functiong(¢), i = 1,n on a closed
set [11].

We can now formulate the following theorem about the properties of the exac
solution to the Cauchy problem (2), (3):

Theorem 1. For everyr such thald < 7 < T the exact solution t¢2), (3) on the
interval [1, T'] satisfies the two-sided inequalities

0<wyi(t)<b, i=1,n, (a7

whereb is defined in(15).
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Proof. Functionsf;(y), i = 1,n are not identical zeros by construction. From
this fact and inequalities (16) it follows that for the componemt&) of the
concentration vector with zero initial conditiong)( = 0) the corresponding
r.h.s. functionsfi(y) must be strictly positive in the vicinity of = 0. Therefore
for sufficiently small- > 0 all components of will be strictly positive att = T,
i.e.yi(1) >0,i=1,n.

Let us now consider functiong(t), i = 1, n on the intervalr, T'] and prove
by contradiction that they do not vanish there. Suppose that one contpaine
the concentration vectoy,(t), vanishes at = tg, to € [7,7]. yx(t) cannot
vanish at more than a finite number of points[aff’] since otherwise the iden-
tity yx(¢) = 0 would hold true, which contradicts equation (2). Additionally,
yx(t) > 0 according to inequality (16). Therefote= ¢, is @ minimum point of
yx(t). Then the derivativedyy, /dt, at this point must also equal zero and change
its sign from negative to positive when passing t, from left to right together
with the r.h.s. functioryy (y).

Consider now the function

J(w) = 3 (e = o) [ TT w0 = k5 [T w7 (18)
j =1

j:l =1

att = to. The number of terms in the sum on the r.h.s. of (18) can be reduced
since the terms describing elementary reaction steps in which spéaieses not
take part are identical zeros. Denoté the number of elementary reactions in
which Y}, is a reactant aanS(k)};rfl is a subset of indexeg = T, n corres-
ponding to such reactions. Similarly;;; is the number of elementary reactions

in which species’; is a product anc{ls(l<:)};”:7’51 is a subset of reaction indexes
corresponding to such reactions.

Next we note that ifY}, is a reactant injth reaction then at = ¢, the first
term in square brackets in (18) is equal to zero due to a zero multyﬁiﬁé(rto).
Likewise, if Y}, is a product ofjth reaction then at = ty the second term in
square brackets in (18) equals zero. Thus the expressiof fgy att = ¢y can
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be rewritten as

my
fr(y(to)) = Zpkjs(k)kj_s(k) IT " (to)
j=1

i=1n
i (19)
my
+ Z”kls(k)kf:(k) H y; O (to)-
Jj=1 i=I,n
itk

Clearly this expression is strictly positivetat ¢ty because all concentrations but
yk(to) are non-zero, constants; (., andm;, ;) are positive and rate constants
k:j‘s(k) and klt(k) are non-negative. Moreover, there exists at least one non-zero
rate constant since otherwise spedigsioes not participate in any reaction step
and should be mapped out.

Whence the r.h.s. of (19) is strictly positive which contradicts our suppasitio
thatyy (t) vanishes at = ¢y, and has a minimum at this point, i.é,(y(ty)) = 0.
On the other handy(¢) cannot reaclh according to the definition of the latter in

equation (15) which completes the proof. O

Let us now apply the Euler's method [3,5,6] to obtain an approximate solution
of the Cauchy problem (11), (12). The main iterative formula of the method is

Yy =y +hf(y) + 7, (20)
whereh; is theith integration step length angf is the vector of discretisation

error atith step whose components can be estimated as

i< 2
11%1;2(” ’773‘ = Cth ) (21)

wherec is a constant independentiadindy. Using these notations we formulate
the following theorem:

Theorem 2. If f; € CY(G), j = 1,n and there exists a solutiog(t) to the
Cauchy problenf11), (12)in the closed interval0, T'] satisfying the assumptions
of Theoremll then there exists such a limit of local errag of the Euler's method
that for any limit of local errore < ¢y the inequalities

¢h < min y; < max y} < b— ch, (22)
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whereh = max h; and

CcC =

co + 05??,MOM1 (enTMl
VnM

will hold true for an approximate solution computed using the Euler's method

(20) with adaptive step-size control, e@), with the local error limit set at.

-1, j=1Ln (23)

Proof. Consider the vector of local errors in numerical solution of (11), (12)
obtained according to equation (20) 4h integration step,

e =y(t:) -y (24)

Its value can be estimated by expanding the exact solution to the Cauclgmrob
(11), (12) into a Taylor series arourtgdand eliminating the terms of the order
higher than one:

d h2 d2
y(tiv1) = y(t )+hldltlt t; jﬁgt €
h2d
= y(t;) + hif (y(t ))+7d_{t —
h? (Of d
=y(t:) +hif (y(t:) + _<a£ dgtl)‘

where the remainder is written in Lagrange’s form Witk [t;, ¢;+1] ando f /0y
is the Jacobian of the r.h.s. of (11). The local error on the time (gtepl) can
then be written as

= () - 1) + ()|
:ei—i-hig—z‘y: g h;g—it 5f( (5))—%

where we applied the mean-value theorem of the differential calculuseanorg
lies betweery(t;) andy’. The norm of the vector of local errors can be estimated
as

€ |1

e+

< (1 +nhMy)| €| + h2M

| _ s+
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whereM = co\/n + n3/2MyM, /2. The latter can be rewritten in the form

: M .
i+l < p (i+1)nhM;1 1).
€4 < (e )
Hence, the maximum error due to discretisation according to the Euler's
method allows the following upper estimate to be devised:

ﬁ(e"TMl —1), Vi (25)

el < e=h=

The same estimate holds also for the components of the vecgince|e)| <
l€’]l, j =L, n.
Using the estimate (25) and the definition of local error (24) we can write

lyi(t) —yi| <e, j=Tm.

Rearranging the latter we obtain the following two-sided inequality for the numer
ical solution

Sincey;(t) is continuous on the closed interjal 7] it attains its minimum
and maximum values on this interval according to the extreme-value theorem fo
continuous functions [11]. We denote those valueg;as, andy; max respec-
tively. We know from Theorem 1 that the exact solutigf¥) to the Cauchy
problem (11), (12) satisfies (17) for all > 0. Therefore,y; min > 0. Then
there exists such stép ; that for allh < h; ; the value of local errot estimated
by (25) will be less thar; ; = y;min/2 and the inequality

yi > yi(t) —e>e (27)

will be satisfied. Analogously, there exists such step that for allh < hy ; the
value of local error will be less thane; ; = (b — y;,max)/2 and the following
inequality will hold:

yégyj(t)+e>b—e. (28)
Hence, selecting the limit of local error as

_ _ ' ' ' 29
€0 lgljlgn min(ey j, €2,5) (29)
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and combining inequalities (25)—(28) we obtain thatioe= hy = ¢o/¢ where
¢ = 4 (e"1—1) the numerical solution to the Cauchy problem (11), (12) will
satisfy the two-sided inequality (22). The inequality (22) will also be satisfied

anyh < hg. Thus defininge = hé < hgc = g9 we obtain the desired result. [

It follows from Theorem 2 that there always exists a limit of local errar fo
which the numerical solution obtained by the Euler's method will ligGirand
therefore remain strictly positive for afl > 0. This result remains valid for
other numerical methods for ODEs which differ from the Euler's method by a
higher order of approximation, i.e. wh?gjagn \17;'.| < ¢hP? wherec¢ is a constant
independent of andy andp is the order of a method.

We can now devise a criterion for the determination of the threshold of local
error necessary for the solution to lie in the physical domain thus eliminating
non-physical oscillationsnumerically computed concentrations in the Cauchy

problem(2), (3) must remain non-negative

Y, >0, j=1n (30)

for any step number=1,2,.. ..

In practice the above criterion is applied as follows. The numerical solution
starts with an initial limit of local error (say, = 10~°). Then if condition (30)
is violated during calculations the numerical solution process restarts with the
limit of local errore := ¢/10. If necessary, this algorithm is repeated several
times until the numerical solution satisfies (30) at all integration steps. Timedre
ensures that such a threshold of local error can be found for amgh@groblem
of the form (2), (3). However, in computational practice it is reasontbtestrict
the decrease of the local error limitby the machine precision of a computer,
which is used for calculations.

Turning back to the Belousov-Zhabotinsky reaction [9] and applying to it
the above algorithm implemented in software package KinFitSim [2, 12—14] for
kinetic simulation and fitting experimental data we find that the maximum limit
(threshold) of local error which allows obtaining an adequate numeridatisn
ise = 1078, Setting the Gear’s method tolerance to a value less than or equal
to 10~8 results in a numerical solution which is free of non-physical oscillations
and follows the fully converged solution (see Fig. 1(b)). This exemplifiegaht

259



O.V. Klymenko, I. B. Svir

that even if the required accuracy of the numerical solution is lower tham
physically meaningful solution cannot be obtained with the limit of local esror
set at values greater thag.

4 Conclusions

The algorithms devised and justified in this work allow one to determine the
necessary accuracy of the numerical solution of ODE systems, whichsey
mathematical models of homogeneous chemical and biochemical processes, a
to assess their stiffness. The application of these algorithms ensuresmthat a
appropriate method is applied for the numerical solution and that the result lies
within the permissible region.

The methods developed here have been implemented in the latest version
of KinFitSim package (version 2.1) [13] in the form of an automatic numerical
integration procedure. Thus the user’s intervention into the solution gsdse
eliminated such that both the solution method and its parameters are selected by
the program based on the analysis of the mathematical model to be solvex, Hen
the user is only required to enter a reaction mechanism and correspamitiadg
parameter values (initial concentrations and rate constants) prior to simulation
This automatic simulation procedure has been tested of numerous kineticmeactio
mechanisms including both stiff and non-stiff in the course of numerical simula-
tion.
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