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Abstract. An incompressible viscous as well as nonviscous fluid outflowfrom
an axially symmetric bottle turned upside-down is considered. This problem
relates the gravity acceleration and air bubbles inflow intothe bottle and in the
mathematical sense presents a very complicated task. The simplified setting of
problem based on a one-dimensional approximation of the fluid flow is proposed
and results of numerical experiments are discussed.
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1 Introduction

In the private life or in a medicine practice (e.g., a fluid outflow from a dropper)

we often meet with a fluid outflow from a bottle turned upside-down. Authors do

not know any paper related to this essentially nonstationary problem. Numerical

modelling of the potential steady flow through a horizontal bottle-neck is given in

[1]. Some problems of the one-dimensional nonstationary flow (including a water

clock) are solved analytically in [2] (Part 1, Chapter 2, pp. 75–82 and Chapter 4,

pp. 124–129).

In the present paper, by using numerical experiments, we consider the out-

flow of the incompressible nonviscous as well as viscous fluid from an axially

symmetric bottle (see Fig. 1). The parameterhs in Fig. 1 determines the neck

beginning point of the bottle.
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Fig. 1. The axial section of the bottle.

The paper is organized as follows. In Section 2 we consider the outflow ofa

nonviscous fluid while Section 3 is devoted to the viscous fluid flow. Numerical

results are discussed in Section 4 and some remarks in Section 5 conclude the

paper.

2 Nonviscous fluid flow

The outflow of a liquid from the bottle turned upside-down relates the air bubbles

inflow into the bottle and in the mathematical sense is a very complicated problem.

To simplify solving of this problem we use the one-dimensional approximation of

the fluid flow [2, 4]. This means [4] thatthe axial velocity componentvx and

pressurep are uniform over any cross section normal to the axis of symmetry.

More strictly, we mean a flow in which the rate of change ofvx andp along the

normal to the axis of symmetry direction is negligible small compared with the

rate of change along the axisx. To describe the flow we use the continuity and

momentum equations (see, e.g., [2–4])

div v = 0, (1)

∂tv + v · ∇v = g̃x0 − ρ−1∇p. (2)

Here ρ, v, g̃, p, x0, t, and ∂t mean the density, velocity, modulus of the

gravity acceleration, pressure, unit vector parallel to the gravity direction, time,

and partial derivative, respectively, whilediv and∇ mean the divergence and

gradient operators.

Weassumethat the fluid occupies the domain lying between the sectionsx =

h(t) andx = H and thatthe axial componentvx of the vectorv at thex = h(t)
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is equal toh′. Here and in what follows the prime indicates the differentiation.

We use equation(1) only in the integrated over the domain lying between

sectionsh(t) andx form. Taking into account the fact that there is no flow through

the boundary,r = f(x), of the bottle,(i.e.,vn

∣∣
r=f(x)

= 0 with vn being the normal

component of the vectorv), we get

vx(t, x) = f−2(x)f2(h)h′. (3)

Excluding functionvx from equation (2) written for the componentvx, ∂tvx+

vx∂xvx = g̃ − ρ−1∂xp, and integrating it over[h(t), H], we derive the equation

for h,

h′′+h′2

{
2f∗(h)/f(h)+

((
f(h)/f(H)

)4
− 1

)(
2f2(h)

H∫

h

f−2(x)dx
)
−1

}

=
(
f2(h)

H∫

h

f−2(x)dx
)
−1{

g̃(H − h) + ρ−1
(
p(h) − p(H)

)}
,

h(0) = h0, h′(0) = 0.

(4)

Heref∗(h) = df/dx
∣∣
x=h

.

It remains to get the equation forp(h). Let at the initial momentt = 0 the

pressure above the fluid in the bottle (x ∈ (0, h0]) bep(h0) = p(H)−βρg̃(H−h0)

with a given constantβ ∈ [0, 1). From equation (4) it follows thath′′(0) > 0 and

the outflow starts. At the same time the volume above the fluid,π
h∫
0

f2(x)dx,

grows and the air pressure in this volume decreases. We assume that it is uniform

over this volume and is equal top(h). By the Boile–Mariotte law we have

p(h) = p(h0)

h0∫

0

f2(x)dx
/

h∫

0

f2(x)dx. (5)

Sincep(h) decreases ash grows, the functioñg(H −h)+ρ−1(p(h)−p(H))

decreases, too, and after some time it and, consequently,h′′ become negative.

Hence, at a momentt1 > 0, such thath′(t1) = 0, the outflow stops. Since

p(h(t1)) < p(H), the air bubbles begin move into the bottle and, after some time,

h′′ becomes positive and outflow starts again. In what follows,we do not take into
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account time necessary for bubbles to come into the bottle by crossing the liquid

layer and assume that at the momentt1 the pressure above the fluid in the bottle

changes by the jump

p
(
h(t1)

)
− p(H) = −βρg̃

(
H − h(t1)

)
.

Hence, formula (5) is valid forh ∈ [h0, h1), h1 = h(t1), h′(t1) = 0.

Because the outflow recurs, we will use the formula

p(h) = p(hk)

hk∫

0

f2(x)dx/

h∫

0

f2(x)dx (6)

for h ∈ [hk, hk+1), hk = h(tk), h′(tk) = 0,

p(hk) = p(H) − βρg̃(H − hk), β ∈ [0, 1), k = 0, 1, 2, . . . , (7)

wherehk+1 < H.

As a result we have to solve system (4), (6), and (7).

Note that (4) can be written in the form

dh′2/dh + 2a1h
′2 = 2a2,

a1(h) = 2f∗(h)/f(h) +
((

f(h)/f(H)
)4

− 1
)(

2f2(h)

H∫

h

f−2(x)dx
)
−1

,

a2(h) =
(
f2(h)

H∫

h

f−2(x)dx
)
−1{

g̃(H − h) + ρ−1
(
p(h) − p(H)

)}
.

Hence,

h′ =

{
2

h∫

hk

a2(y) exp
{
− 2

h∫

y

a1(x)dx
}

dy

}1/2

, h ∈ [hk, hk+1] (8)

t = tk +

h∫

hk

{
2

z∫

hk

a2(y) exp
{
− 2

z∫

y

a1(x)dx
}

dy

}
−1/2

dz. (9)

From (8) we get the equation forhk+1,

hk+1∫

hk

a2(y) exp
{
− 2

hk+1∫

y

a1(x)dx
}

dy = 0.
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Knowing hk+1, from equation (9) we determinetk+1. Since the integral in

equation (9) posses a weak singularity athk+1, we prefer to solve system (4)–(7)

by the Runge-Kutta scheme. In all numerical calculations we used the function

f(x) =

{
f(hs), 0 ≤ x ≤ hs,

f(hs) exp
{
− b(x − hs)

γ
}
, x ∈ [hs, H]

with b = (H − hs)
−γ ln(f(hs)/f(H)) and a constantγ > 1. Numerical results

are discussed in Section 4.

3 The viscous fluid flow

In this section we consider a viscous fluid outflow. Weassume that the fluid flow

is irrotational, the pressurep is homogeneous over any section normal to the axis

x, and the velocity componentvx varies with the radiusr according to the relation

vx(t, x, r) = 2v(t, x)
(
1 − r2/f2(x)

)
, (10)

where the average velocityv(t, x) is defined by the formula

v(t, x) = 2f−2(x)

f(x)∫

0

rvx(t, x, r)dr. (11)

Formula (10) means that at each timet the flow is similar to that in the Poiseuile

flow (see, e.g., [2,3]). Note that, because of the cylindrical symmetry of motion,

vr

∣∣
r=0

= 0 (12)

with vr being the radial component of vectorv. By using these formulas and

integrating the continuity equation written in cylindrical coordinates [1],

∂xrvx + ∂rrvr = 0,

we determine the radial componentvr of the velocityv,

vr(x, r) = −r−1

r∫

0

∂xrvxdr = −∂x

(
v(r − r3f−2(x)/2)

)
. (13)
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Assuming thatv(t, h(t)) = h′, by the same argument as in Section 2, we get

2

f(x)∫

0

rvx(t, x, r)dr = f2(h)h′

and then, by equation (11),

v(t, x) = f−2(x)f2(h)h′. (14)

It is easy to see thatvr = 0 at ther = f(x).

To get the equation forh we use the momentum equation written in the

cylindrical coordinates [2]. More precisely, we use only the equation for the

componentvx,

∂tvx + vx∂xvx + vr∂rvx = g̃ − ρ−1∂xp + µρ−1
(
∂2

xxvx + r−1∂r(r∂rvx)
)
,

in the followingaverage sense

H∫

h

2f−2(x)dx

f(x)∫

0

r
{

∂tvx + vx∂xvx + vr∂rvx − g̃ + ρ−1∂xp

− µρ−1
(
∂2

xxvx + r−1∂r(r∂rvx)
)}

dr = 0.

(15)

Hereµ means the viscosity coefficient. Using equations (10), (13), and (14) and

performing simple calculations, we get

∂rvx = −4v(t, x)f−2r,

∂xvx = 2∂xv(t, x)(1 − f−2r2) + 4v(t, x)f−3r2f ′

x(x),

f(x)∫

0

rvr∂rvxdr = 4f−2(x)v(t, x)

f(x)∫

0

∂x

(
v(r3 − r5f−2/2)

)
dr

= 4f−2v

f(x)∫

0

{
∂xv(r3 − r5f−2/2) + f−3f ′

xr5v
}
dr

= (2/3)vf−2{f4∂xv + f3vf ′

x} = (2/3)
(
∂x(vf2) − vff ′

x

)
v

= −(2/3)v2ff ′

x = −(2/3)f−3(x)f ′

x(x)f4(h)(h′)2,
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f(x)∫

0

r∂tvxdr = ∂t

f(x)∫

0

2rv(1 − r2f−2)dr = ∂t

(
vf2(x)/2

)
=

(
f2(h)h′

)
′

/2,

f(x)∫

0

r∂x(v2
x/2)dr = ∂x

( f(x)∫

0

rv2
x/2dr

)

= ∂x

f(x)∫

0

2rv2(1 − f−2r2)2dr = (1/3)∂x(v2f2)

= −(2/3)f4(h)(h′)2f−3(x)f ′

x(x),

f(x)∫

0

r
(
∂2

xxvx+ (1/r)∂r(r∂rvx)
)
dr = −4v+∂x

f(x)∫

0

r∂xvxdr−f ′f∂xvx

∣∣
r=f(x)

= −4v
(
1 + (f ′)2

)
+ (1/2)∂2

xx(vf2) = −4v(t, x)
(
1 +

(
f ′(x)

)2)

= −4f−2(x)f2(h)h′
(
1 +

(
f ′(x)

)2)
,

f(x)∫

0

r
(
g − (1/ρ)∂xp

)
dr = (1/2)f2(x)

(
g̃ − (1/ρ)∂xp

)
.

Gathering these equalities and using equation (15) after simple calculations,

we get the equation

h′′+h′2

{
2f∗(h)/f(h)+2

((
f(h)/f(H)

)4
−1

)(
3f2(h)

H∫

h

f−2(x)dx
)
−1

}

=
(
f2(h)

H∫

h

f−2(x)dx
)
−1

{
g̃(H − h) + ρ−1

(
p(h) − p(H)

)

− 8µρ−1f2(h)h′

H∫

h

f−4(x)
(
1 +

(
f∗(x)

)2)
dx

}
,

h(0) = h0, h′(0) = 0

(16)

with f∗ = df/dx
∣∣
x=h

. We add equations (6) and (7) for pressurep(h). System

(6), (7), and (16) were solved numerically by the Runge-Kutta scheme. Numerical

results are exhibited in Section 4.
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4 Numerical results

Systems (4)–(7) and (6), (7), and (16) were solved numerically by the fourth order

Runge–Kutta scheme. The basic time step is∆t = 0.001. Near the pointstk, k =

1, 2, . . . ,∆t is reduced until the condition|h′(tk + ∆t)| < 0.01, k = 0, 1, 2, . . .,

be satisfied.

Equations (4) and (16) show that the bottle wall resistance includes the term

which in the case of the viscous fluid flow is 4/3 times larger than that for the

nonviscous fluid flow.

In what follows we useµ = 0 for nonviscous liquid,µ = 0.018 for water

at the temperature30 ◦C, andµ = 13.93 for glycerine at the temperature18 ◦C

that are measured g/(s cm). ParametersH, hs, h0, f(H), f(hs) are measured in

centimeters,p(H) = 1.01325 106g/(s2cm), andγ = 1.1.

Figs. 2–5 exhibit the outcoming mass rateQ = πh′f2(h) for H = 30,

hs = 20, f(H) = 1.5, f(0) = f(hs) = 5, and the same volume of liquid

1650.131 cm3. Figs. 2, 4, and 5 illustrateQ versush, while Fig. 3 representQ

versus timet. Figures show thatQ possess a maximal value at some timet∗ and

some positionh∗. This position decreases when viscosity coefficientµ increases,

e.g.,max Q = 599.27 at h∗ = 10.469 (Fig. 2),maxQ = 577.44 at h∗ = 9.875

(Fig. 4) andmax Q = 439.1 at h∗ = 8.307 (Fig. 5). Timet∗ posses the similar

behavior. Fig. 3 shows thatmax Q = 577.44 at t∗ = 1.593. We can also observe

the decrease ofQ asµ increases.

Figs. 6–9 illustrate volume of dropsVk =
tk∫

tk−1

Q(t) dt versustk such that

h′(tk) = 0 for k = 1, 2, ....

Fig. 6 represents graphs ofVk for the solution of (4)–(7). We see thatVk

for β = 0.1 is less then that for the nonviscous liquid until somek1. But, when

k > k1, Vk behaves vice versa. Time of the total outflow increases together withβ.

Fig. 7 illustrates the behavior ofVk for nonviscous liquid flow. Graphs show

that, for fixedf(H), Vk increases together withhs until some valuek2 and

behaves vice versa ask > k2. Time of the total outflow is smaller for the bottle

with greaterhs and the samef(H). We can also see that, for fixedhs, Vk grows

together withf(H) until somek3 and behaves vice versa ask > k3. For fixedhs,

time of the total outflow increases asf(H) decreases.
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Fig. 8 illustrates the behavior ofVk for µ = 0.018. The behavior is similar to

that exhibited in Fig. 7.

Fig. 9 represents the behavior ofVk for the nonviscous fluid and liquid with

µ = 0.018 and13.93. We see thatVk decreases asµ increases until somek4(µ)

and behaves vice versa fork > k4(µ).

Fig. 10 exhibits the behavior of the spanwk = tk − tk−1 for µ = 0.018.

Graphs show thatwk possess a maximal value at somek5 depending on the bottle

geometry. For fixedf(H), max
k

wk grows withhs increasing. For fixedhs, it

increases asf(H) decreases.

Note that every fixed(tk, hk, p(hk)) with p(hk) given by formula (7) may be

treated as a initial datum. The influence of this datum on the behavior ofQ for

t > tk(h > hk) can be examined by Figs. 2, 4, and 5, too. These figures show

thatQ gets a maximal value at theh = h0 andQ(h0) < Q(h∗) for h0 > h∗.

Fig. 2. The graph ofQ versush for the solution of (4)–(7) withβ = 0 and
H = 30, hs = 20, h0 = 3, f(0) = 5, f(H) = 1.5.
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Fig. 3. The graph ofQ versust for the solution of (6),(7), and (16) with
β,H, hs, f(0), f(H), h0 as in Fig. 3 andµ = 0.018.

Fig. 4. The graph ofQ versush for the solution of (6),(7), and (16) with
β,H, hs, f(0), f(H), h0, andµ as in Fig. 3.
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Fig. 5. The graph ofQ versush for the solution of (6), (7), and (16) with
µ = 13.93 andβ,H, hs, f(0), f(H), andh0 as in Fig. 3.

Fig. 6. Graphs of volumeVk of drops for the solution of (4)–(7) with
H,hs, h0, f(0), andf(H) as in Fig. 2.× — β = 0, � — β = 0.1
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Fig. 7. Graphs ofVk for the solution of (4)–(7) withβ,H, andf(0) as in Fig. 2.
× — (hs = 20, f(H) = 1.5, h0 = 3), � — (hs = 25, f(H) = 1.5,

h0 = 5.99), and◦ — (hs = 25, f(H) = 1, h0 = 5.6).

Fig. 8. Graphs ofVk for the solution of (6),(7), and (16) withβ,H, andf(0)
as in Fig. 2 andµ as in Fig. 3.× — (hs = 20, f(H) = 1.5, h0 = 3), � —
(hs = 25, f(H) = 1.5, h0 = 5.99), and◦ — (hs = 25, f(H) = 1, h0 = 5.6).
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Fig. 9. Graphs ofVk for the solution of (4)–(7) (mark×) and for the solution
of (6), (7), and (16) (mark� for µ = 0.018 and ◦ for µ = 13.93) with

β,H, hs, f(0), f(H), h0 as in Fig. 2.

Fig. 10. Graphs ofWk for the solution of (6), (7), and (16) withµ = 0.018,
H = 30, f(0) = 5. × — (hs = 20, f(H) = 1.5, h0 = 3), � — (hs = 25,

f(H) = 1.5, h0 = 5.99), ◦ — (hs = 25, f(H) = 1, h0 = 5.6).
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5 Concluding remarks

The problem of a fluid outflow from a bottle turned upside-down causes theair

bubbles inflow into the bottle and therefore forms a very complicated problem in

the mathematical sense. The numerical investigation in a simplified setting of this

problem is given. For simplification, itis assumed that:

(i) the velocity componentvx and pressurep for the nonviscous fluid flow are

uniform over any cross section normal to the axis of symmetry and the

continuity equation is valid only in the integrated over the liquid layer form;

(ii) in the viscous liquid case, only pressurep is uniform over any cross section

normal to the axis of symmetry, the Poiseuile type formula (10) is valid for

the componentvx, and the momentum equation forvx is valid in the average

form (15);

(iii) vx(t, h(t)) = h′ andv(t, h(t)) = h′ for nonviscous and viscous fluid flow,

respectively;

(iv) the pressurep varies by a jump (see formula (6)) at the pointstk such that

h′(tk) = 0. Of course, it is possible to fix a constant bubbles inflow velocity

vb and ascribe the valuep(tk) defined by equation (7) for the momentt̃k =

tk + (H − hk)/vb. Then using the linear approximation ofp(t) for t ∈

(tk, t̃k), we get a continuous functionp. But this modification does not

change essentially the solution of differential equations.

Parameterβ in formula (7) shows how many times the difference between

the external pressure,p(H), and the pressure,p(hk), above the liquid layer in the

bottle at the momenttk conditioned by the bubbles inflow is less than the weight,

ρg̃(H − hk), of the liquid layer.

Numerical results show that the outcoming mass rate,Q, volume of drops,

Vk, and the span of drops,wk, possess the maximal values which depend on the

bottle geometry and liquid viscosity. The total outflow time depends on the bottle

geometry and liquid viscosity, as well.
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