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Abstract. Qualitative analysis of hypersound generation is described by the
inhomogeneous Burgers equation in the case of the non-harmonic and arbitrary
light field. A qualitative possibility of the appearance of discrete values of the
coefficient of extinction of the sound wave and the possibility of generation of
the same sound signal by different light fields is shown.

Keywords: evolution equation, integrable system, Burgers equation,acoustics,
nonlinearity.

1 Introduction

In nonlinear optics, in media strongly influenced by dispersion the method of

slowly changing amplitudes is widely applied [1]. In studies of the stimulated

Brillouin scattering and the process of hypersound excitation, this method allows

a significant simplification of the initially related systems of Maxwell and hydro-

dynamics equations [2–4]. As even for the highest laser hypersound frequencies

f ∼ 2nc0/λ ∼ 1011 Hz, wherec0 is sound velocity,n is the refraction index, and

λ stands for the length of the light wave, dispersion is generally inessential, inthe

cases when acoustic non-linearity appears, the highest acoustic harmonics should

be included into the description. These polyharmonics, which are neglectedin the

method of slowly changing amplitudes, lead to sound wave damping, which can

exceed the common extinction and significantly alter the dynamics of the process.

263



P. Miškinis

It is well known that studying the stimulated scattering and the process of

hypersound generation by laser radiation non-linear acoustic effects emerge [5–7].

When the excitation imposed, e.g., in form of harmonious oscillation is freely

expanding, its distortion takes place, resulting in the formation of a saw-like wave

at the distancesx ∼ λ/2πεM whereλ is the wave length,M is the Mach number,

andε is the nonlinear parameter. For the nonlinear effects to appear at a greater

distance sound absorption must be rather low, i.e. the acoustic Reynolds number

must be large.

The theoretical studies usually come to a solution of a system of Maxwell

equations and equation of hydrodynamics, which in turn generally come to a

study of the inhomogeneous Burgers equation (BE) which describes hypersound

generation in the given light fields.

The present work offers a qualitative analysis of hypersound generation de-

scribed by an inhomogeneous BE in the cases of (a) harmonious, (b) periodical,

(c) arbitrary light field. A qualitative peculiarity of appearance of the discrete

values of the coefficient of sound wave extinction and the possibility of generating

the same sound signal by different light fields is shown.

2 The initial equations

The equations corresponding to the complex amplitudes of the pumping wave

and the Stokes waveEs andEp have been known long since and in the case of

backward dissipation are expressed by equations (see, e.g., [5–7]):

dEp

dx
+ kωEp = −i

ωp

4c
Y βp̃ Es e−i∆x , (1)

−dEs

dx
+ kωEs = −i

ωs

4c
Y βp̃∗Ep ei∆x , (2)

wherekω is the coefficient of light extinction,β is the compression of the sub-

stance,Y is the coefficient of the nonlinear optical-acoustic relation,p̃ is the

complex amplitude of the sound pressure wave, andωs, ωp stand for the frequency

of the Stokes wave and the pumping wave.

To derive a simplified nonlinear acoustic equation, we will proceed from the
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wave equation for the acoustic field

∂2p′

∂τ2
− c2

0∇2p′ − b

ρ0

∂

∂τ
∇2p′ = − c2

0

8π
Y ∇2(E2) + L2(p

′2) , (3)

whereb is the dissipative coefficient, andL2(p
′2) is a symbolic representation of

the nonlinear members quadratic regardingp′ [6].

Here, three qualitatively different cases are possible:

(a) Ep andEs correspond to the stationary states described by harmonious

waves. In this case, usually accepted is (see, e.g., [8,9])

E2 =
1

2
EpE

∗

sei(Ωt−qx+∆x) +
1

2
E∗

pEse
−i(Ωt−qx+∆x) , (4)

whereq = Ω/c0, ∆ = kp − ks − q. Passing to the reference frame of the wave

moving with the velocity of sound and turning from the complex amplitudes of

laser waves to the real amplitudes and phasesEp = Ape
iϕpandEs = Ase

iϕs we

obtain (see, e.g., [6]):

∂p′

∂x
− ε

c3
0ρ0

p′
∂p′

∂τ
− b

2c3
0ρ0

∂2p′

∂τ2

=
Y q

16π

(

1 − ∆

q

)2
ApAs sin

(

Ωτ + Φ − π

2

)

,

(5)

whereε stands for the acoustic nonlinearity parameter, andΦ = ∆x + ϕp −ϕs +

π/2;

(b) Ep andEs correspond to non-harmonic states described by periodical but

non-harmonic waves. In this case, instead of (4) we will have

E2 =
1

2
EpE

∗

c F (t) +
1

2
E∗

pEsF
∗(t) , (6)

whereF (t) is a periodic but not harmonic function.

Turning to the wave reference frame, instead of equation (5) we obtain

∂p′

∂x
− ε

c3
0ρ0

p′
∂p′

∂τ
− b

2c3
0ρ0

∂2p′

∂τ2
=

Y

16π
f(τ) , (7)

wheref (τ) = φ(τ +T ) is the function, periodic with respect toτ , with the period

T , but anharmonic;
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(c) Ep andEs correspond to the non-stationary states described by the non-

periodical and anharmonic waves. In this case, instead of equations (5)and (7),

we will have

∂p′

∂x
− ε

c3
0ρ0

p′
∂p′

∂τ
− b

2c3
0ρ0

∂2p′

∂τ2
=

Y

16π
f(x, τ) , (8)

wheref(x, τ) is a non-periodic and anharmonic function.

Depending on the case (a)–(c), the initial equations (1) an (2) undergorelated

changes.

(a) In this case we have

dAp

dx
+ kωAp = −

ωp

4c
Y βpAs sin Φ , (9)

dAs

dx
− kωAs = −ωs

4c
Y βpAp sin Φ , (10)

dΦ

dx
− ∆ +

Y β

4c
p
(

ωs

As

Ap

+ ωp

Ap

As

)

cos Φ = 0 . (11)

(b) and (c). In these cases

dAp

dx
+ kωAp = −

ωp

4c
Y βpf(x, τ) , (12)

dAs

dx
− kωAs = −ωs

4c
Y βpf(x, τ) , (13)

dΦ

dx
− ∆ +

Y β

4c
pf ′

x(x, τ) = 0 , (14)

the difference between (b) and (c) consists only in the properties of the function

f(x, τ): in the case (b) it is periodical with respect toτ and does not depend on

x, while in the case (c) it is arbitrary.

To make the system of equations (9)–(11) or (12)–(14) complete, a relation

between the sound field parameterp′ and the real sound pressure amplitudep

should be added.

(a) p =
2

π

π
∫

0

p′(x, τ) sin(Ωτ + Φ − π/2) d(Ωτ) . (15)

This correlation reflects the fact that equations (9)–(11) contain only the

amplitude of the first harmonicp of the sound field, whereas the behavior of the
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field p′ itself is defined by the interaction of an infinite number of harmonics,

described by equation (5).

(b) p =
4

T

T/2
∫

0

p′(x, τ)f(x, τ) dτ , (16)

Finally, in the case (c) we have

(c) p = lim
T→+∞

2

T

T
∫

0

p′(x, τ)f(x, τ) dt . (17)

It should be noted that even in the simplest situation (a) when the light waves

are spreading to meet each other, the evolutionary equations are rather intricate,

and their analysis usually needs further simplifications.

3 Nonlinearly sound generation in a given field of laser radiation

The main peculiarity of the obtained system of equations as compared to a usually

applied system obtained by the method of slowly changing amplitudes consists

in the nonlinearity of hypersound generation equation (5). Let us consider the

process of intensive excitation of hypersound in the field of two contrarylight

waves. Suppose that the optical dispersion of the medium allows a synchronous

excitation of the sound of the frequencyΩ = ωp − ωs = 2nωpc0/c. Turning to

the dimensionless variables

t = x/x0 , x = −τ/τ0 , φ = p′/p0 , (18)

wherex0 = c0/Ω, τ0 = εp0x0/c3
0ρ0 are space and time scale variables, the

nonlinear evolutionary equation (5) and, correspondingly, equations (7) and (8)

are reduced to the form of the inhomogeneous BE.

(a) In this case, we shall also assume that∆ = 0, Φ = π/2, the light

amplitudesAp andAs are constant. Then equation (5) has the form

∂φ

∂t
+ φ

∂φ

∂x
− α

∂2φ

∂x2
= −A sinx , α =

bc3
0ρ0

2ε2p2
0x0

=
1

Re
. (19)
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The valueα is a criterion of nonlinearity manifestation and the value of

dimensionless amplitudeA = εY βq2ApAs/16πα2 can serve as a criterion of

external influence. The caseA � 1 corresponds to linear sound excitation; at

A � 1 an effective generation harmonics takes place.

(b) In this case we shall obtain a non-homogeneous BE with a periodical

non-homogeneous term:

∂φ

∂t
+ φ

∂φ

∂x
− α

∂2φ

∂x2
= −βf(x) , (20)

where the dimensionless constantβ has the value of the governing parameter of

the fieldf(x) intensity.

(c) Finally, in the case when the intensity depends also on time, we shall

obtain the BE with an arbitrary inhomogeneous term

∂φ

∂t
+ φ

∂φ

∂x
− α

∂2φ

∂x2
= −βf(x, t) . (21)

Thus, we may consider the case (c) as a generalization on the cases (a) and

(b).

The nonlinear equation (21) can be written in the linear form as a result of

Hopf-Cole substitution

φ(x, t) = −2α∂x ln w(x, t) , (22)

wherew(x, t) is a new, unknown function. Thus, we obtain a linear equation in

which

∂w

∂t
− α

∂2w

∂x2
− β

2
F (x, t)w = 0 , (23)

F (x, t) =

∫

f(x, t)dx + C(t) , (24)

andC(t) is an arbitrary functiont which depends on the initial conditions. Below

we will consider the initial conditions forφ(x, t) chosen so as to ensureC(t) ≡ 0.

Consider the solutions of equation (23) in three different cases.

(a) Let the initial condition forφ(x, t) beφ(x, 0) = 0. In this case solution

of equation (23), whereβF (x, t) = A cos x, can be found analytically:

φ(x, t) = −2α
∂

∂x

ln

[ ∞
∑

n=0

a2ne−
λ2n(A)

4
tce2n

(

−x

2
, A

)

]

, (25)
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where

a2n =

2π
∫

0

ceo

(

−x

2
, A

)

dx/

2π
∫

0

ce2
2n

(

−x

2
, A

)

dx , (26)

andce2n(z) is the Mathieu function (see, e.g., [10]).

An explicit expression of the solution (25) allows the following evolution of

the wave profile. This is the solution for an ever-steeping wave. Att � 1 the

wave profile becomes stable and does not depend on the value of the distance

covered by the wave,λ0 −λn < 0, and in the sum (25) only the first member will

be essential, while the whole solution will convert to the stationary solution of the

equation

φ
∂φ

∂x
− α

∂2φ

∂x2
= A sinx , (27)

which can be represented also analytically:

φ(x) = −2α
∂

∂x
ln ceo

(

−x

2
, A

)

. (28)

(b) Substitution of (22) into (20) gives the equation

∂w

∂t
− α

∂2w

∂x2
− β

2
F (x)w = 0 . (29)

In this case the solution evidently depends on the explicit form of the function

F (x). Nevertheless, we can show some common features of the solutions of

equation (29). We will search for the solution of equation (29) in the form of

a dumping wave

w(x, t) = e−λtv(x) . (30)

Then the functionv(x) for α = 1 must obey the equation

∂2v

∂x2
+

[

λ +
β

2
F (x)

]

v = 0 , (31)

which, under rather general assumptions concerning the properties ofthe function

F (x), can be solved numerically and in a series of cases may have an exact

analytical solution.
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As an example, let us consider the simplest case whenF (x) = 2cx and

c = const, α = 1. The solution of equation (31) is

v(x) = A(−z), z = (βc)1/3x + λ(βx)−2/3 , (32)

whereA(x) is the Airy function [10]. The solution of the initial equation, in its

turn, does not depend ont and has the form

φ(x) = −2α
∂

∂x
lnA(−z), (33)

wherez has been defined in equation (32).

(c) Substitution of (22) into equation (21) gives

∂w

∂t
− α

∂2w

∂x2
− β

2
F (x, t)w = 0 . (34)

In the case when the functionF (x, t) = F (x−ut) is a spreading perturbation,

we shall consider, as the solution of equation (34), the travelling wave

w(x, t) = w(x − ut) = w(ξ) , ξ = x − ut , (35)

corresponding to the wave spreading in the positive direction of thet axis. In this

case the evolutionary equation (29) forα = 1 turns into an equation of oscillatory

type:

∂2w

∂ξ2
+ u

∂w

∂ξ
+

β

2
F (ξ)w = 0 . (36)

As an example we may consider an explicit analytical solution of equation

(36) for the case when

F (ξ) = 2e2uξ . (37)

Upon substitutingw = η(ς)/ς, ς = euξ, we obtain the following equation:

∂2η

∂ξ2
+

β

u2
η = 0 . (38)

Assuming thatβ > 0, we obtain that the solution of the initial equation (21)

has the form

φ(x, t) = −2
∂

∂x
lnw(x, t) , (39)
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where

w(x, t) = e−uξ
[

C1 cos
(

√
β

u
euξ

)

+ C2 sin
(

√
β

u
euξ

)]

(40)

andξ = x − ut.

4 The discrete character of the coefficient of sound wave damping

Note one point which is of significance in our approach. As shown in the pre-

vious part, in the case of non-periodical but time-independent perturbation f(x)

in equation (20), the corresponding linearized equation (29) can be reduced to

equation (31). The damping coefficientλ, generally speaking, can be arbitrary

as, for example, in the case of solution (32). However, there are caseswhen the

parameterλ can acquire only discrete, absolutely definite values depending on

the parameterβ. Indeed, equation (31) completely conforms to the stationary

Schrödinger equation, which may have not only a continuous, but also a discrete

spectrum.

For example, let the right part in the BE (20) be a linear function

f(x) = −4cx , i.e. F (x) = −2cx2 . (41)

This means that equation (31) has the form

∂2v

∂x2
+ [λ − βcx2] v = 0 . (42)

In the case whenβc < 0,

v(x) = D
−

1
2
−i p

2

[

±(1 + i)z
]

, z = x
∣

∣

∣

βc

2

∣

∣

∣

1/4
, λ = p

(βc

2

)1/2
, (43)

whereDα (x) is the function of a parabolic cylinder [10], and for the parameterλ

we have a continuous series of values, since the parameterp corresponding to the

impulse of wave can change continuously.

However, in the case whenβc > 0,

v(x) = Hn(z) , z =
∣

∣

∣

βc

2

∣

∣

∣

1/4
x , λ = λn = (2n + 1)

(βc

2

)1/2
, (44)
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whereHn(z) is the Hermite functions [10], and for the damping parameterλ we

have a discrete set of values, sincen ∈ N = 0, 1, 2, ... changes only in a discrete

way.

Note that the difference between the two adjacent values ofλn in this case

does not depend onn ,

∆λn ≡ λn+1 − λn = (2βc)1/2 , (45)

and is determined only by the intensity of influence of the inhomogeneous term

in the BE (20).

5 Analysis of the influence of different perturbations

Let us note one more important circumstance. The solutions of equation (5) and,

correspondingly, (7) and (8) evidently depend on the initial conditions and on the

form of the function in the right-hand part of the inhomogeneous BE. At that, it

seems obvious that to different forms of the functionf(x, t) correspond different

solutions of the BEφ(x, t).

However, this is not quite so. Cases can be shown when to qualitatively differ-

ent kinds of the inhomogeneous functionf(x, t) correspond coinciding solutions.

As an example, consider the case (b) corresponding to equation (20). After

substitution of (22) it acquires the form of equation (29). For a solution in the

form of the damping wave (30), the spatial partv(x) must obey equation (31).

Suppose that lim
x→±∞

F (x) = −∞ andF (x) may be presented in the form of

−β

2
F (x) = ϕ2(x) − ϕ′(x) , (46)

whereϕ(x) is a certain function of the variablex. This can be done by solving the

differential Riccati equation (46) relative toϕ(x). If the functionϕ(x) is found,

then the corresponding equation (31) with the new function

−β

2
F̃ (x) = ϕ2(x) + ϕ′(x) (47)

has the same solutions andλ eigenvalues as in the case (42), except the ground

state

v0(x) = C e−
∫

ϕ(x)dx . (48)
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The reason for such an interesting behavior ofv(x) solutions in this case lies

in the internal symmetry of equation (31). Thev(x) solutions for the perturbation

functionF (x) andṽ(x) solutions for the perturbation functioñF (x)are intercon-

nected by the transformation

ṽ(x) =

√

2

λ

( ∂

∂x
+ ϕ(x)

)

v(x) , (49)

v(x) =

√

2

λ

( ∂

∂x
− ϕ(x)

)

ṽ(x) . (50)

As a simplest example of such interrelation by the functionϕ(x), let us

consider the caseϕ(x) = x. ThenF (x) = −2(x2 − 1)/β, and equation (31)

for v = v(x) acquires the form

∂2v

∂x2
+ [λ + 1 − x2] v = 0 (51)

and according to (44)

v(x) = Hn(z) , z =
(1

2

)1/4
x , λn =

2n −
√

2 + 1√
2

, n ∈ N . (52)

At the same time, for the perturbation functioñF (x) = −2(x2 + 1)/β,

equation (31) acquires the form

∂2ṽ

∂x2
+ [λ − 1 − x2] ṽ = 0 , (53)

and according to (44)

ṽ(x) = Hn(z) , z =
(1

2

)1/4
x , λ̃n = λ̃n =

2n +
√

2 + 1√
2

, n ∈ N . (54)

Note now that, as follows from (45),∆λ = λ̃n − λn = 2. This means that

λ̃n = λn + 2 , (55)

and the solutionsvn(x) andṽn(x) coincide, exceptv0(x):

v0(x) = Ce−x2/2. (56)

In more complicated cases whenϕ(x) is not a linear function, the form of the

perturbation functionF (x) and, respectively, of̃F (x) is also more complicated.

In some cases, as in the case ofϕ(x) = x, an analytical form of the solution is

possible [11,12].
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6 The area of stationary solution

Analysis of three different cases allows qualitatively and in some cases also ana-

lytically to trace the process of hypersound generation.

In the cases (a) and (b) it is possible to evaluate the distancez0 when the

solution becomes stationary. For example, in case (a) forA � 1 the distance

z0 ∼ 1, because at this distance the transitory processes fade out and the effect

of the border conditions is not pronounced any longer. ForA � 1, the distance

of going into a stationary regimez0 ∼ 1/
√

A. The stationary form of the wave is

determined by the solution (28) which forA � 1 has the form

φ(x) = 2
√

A cos
x

2
signx, −π ≤ x ≤ π, (57)

what corresponds to a distorted, not saw-like profile of the wave.

The hypersound intensity in the saturation regime is also related to the form

of the asymptotic solution. Thus, integrating equation (27) byx from 0 to 2π, we

obtain

−dφ

dx
+

1

2
φ2 = −A cos x +

1

2
C , (58)

where

C =
1

2π

2π
∫

0

φ2dx . (59)

Linearization of equation (58) gives the expressionC = −λ0, whence

Is = |λ0| ρ0c
5
0α

2/b2Ω2 . (60)

ForA� 1, |λ | ≈ A2/2 andIs = Y 2IpIsΩ
2/8c2ρ0c

3
0α

2, which corresponds

to a common linear case in the approximation of slowly changing amplitudes.

In the other limited caseA � 1, |λ0 | ≈ 2A and Is = Y c0(IpIs)
1/2/nεc,

what corresponds to a deceleration of sound intensity increase at the expense of

nonlinear damping.
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7 Conclusions

Thus, the present work shows that the initial system of equations for complex am-

plitudes of the pumping waveEp and Stokes waveEs in the one-dimensional case

may be reduced to a non-homogeneous Burgers equation. As a result ofa proper

selection of the space and time scalesx0 andτ0, the non-homogeneous Burgers

equation is reduced to a dimensionless type. Applying a nonlinear substitution of

the variables, the non-homogeneous Burgers equation is reduced to a disturbed

diffusion-type equation.

Three basic perturbations of the external field are considered: the periodical

stationary spatial perturbation a)F (x, t) ∼ cos x; linearly increasing stationary

spatial perturbation b)F (x, t) ∼ x, and the travelling wave type perturbation c)

F (x, t) ∼ f(x − ut).

It is shown that for a certain class of non-periodical and time-nonstationary

perturbations, the coefficientλ of wave absorption can be only a discrete value.

From the physical point of view, this is a result of the interaction between the

external perturbation and the nonlinear dynamic system. In the mathematical ap-

proach, the non-homogeneous Burgers equation after the non-linear substitution

of variables is reduced to a Schrödinger-type equation which, in turn, mayhave a

discrete spectrum.

Another interesting peculiarity of the initial nonlinear system is related to the

fact that different types of external perturbations may result in equivalent conse-

quences, i.e. solutions of a corresponding non-homogeneous Burgers equation.

On a concrete example ofF (x) ∼ −x2 + c andF (x) ∼ −x2 − c it is shown that

the corresponding solution of the Burgers equation and the discrete spectrum of

the extinction coefficientsλ coincide. In the general case two potentialsF1(x) =

φ2 + φ′ andF2(x) = φ2 − φ′, whereφ = φ(x) is a some potential-type function

with asymptotic conditionsφ(x) → 0 whenx → ±∞, have the same spectrum

of the extinction coefficientsλ.

The above analysis of three different types of perturbations allows a qual-

itative and in some cases also quantitative tracing of the hypersound generation

process. The cases of weakA � 1 and strongA � 1 perturbations are considered

separately. The asymptotic intensities of the corresponding nonlinear damped

waves are determined.
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The perturbations a)–c) discussed above certainly do not exhaust allthe pos-

sible types of perturbations of a nonlinear system of interacting waves. However,

a combination of the above examples and their generalization allow deriving qua-

litative and in some cases also quantitative information on hypersound generation

possibilities in a nonlinear medium in the other cases not discussed in the present

paper.
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