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Abstract. Qualitative analysis of hypersound generation is desdriie the

inhomogeneous Burgers equation in the case of the non-mécrand arbitrary
light field. A qualitative possibility of the appearance a$atete values of the
coefficient of extinction of the sound wave and the posgibdf generation of
the same sound signal by different light fields is shown.
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1 Introduction

In nonlinear optics, in media strongly influenced by dispersion the method of
slowly changing amplitudes is widely applied [1]. In studies of the stimulated
Brillouin scattering and the process of hypersound excitation, this methausallo

a significant simplification of the initially related systems of Maxwell and hydro-
dynamics equations [2—4]. As even for the highest laser hypersoagddncies

[~ 2ncy/X ~ 10! Hz, wherec is sound velocityy is the refraction index, and

A stands for the length of the light wave, dispersion is generally inessentig in
cases when acoustic non-linearity appears, the highest acoustic lesmsioould

be included into the description. These polyharmonics, which are negladtesl
method of slowly changing amplitudes, lead to sound wave damping, which can
exceed the common extinction and significantly alter the dynamics of the process
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It is well known that studying the stimulated scattering and the process of
hypersound generation by laser radiation non-linear acoustic effeetge [5—7].
When the excitation imposed, e.g., in form of harmonious oscillation is freely
expanding, its distortion takes place, resulting in the formation of a saw-like wa
at the distances ~ \/2weM where) is the wave length)/ is the Mach number,
ande is the nonlinear parameter. For the nonlinear effects to appear at argreate
distance sound absorption must be rather low, i.e. the acoustic Reynotit&enu
must be large.

The theoretical studies usually come to a solution of a system of Maxwell
equations and equation of hydrodynamics, which in turn generally come to a
study of the inhomogeneous Burgers equation (BE) which describesdoynd
generation in the given light fields.

The present work offers a qualitative analysis of hypersound géoarde-
scribed by an inhomogeneous BE in the cases of (a) harmonious, {dlipat,

(c) arbitrary light field. A qualitative peculiarity of appearance of the mite
values of the coefficient of sound wave extinction and the possibility céigeimg
the same sound signal by different light fields is shown.

2 The initial equations

The equations corresponding to the complex amplitudes of the pumping wave
and the Stokes wavE, and £, have been known long since and in the case of
backward dissipation are expressed by equations (see, e.qg., [5-7]):

dE w ,
P Y A
In —|—k:pr——z4—cYﬁpEse e Q)
dE LW - iA
— d; +k,E,=—i 4—2 YBprE, =", 2

wherek,, is the coefficient of light extinction; is the compression of the sub-
stance,Y is the coefficient of the nonlinear optical-acoustic relatipns the
complex amplitude of the sound pressure wave «and,, stand for the frequency
of the Stokes wave and the pumping wave.

To derive a simplified nonlinear acoustic equation, we will proceed from the
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wave equation for the acoustic field

82 p/

Iy b 0a,__G
o2

2
— GV - 5 VI = g YVEY + L), (3)
whereb is the dissipative coefficient, and,(p'?) is a symbolic representation of
the nonlinear members quadratic regardihff].

Here, three qualitatively different cases are possible:

(a) E, and E correspond to the stationary states described by harmonious
waves. In this case, usually accepted is (see, e.g., [8,9])

1 . 1 :

E? = 5EpE;<ez(Qt—qm—l—AaB) + §E;Ese—z(9t—qx+Az) ’ (4)
whereq = Q/c,, A =k, — kg — q. Passing to the reference frame of the wave
moving with the velocity of sound and turning from the complex amplitudes of
laser waves to the real amplitudes and phdsgs- Ape%andES = A e'?s we
obtain (see, e.g., [6]):

ow__e o b oW
Ox cgpop ot 2c3p, OT?

= 1};—3(1— %)ZpAssin (QT+<I>— g),

(5)

wheree stands for the acoustic nonlinearity parameter,&nd Az + ¢, — ¢, +
w/2;

(b) E,, and E correspond to non-harmonic states described by periodical but
non-harmonic waves. In this case, instead of (4) we will have

1 * 1 * *
E? = S By BCF(t) + S B BF(t), (6)
whereF'(t) is a periodic but not harmonic function.
Turning to the wave reference frame, instead of equation (5) we obtain

op’ e ,0p b 9% Y
e O e (L A L 7
ox cgpop ot 2c3p, OT? 167rf(T)’ 0

wheref(r) = ¢(7+T) is the function, periodic with respect tq with the period
T, but anharmonic;
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(c) £, and E; correspond to the non-stationary states described by the non-
periodical and anharmonic waves. In this case, instead of equatioaadg)),
we will have

op’ e ,0p b 0% Y

it _ A 8
Oox cgpop ot  2c3p, OT? 167Tf(x77-)’ (8)

wheref(x, T) is a non-periodic and anharmonic function.

Depending on the case (a)—(c), the initial equations (1) an (2) undelaied
changes.

(a) In this case we have

Wy 4 = Py BpA sna 9
dr + wilp — _4_0 ﬂp s S P, ( )
dA, Wy :

o k,A, = —EYﬁpAp sin®, (10)
d® Y3 A A

— — A4+ Zs - d=0. 11
e + 1 p(ws A +w, As> cos 0 (11)

(b) and (c). In these cases

WAy o4 = Cry 12
%—i_ w p*_z ,Bpf(i'ﬂ'), ( )
dA w

5 kA =—-2-LY 1
Ay = =22V Bpf (a7 (13)
4P Y8 .,

the difference between (b) and (c) consists only in the properties ofittaidn
f(z,7): in the case (b) it is periodical with respectt@and does not depend on
x, while in the case (c) it is arbitrary.

To make the system of equations (9)—(11) or (12)—(14) complete, a relatio
between the sound field parametérand the real sound pressure amplityde
should be added.

@ p= % /p’(ac, T)sin(Qr + & — 7/2) d(Q1) . (15)

0

This correlation reflects the fact that equations (9)-(11) contain only the
amplitude of the first harmonig of the sound field, whereas the behavior of the
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field p’ itself is defined by the interaction of an infinite number of harmonics,
described by equation (5).

~

/2

(b) p= Pz, 7)f(z,7)dr, (16)

el
o

Finally, in the case (c) we have

T

() p= lim %/p'(xm)f(x,r)dt. a7)

T—+o0
0

It should be noted that even in the simplest situation (a) when the light waves
are spreading to meet each other, the evolutionary equations are ratioaten
and their analysis usually needs further simplifications.

3 Nonlinearly sound generation in a given field of laser radi&ion

The main peculiarity of the obtained system of equations as compared tolly usua
applied system obtained by the method of slowly changing amplitudes consists
in the nonlinearity of hypersound generation equation (5). Let us cent
process of intensive excitation of hypersound in the field of two coniighy
waves. Suppose that the optical dispersion of the medium allows a sywoctsro
excitation of the sound of the frequenty= w, — w, = 2nw,cy/c. Turning to

the dimensionless variables

:.’B/l'o, I':—T/To, d):p,/va (18)

wherez, = ¢,/Q, 7, = epyro/cip, are space and time scale variables, the
nonlinear evolutionary equation (5) and, correspondingly, equatifnand (8)
are reduced to the form of the inhomogeneous BE.

(@) In this case, we shall also assume that= 0, ® = 7/2, the light
amplitudesA4,, and A, are constant. Then equation (5) has the form

09 400 _ 0%¢

bepy 1
ot + Oz a@xQ Re

= —Asinz, «a=

= = ) 19
2e2p3r, Re (19)
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The valuea is a criterion of nonlinearity manifestation and the value of
dimensionless amplitudd = ¢Y 3¢*A4,A,/16ma* can serve as a criterion of
external influence. The caské <« 1 corresponds to linear sound excitation; at
A > 1 an effective generation harmonics takes place.

(b) In this case we shall obtain a non-homogeneous BE with a periodical
non-homogeneous term:

2
R ] (20
where the dimensionless constg@hhas the value of the governing parameter of
the field f (z) intensity.
(c) Finally, in the case when the intensity depends also on time, we shall

obtain the BE with an arbitrary inhomogeneous term

d¢ = 0p P _
Thus, we may consider the case (c) as a generalization on the cased (a) a
(b).

The nonlinear equation (21) can be written in the linear form as a result of
Hopf-Cole substitution

¢(z,t) = —2a0, In w(z,t), (22)

wherew(z, t) is a new, unknown function. Thus, we obtain a linear equation in
which

ow Pw
E—aw—aF(m,t)w:O, (23)
F(xz,t) = /f(a:,t)dx +C(1), (24)

andC'(t) is an arbitrary functiot which depends on the initial conditions. Below
we will consider the initial conditions faf(x, t) chosen so as to ensutét) = 0.
Consider the solutions of equation (23) in three different cases.
(a) Let the initial condition fory(z,t) be ¢(x,0) = 0. In this case solution
of equation (23), wher8F(z,t) = Acos x, can be found analytically:

X

[ = P
o(x,t) = —2aa—x In L;O agpe” 4 ceQH(—g,Aﬂ , (25)
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where

2w

Ay, = /ceo(—g, A) dx/ 7ce%n<—g,A) dz, (26)
0

0

andce,,, (z) is the Mathieu function (see, e.g., [10]).

An explicit expression of the solution (25) allows the following evolution of
the wave profile. This is the solution for an ever-steeping wavet At 1 the
wave profile becomes stable and does not depend on the value of thecelistan
covered by the wave\, — A\, < 0, and in the sum (25) only the first member will
be essential, while the whole solution will convert to the stationary solution of the
equation

9 _ 0%
Ox Ox?
which can be represented also analytically:

= Asinz, (27)

o(x) = —Qaa2 In ce, (—g,A). (28)

X

(b) Substitution of (22) into (20) gives the equation

2
%—?—a%—%F(m)w:O. (29)
In this case the solution evidently depends on the explicit form of the function
F(z). Nevertheless, we can show some common features of the solutions of
equation (29). We will search for the solution of equation (29) in the fofm o

a dumping wave
w(z,t) = e Mo(z). (30)
Then the function(x) for « = 1 must obey the equation

62
a_:;; n [A n gF(x)}v -0, (31)

which, under rather general assumptions concerning the properttes foinction
F(z), can be solved numerically and in a series of cases may have an exact
analytical solution.
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As an example, let us consider the simplest case wher = 2cz and
¢ = const,« = 1. The solution of equation (31) is

v(z) = A(=2), z=(Bc)3z + A\(Bx)"¥/3, (32)

where A(x) is the Airy function [10]. The solution of the initial equation, in its
turn, does not depend a@rand has the form

o(x) = —Qa% In A(—=2), (33)
wherez has been defined in equation (32).
(c) Substitution of (22) into equation (21) gives

ow Pw p

— —a——s — =F(z,)w =0. 34
ot Yoz ol mtw=0 (34)
In the case when the functidi(x, t) = F(x—ut) is a spreading perturbation,

we shall consider, as the solution of equation (34), the travelling wave
w(z,t) =w(x —ut) =w(), &=x—ut, (35)

corresponding to the wave spreading in the positive direction of &xés. In this
case the evolutionary equation (29) fee= 1 turns into an equation of oscillatory
type:

0%w ow [

c tU— +=F =0.

a¢2 —|—ua§—|—2 Hw=0 (36)

As an example we may consider an explicit analytical solution of equation
(36) for the case when

F(&) = 2e24¢ . (37)
Upon substitutings = 7(s) /s, s = %, we obtain the following equation:

?n B
8_§2+ﬁ77:0' (38)

Assuming thap? > 0, we obtain that the solution of the initial equation (21)
has the form

o(z,t) = —2({% Inw(z,t), (39)
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where
w(z,t) = e % [Cl Cos (?e“g) + Cysin (?eufﬂ (40)

and¢ = x — ut.

4 The discrete character of the coefficient of sound wave damipg

Note one point which is of significance in our approach. As shown in the pr
vious part, in the case of non-periodical but time-independent petiomnbg( )
in equation (20), the corresponding linearized equation (29) can heeddo
equation (31). The damping coefficieht generally speaking, can be arbitrary
as, for example, in the case of solution (32). However, there are vdsasthe
parameter\ can acquire only discrete, absolutely definite values depending on
the parametef. Indeed, equation (31) completely conforms to the stationary
Schrédinger equation, which may have not only a continuous, but alseiet:
spectrum.

For example, let the right part in the BE (20) be a linear function

f(x) = —4cx, ie. F(z)=—2ca’. (41)

This means that equation (31) has the form

82
a—xg—l—[)\—ﬁczQ]v:O. (42)

In the case whepc < 0,

2

v(z) =D , iz [:l:(l + z)z] , z==x %‘1/4, A= p(%) 1/2, (43)

whereD,, (x) is the function of a parabolic cylinder [10], and for the paramater
we have a continuous series of values, since the parametgresponding to the
impulse of wave can change continuously.

However, in the case whese > 0,

Be

1/4
5 x

v(z)=H,(z), z= 66)1/2, (44)

: /\:)\n:(2n+1)<?
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whereH,,(z) is the Hermite functions [10], and for the damping paramatese
have a discrete set of values, since N =0, 1, 2, ... changes only in a discrete
way.

Note that the difference between the two adjacent values,oh this case
does not depend am,

AN, = Mg — A, = (280)'2, (45)

and is determined only by the intensity of influence of the inhomogeneous term
in the BE (20).

5 Analysis of the influence of different perturbations

Let us note one more important circumstance. The solutions of equationdp) a
correspondingly, (7) and (8) evidently depend on the initial conditiodsoarthe
form of the function in the right-hand part of the inhomogeneous BE. At tha
seems obvious that to different forms of the functjtf, ¢) correspond different
solutions of the BEp(x, t).

However, this is not quite so. Cases can be shown when to qualitativedy-diff
ent kinds of the inhomogeneous functiffe, ¢) correspond coinciding solutions.

As an example, consider the case (b) corresponding to equation (&@). A
substitution of (22) it acquires the form of equation (29). For a solutionen th
form of the damping wave (30), the spatial paft:) must obey equation (31).
Suppose tha{;grjr_goo F(z) = —oo andF'(xz) may be presented in the form of

p
—5F@) = ¢*(@) = ¢'(2), (46)
whereyp(z) is a certain function of the variable This can be done by solving the
differential Riccati equation (46) relative to(x). If the functiony(z) is found,

then the corresponding equation (31) with the new function

—gﬁm = ¢*(@) + ¢/(x) (47)

has the same solutions andeigenvalues as in the case (42), except the ground
state

vo(x) = Ce | wl@dr (48)
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The reason for such an interesting behavios(@f) solutions in this case lies
in the internal symmetry of equation (31). Ther) solutions for the perturbation
function F(z) and(x) solutions for the perturbation functidi(z)are intercon-
nected by the transformation

5(2) =\ 2 (5 + (@) ola). (49)

o(z) = \/g((% - (m))ﬁ(x). (50)

As a simplest example of such interrelation by the functign), let us
consider the case(z) = z. ThenF(x) = —2(2% — 1)/3, and equation (31)
for v = v(x) acquires the form

9%v

—_— J— 2 f—

8z2+[/\+1 z*lv=10 (51)
and according to (44)

1\ 1/4 2n—+v2+4+1

v(x):Hn(z),z:<§) {L‘,)\n:%, neN. (52)

At the same time, for the perturbation functidft(z) = —2(z2 + 1)/6,
equation (31) acquires the form

0% )

— _ 1 _— D p—

522 + [A x| 0 =0, (53)
and according to (44)

1/4 . -
o(z) =H,(2), z= (%) /x7 n=2A, = %7 neN. (54)

Note now that, as follows from (458X = A, — \,, = 2. This means that

A, =\, +2, (55)
and the solutions,,(x) andv,,(x) coincide, except(z):

vo(x) = Ce™""/2, (56)

In more complicated cases wheliz) is not a linear function, the form of the
perturbation functiorf'(z) and, respectively, of (z) is also more complicated.
In some cases, as in the casexdf) = =z, an analytical form of the solution is
possible [11,12].
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6 The area of stationary solution

Analysis of three different cases allows qualitatively and in some casesiads
Iytically to trace the process of hypersound generation.

In the cases (a) and (b) it is possible to evaluate the distaneehen the
solution becomes stationary. For example, in case (ajfex 1 the distance
2, ~ 1, because at this distance the transitory processes fade out andettte eff
of the border conditions is not pronounced any longer. £gp- 1, the distance
of going into a stationary regimg, ~ 1/1/A. The stationary form of the wave is
determined by the solution (28) which fdr>> 1 has the form

P(z) =2VA cosg sighz, —7w<ux<m, (57)

what corresponds to a distorted, not saw-like profile of the wave.

The hypersound intensity in the saturation regime is also related to the form
of the asymptotic solution. Thus, integrating equation (27} lisom 0 to 27, we
obtain

dp 1,5 1
dx+2¢ = Acosx+2C, (58)
where
1 2
C = —/¢2dx. (59)
2w
0

Linearization of equation (58) gives the expressios- — )\, whence
I, = Aol pocga® /0?2 (60)

ForA< 1,|\| = A?/2andl, = Y2I,1.0%/8c%pycio?, which corresponds
to a common linear case in the approximation of slowly changing amplitudes.
In the other limited casel > 1, |\,| ~ 24 andI, = Yc¢,(I,1,)"/*/nec,
what corresponds to a deceleration of sound intensity increase atphasexof
nonlinear damping.
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7 Conclusions

Thus, the present work shows that the initial system of equations forlearam-
plitudes of the pumping wave,, and Stokes wave; in the one-dimensional case
may be reduced to a non-homogeneous Burgers equation. As a resydtager
selection of the space and time scalgsand,, the non-homogeneous Burgers
equation is reduced to a dimensionless type. Applying a nonlinear substitfition o
the variables, the non-homogeneous Burgers equation is reduced tmirdeatis
diffusion-type equation.

Three basic perturbations of the external field are considered: tiveljwad
stationary spatial perturbation &)x,t) ~ cosx; linearly increasing stationary
spatial perturbation b}'(x,t) ~ z, and the travelling wave type perturbation c)
F(x,t) ~ f(x — ut).

It is shown that for a certain class of non-periodical and time-nonstagiona
perturbations, the coefficietk of wave absorption can be only a discrete value.
From the physical point of view, this is a result of the interaction between the
external perturbation and the nonlinear dynamic system. In the mathematical ap
proach, the non-homogeneous Burgers equation after the non-lunestitstion
of variables is reduced to a Schrodinger-type equation which, in turnhasy a
discrete spectrum.

Another interesting peculiarity of the initial nonlinear system is related to the
fact that different types of external perturbations may result in edgit conse-
guences, i.e. solutions of a corresponding non-homogeneous Bugeation.

On a concrete example &f(z) ~ —z% + candF(z) ~ —z% — citis shown that
the corresponding solution of the Burgers equation and the discret#speauf
the extinction coefficients coincide. In the general case two potentiB|$z) =

#? + ¢' andF,(x) = ¢ — ¢/, wherep = ¢(x) is a some potential-type function
with asymptotic condition®(xz) — 0 whenxz — +oo, have the same spectrum
of the extinction coefficients.

The above analysis of three different types of perturbations allowsak qu
itative and in some cases also quantitative tracing of the hypersoundagener
process. The cases of wedkk 1 and strongd >> 1 perturbations are considered
separately. The asymptotic intensities of the corresponding nonlinear dampe
waves are determined.
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The perturbations a)—c) discussed above certainly do not exhatist glbs-

sible types of perturbations of a nonlinear system of interacting wavesevé,
a combination of the above examples and their generalization allow derivaig qu
litative and in some cases also quantitative information on hypersound genera

possibilities in a nonlinear medium in the other cases not discussed in thetprese

paper.
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