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Abstract. An incompressible viscous as well as nonviscous fluid outflom
an axially symmetric bottle turned upside-down is congider This problem
relates the gravity acceleration and air bubbles inflow theobottle and in the
mathematical sense presents a very complicated task. iipdifged setting of
problem based on a one-dimensional approximation of the filowv is proposed
and results of numerical experiments are discussed.
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1 Introduction

In the private life or in a medicine practice (e.g., a fluid outflow from a droppe
we often meet with a fluid outflow from a bottle turned upside-down. Authors d
not know any paper related to this essentially nonstationary problem. Nwaheric
modelling of the potential steady flow through a horizontal bottle-neck is\give
[1]. Some problems of the one-dimensional nonstationary flow (includingtarw
clock) are solved analytically in [2] (Part 1, Chapter 2, pp. 75-82 amaper 4,
pp. 124-129).

In the present paper, by using numerical experiments, we consideuthe o
flow of the incompressible nonviscous as well as viscous fluid from arlyaxia
symmetric bottle (see Fig. 1). The parameigrin Fig. 1 determines the neck
beginning point of the bottle.
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Fig. 1. The axial section of the bottle.

The paper is organized as follows. In Section 2 we consider the outflew of
nonviscous fluid while Section 3 is devoted to the viscous fluid flow. Numerical
results are discussed in Section 4 and some remarks in Section 5 conclude the
paper.

2 Nonviscous fluid flow

The outflow of a liquid from the bottle turned upside-down relates the airlbabb
inflow into the bottle and in the mathematical sense is a very complicated problem.
To simplify solving of this problem we use the one-dimensional approximation of
the fluid flow [2, 4]. This means [4] thahe axial velocity component, and
pressurep are uniform over any cross section normal to the axis of symmetry.
More strictly, we mean a flow in which the rate of changesgfandp along the
normal to the axis of symmetry direction is negligible small compared with the
rate of change along the axis To describe the flow we use the continuity and
momentum equations (see, e.g., [2-4])

dive =0, (1)
o ~+v- Vo =gz’ — p~tVp. (2)

Here p, v, g, p, 2%, t, and 9; mean the density, velocity, modulus of the
gravity acceleration, pressure, unit vector parallel to the gravity directime,
and partial derivative, respectively, whithv and V mean the divergence and
gradient operators.

We assumehat the fluid occupies the domain lying between the sectioas
h(t) andx = H and thathe axial component, of the vectow at thex = h(t)
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is equal toh’. Here and in what follows the prime indicates the differentiation.

We use equatior(1) only in the integrated over the domain lying between
sectionsi(t) andx form. Taking into account the fact that there is no flow through
the boundaryy = f(z), of the bottle,(i.e.vn\r = 0 with v,, being the normal
component of the vectar), we get

=f(x)

va(t ) = [ (@) fP(R)I. ()

Excluding functiorw, from equation (2) written for the component, ;v +
v:0,v; = g — p~10.p, and integrating it ovejh(t), H], we derive the equation
for h,

H

h”+h’2{2f*(h)/f(h)+ (s semy'=1) (22 | f-2<x>dx)—1}

h

o | 2 " e L @
= (720 [ £ @pdz) {0~ )+ 07 o) ~ (1)}
h

h(0) = ho, K(0) = 0.

Here f*(h) = df /dx| _,.

It remains to get the equation fpfh). Let at the initial moment = 0 the
pressure above the fluid in the bottled (0, ho]) bep(ho) = p(H)—LBpg(H —ho)
with a given constang € [0, 1). From equation (4) it follows that”(0) > 0 and

h
the outflow starts. At the same time the volume above the fiaifl 2 (z)dz,

0
grows and the air pressure in this volume decreases. We assume thatfiisiun
over this volume and is equal gk ). By the Boile—Mariotte law we have

ho

h
p(h) = p(ho) / £2(x)dz/ / 12 (x)da (5)
0 0

Sincep(h) decreases dsgrows, the functio(H — h) + p~(p(h) — p(H))
decreases, too, and after some time it and, consequéritlgecome negative.
Hence, at a moment > 0, such thath/(¢;) = 0, the outflow stops. Since
p(h(t1)) < p(H), the air bubbles begin move into the bottle and, after some time,
h" becomes positive and outflow starts again. In what follawesdo not take into
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account time necessary for bubbles to come into the bottle by crossing tie liqu
layer and assume that at the momeénthe pressure above the fluid in the bottle
changes by the jump

p(h(t1)) —p(H) = —Bpg(H — h(t1)).

Hence, formula (5) is valid fok € [hg, h1), h1 = h(t1), B/(t1) = 0.
Because the outflow recurs, we will use the formula

hy h
p(h) = p(hs) / 12 (x)de/ / f2(x)da (6)
0 0

for h € [hy, hi1), hie = h(tx), B (tx) =0,

p(hk) = p(H) - Bpg(H - hk)a ﬁ € [07 1)’ k= 07 1’2’ ) (7)

whereh;.1 < H.
As a result we have to solve system (4), (6), and (7).
Note that (4) can be written in the form

dh?/dh + 2a1 0" = 2as,

H
an(h) =2 (05 + ((10)/7(1D)" = 1) (27°0) [ 52 @)d)
H h

aah) = (£20) [ £2@)dz) {5 — )+ 07 (o) (1) }

h

Hence,
h h 1/2
h' = {2/ag(y) exp{ —Z/al(x)dx}dy} , h€lhg, hiti] (8)
i g, P v P 12
t =t —l—/{Z/ag(y) exp{ — 2/al(x)d:1c}dy} dz. (9)
hg h Y
From (8) we get the equation fax, 1,
his1 hiia
/ as(y) exp{ -2 / al(a:)da;}dy =0.
hy, y
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Knowing hy. 1, from equation (9) we determing,;. Since the integral in
equation (9) posses a weak singularity:at 1, we prefer to solve system (4)—(7)
by the Runge-Kutta scheme. In all numerical calculations we used the fanctio

Fa) = {f(hs), 0<z < hs,
\ flhs)exp{ —b(z — )"}, @ € [hs, H]

with b = (H — hs) ™" In(f(hs)/f(H)) and a constant > 1. Numerical results
are discussed in Section 4.

3 The viscous fluid flow

In this section we consider a viscous fluid outflow. ¥ésume that the fluid flow
is irrotational, the pressure is homogeneous over any section normal to the axis
x, and the velocity componen{ varies with the radiug according to the relation

v (t,x,r) = 21}(75,3:)(1 — r2/f2(x)), (10)
where the average velocityt, ) is defined by the formula
f(=)
v(t,z) = 2f 2 /rvmtxr (11)
0

Formula (10) means that at each timnie flow is similar to that in the Poiseuile
flow (see, e.g., [2,3]). Note that, because of the cylindrical symmetry tibmo
”T"r:() =0 (12)

with v, being the radial component of vector By using these formulas and
integrating the continuity equation written in cylindrical coordinates [1],

Ogrvy + Oprvy. = 0,

we determine the radial componentof the velocityw,

vp(z,7) = =1t /&ETder = —0, (v(r — rgf_2(x)/2)). (13)
0
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Assuming that (¢, h(t)) = K/, by the same argument as in Section 2, we get

f(z)
2 / rug(t, z,7)dr = f2(h)h'
0

and then, by equation (11),

v(t,x) = f2(2) A (h)K. (14)

It is easy to see that. = 0 atther = f(z).

To get the equation foh we use the momentum equation written in the
cylindrical coordinates [2]. More precisely, we use only the equatiortte
component,,

04Uz + V303V, + 000 = G — p_l(?zp + ,up_1 (angx + r_lﬁr(rarvx)),

in the followingaverage sense

r {atvx + vxamva: + vrarvx - §+ pilamp

o\%

H
/ 2f2(z)dx
h (15)

— pp (20 + 710 (rOrvy)) }dr —o.

Herep means the viscosity coefficient. Using equations (10), (13), and (1#4) an
performing simple calculations, we get

vy = —4v(t, ) f 2,
Dpvp = 20p0(t, ) (1 — f2r2) + do(t, z) f 32 fL (),
f(z) f(z)
/ 10O vpdr = 4f 72 (z)u(t, z) / Ox (v(r3 - rsf_2/2))d7“
0 /@) ’
=4f"2% / {000(r® —1°f72)2) + 3 farv}dr
0

= (2/3)vf [ 0wv + fPufy} = (2/3) (0ulvf?) — vf f1)v
= —(2/3)0*f fr = —(2/3)F (@) fulx) fH(R)(I)?,
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f(z) f(z)
/ rOyvdr = O /27"1}(1 — r2f_2)dr = 8t(vf2(a:)/2) = (fz(h)h')//Q,
0 0
f(z) f(z)
(v x/2) (/rvl,/2d7")
0 0
f(z)

_ o, / 202(1 — f~22)2dr = (1/3)0, (2 2)
0

= —(2/3)f (W) (W f (@) fu(e),
f(z) f(@)
/ r(@%zvx—i— (1/r)8r(rarvx))dr = —4v+8x/rﬁxvxdr—f'f8xvx‘

0

= —40(1+ (') + (1/2)0%,(vf?) = ~4v(t,2) (1 + (£ (2))?)
= —4f (@) PR (1 + (f'(@))°),
f(=@)
[ (o= ppp)ar = (1/2)£2@) G - (1/)0up).

0

r=1@)

=]

Gathering these equalities and using equation (15) after simple calculations,
we get the equation

H
h”+h/2{2f*(h)/f(h)+ ((£()/£())* = 1) (3£7(h / I }
. h
f2 /f 2( dgc 1{ (H —h) + p~(p(h) — p(H)) (16)
h H
_SMP 1f2 /f 4 ) )dw‘}
h

h(0) = hg, HK'(0)=0
with f* = df/dx]x:h. We add equations (6) and (7) for pressp(g). System

(6), (7), and (16) were solved numerically by the Runge-Kutta schemmeéxical
results are exhibited in Section 4.
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4 Numerical results

Systems (4)—(7) and (6), (7), and (16) were solved numerically byt order
Runge—Kutta scheme. The basic time stefdiis= 0.001. Near the pointg, k =
1,2,..., At is reduced until the conditiof’ (¢, + At)| < 0.01, £k =0,1,2,...,
be satisfied.

Equations (4) and (16) show that the bottle wall resistance includes the term
which in the case of the viscous fluid flow is 4/3 times larger than that for the
nonviscous fluid flow.

In what follows we use: = 0 for nonviscous liquidy = 0.018 for water
at the temperaturg0 °C, andy = 13.93 for glycerine at the temperatude °C
that are measured g/(scm). Parameférés, ho, f(H), f(hs) are measured in
centimetersp(H) = 1.01325 10%g/(s%cm), andy = 1.1.

Figs. 2-5 exhibit the outcoming mass rape = =h'f?(h) for H = 30,
hs = 20, f(H) = 1.5, f(0) = f(hs) = 5, and the same volume of liquid
1650.131 crh. Figs. 2, 4, and 5 illustrat& versush, while Fig. 3 represen)
versus time. Figures show thaf) possess a maximal value at some titheand
some positiorh*. This position decreases when viscosity coefficieimcreases,
e.g.,max Q = 599.27 at h* = 10.469 (Fig. 2), max Q = 577.44 ath* = 9.875
(Fig. 4) andmax Q = 439.1 at h* = 8.307 (Fig. 5). Timet* posses the similar
behavior. Fig. 3 shows thatax Q = 577.44 att* = 1.593. We can also observe
the decrease @) asy increases.

tg
Figs. 6-9 illustrate volume of dropg, = [ Q(t)dt versust;, such that
te—1

W(tp)=0fork=1,2,...
Fig. 6 represents graphs &f, for the solution of (4)—(7). We see th#j;
for 8 = 0.1 is less then that for the nonviscous liquid until sole But, when
k > k1, Vi behaves vice versa. Time of the total outflow increases togethepwith
Fig. 7 illustrates the behavior &f, for nonviscous liquid flow. Graphs show
that, for fixed f(H), V} increases together with, until some valueks and
behaves vice versa &s> ky. Time of the total outflow is smaller for the bottle
with greaterhs and the sam¢g(H). We can also see that, for fixéd, V}, grows
together withf ( H) until someks and behaves vice versalas- k3. For fixedh,
time of the total outflow increases #¢H ) decreases.
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Fig. 8 illustrates the behavior &f, for x = 0.018. The behavior is similar to
that exhibited in Fig. 7.

Fig. 9 represents the behavior \gf for the nonviscous fluid and liquid with
u = 0.018 and13.93. We see thal/, decreases gsincreases until somey (1)
and behaves vice versa for> k4 (u).

Fig. 10 exhibits the behavior of the span = t; — ¢, for 4 = 0.018.
Graphs show that,, possess a maximal value at somalepending on the bottle
geometry. For fixedf(H), mAX W grows with b, increasing. For fixedu,, it

increases ag(H) decreases.

Note that every fixedt, hi, p(hi)) with p(hy) given by formula (7) may be
treated as a initial datum. The influence of this datum on the behavi@rfof
t > tx(h > hy) can be examined by Figs. 2, 4, and 5, too. These figures show
that(@ gets a maximal value at thie= hg andQ(ho) < Q(h*) for hg > h*.

500 <
400 +
300
200

100

0 . L L L .
6 8§ 10 12 14 16 18 20 22 24 h

Fig. 2. The graph of) versush for the solution of (4)—(7) with3 = 0 and
H =30,hs =20,ho =3, f(0) =5, f(H) = 1.5.

285



V. Skakauskas, P. Katauskis, G. Simeonov

500

400

300

200

100

o UL ; ; .
1 2 3 4 5 t

Fig. 3. The graph ofQ versust for the solution of (6),(7), and (16) with

B, H, hy, £(0), f(H), ho as in Fig. 3 angl = 0.018.
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Fig. 4. The graph of) versush for the solution of (6),(7), and (16) with
B,H,hs, f(0), f(H), ho, andp as in Fig. 3.
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Fig. 5. The graph of) versush for the solution of (6), (7), and (16) with
w=13.93andg, H, hs, f(0), f(H), andhg as in Fig. 3.

Fig. 6. Graphs of volumé/, of drops for the solution of (4)-(7) with
H, hg, ho, f(0),andf(H)asinFig.2.x —3=0,0—03=0.1
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Fig. 7. Graphs oV, for the solution of (4)—(7) with$, H, andf(0) as in Fig. 2.
x — (hs = 20,f(H) = 1.5,hy = 3), O — (hy = 25,f(H) = 1.5,
ho = 5.99), ando — (h, = 25, f(H) = 1, hy = 5.6).

Fig. 8. Graphs oV, for the solution of (6),(7), and (16) with, H, and f(0)
as in Fig. 2 and: as in Fig. 3.x — (hs = 20, f(H) = 1.5,hg = 3), 0—
(hs = 25, f(H) = 1.5, ho = 5.99), ando — (hs = 25, f(H) = 1,hy = 5.6).
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Fig. 9. Graphs ol for the solution of (4)—(7) (mark) and for the solution
of (6), (7), and (16) (markd for . = 0.018 and o for ;1 = 13.93) with
Ba Ha hs, f(O), f(H)7 hO asin Flg 2.

Fig. 10. Graphs o#V,, for the solution of (6), (7), and (16) with = 0.018,
H =30,f(0) =5. x — (hs =20, f(H) = 1.5,hg = 3),0— (hs = 25,
f(H)=1.5,hg =5.99),0— (hs =25, f(H) = 1,hg = 5.6).
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5

Concluding remarks

The problem of a fluid outflow from a bottle turned upside-down causeaithe
bubbles inflow into the bottle and therefore forms a very complicated problem in
the mathematical sense. The numerical investigation in a simplified setting of this
problem is given. For simplification, is assumed that:

(i) the velocity component, and pressure for the nonviscous fluid flow are

(ii)

(i)

(iv)

uniform over any cross section normal to the axis of symmetry and the
continuity equation is valid only in the integrated over the liquid layer form;

in the viscous liquid case, only pressyrés uniform over any cross section
normal to the axis of symmetry, the Poiseuile type formula (10) is valid for
the component,., and the momentum equation fgy is valid in the average
form (15);

vz (t, h(t)) = B andv(t, h(t)) = h' for nonviscous and viscous fluid flow,
respectively;

the pressure varies by a jump (see formula (6)) at the pointssuch that

1 (ty) = 0. Of course, it is possible to fix a constant bubbles inflow velocity
v, and ascribe the valyg(t;,) defined by equation (7) for the momenpt=

tr + (H — hy)/vp. Then using the linear approximation pft) for ¢ €

(tx, 1), we get a continuous functiop. But this modification does not
change essentially the solution of differential equations.

Parameters in formula (7) shows how many times the difference between

the external pressurg(H ), and the pressure(hy), above the liquid layer in the
bottle at the moment, conditioned by the bubbles inflow is less than the weight,
pg(H — hy), of the liquid layer.

Numerical results show that the outcoming mass r@teyolume of drops,

Vi, and the span of dropsy;, possess the maximal values which depend on the
bottle geometry and liquid viscosity. The total outflow time depends on the bottle
geometry and liquid viscosity, as well.
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