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Abstract. The flexibility and low damping of the long span suspendedesab
in suspension bridges makes them prone to vibrations duéni and moving
loads which affect the dynamic responses of the suspendéesand the bridge
deck. This paper investigates the control of vibrations sfigpension bridge
due to a vertical load moving on the bridge deck with a corisspeed. A
vertical cable between the bridge deck and the suspendddscabused to
install a hydraulic actuator able to generate an activerobfarce on the bridge
deck. Two control schemes are proposed to generate thetfmrtte needed to
reduce the vertical vibrations in the suspended cablesehe bridge deck. The
proposed controllers, whose design is based on Lyapunowthguarantee the
asymptotic stability of the system. The MATLAB software ised to simulate
the performance of the controlled system. The simulaticulte indicate that
the proposed controllers work well. In addition, the parfance of the system
with the proposed controllers is compared to the perforraasfcthe system
controlled with a velocity feedback controller.

Keywords: suspension bridges, moving loads, vibration control.

1 Introduction

Long steel suspended cables such as the ones used in suspengj@s brid
electric transmission lines are prone to vibration induced by wind and vertical
loads [1] and [2]. Suspended cables supporting bridges (see Fige 18nsioned
due to the weight of the bridge deck, the traffic loading, and their own w&igh
When the suspended cables are subjected to any disturbance due ta wamd o
tical loads, and due to the coupling between the bridge deck and the despen
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cables, the system behaves nonlinearly due to the flexibility of the cables [3]
Active control is a viable technology for enhancing structural functighand
safety of systems such as suspended cables supporting bridges [4].

Several researchers have investigated the control of structuressumiild-
ings, bridges and cables. The paper byehal.[5] gives a very good review of the
research status of active/semiactive vibration control of cable suplloritiges.

An active control to the girder stability problem due to wind loading of a very
long suspension bridge is proposed in [6]; the active control is basadovable
flaps attached to the bridge girder. Using wind tunnel experiments on aebridg
section, it is shown that flaps can be used effectively to control bridigierg
vibrations. In [2] and [7], an active vibration control of long spanparsion
bridge flutter using separated flaps is used to increase effectivelyiticalavind
speed of the bridges as well as to reduce the mean square of girdensesp
to turbulence buffeting. An active aerodynamic control method of sigsprg
flutter of a very long-span bridge is proposed in [8]. In this method, timrab
system consists of additional control surfaces attached to the bridge thed
torsional movement, commanded via feedback control law, is used to ¢gnera
stabilizing aerodynamic forces. A method of suppression of flutter in |@ag-s
bridges based on the concept of eccentric mass is proposed in [Qlixdiary
mass is placed on the windward side of a bridge deck to shift the centeanafygr
and thus, the aerodynamic moment acting on the deck is reduced, resultimg in a
increase in the flutter wind speed. Active Control of Flutter of Bridges is als
investigated in [10,11] and [12].

Recently, the bridge vibration controls due to high wind speeds has been
investigated in [13]; the authors proposed a movable passive cortildl/fevhich
can effectively increase the maximum speed limit for bridge service in hurri-
cane evacuations and simultaneously increase the flutter critical wind. Speed
dynamic response of a suspension bridge due to a vertical load moving with a
constant speed on the bridge deck is studied in [14]; control mechanigms a
suggested to generate control forces to control the non-linear vibsaiotie
bridge deck and the suspended cables.

Control of nonlinear vibrations due to the interactions of moving vehicles
and bridges structure has been tackled by many researchers [15F28p et
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al. proposed a system model representation for general multiple moving lumped-
parameter systems interacting with a distributed-parameter systems and applied
it to the vehicle-bridge interaction problem. The main aspect of this work is
that the form of the linear parameter varying system developed allows w#to ¢
sider the analysis and control design using the theoretical results in this field
In [19], Karoumi uses finite element method to model and analyze the cable-
stayed bridges under the action of moving vehicles. In [17], the effeasiog
semi-active control strategy in vehicle suspensions on the coupled viisaifo

a vehicle traversing a bridge is examined and a various designs of si@mpen
systems for bridge-friendly vehicle are proposed. Recently, an inteasialysis

and experimental work has been done to evaluate the load bearing cagfacity
the historic suspension bridges so that traffic loads are managed t@ ehsiir
continued safe operation [21, 22].

Benchmark problems in structural control have provided a mean foarese
chers and designers to assess the merits of various control strategiesnghe
problem with a common set of performance criteria. The first generation of
benchmark problems for bridges was based on the cable-stayed brigpé
Girardeau, Missouri, USA. The first phase of the benchmark probtamiders
the simplest case of excitation which is a uniform excitation in the longitudinal di-
rection of the bridge [23, 24]. This problem has been tackled by mamgarelsers
and different controllers have been proposed to solve this probler2@5In the
second phase of the benchmark cable-stayed bridge problem, the citynpfex
the excitation is increased. Multiple support excitation with different angies a
times of arrival for each support is considered. Additionally, an altermeodel
is developed to study the robust stability and performance of the constdray
under realistic conditions. Here the mass of the bridge is incremented due to
show and rain loads [29, 30]. Different controllers have been megdo solve
such a problem that can be found in [31-34]. This paper shows tlgndefstwo
control schemes to control the nonlinear vibrations in the suspendedarabthe
bridge deck due to vertical load moving on the bridge deck with a constaatsp
Numerical example is used to show the effectiveness of the proposeadltans.
Practical implementation will be the focus of one of our future researcé fifgt
control scheme is an optimal state feedback controller while the seconalcontr
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scheme is a robust state feedback controller whose design is basedigm afe
optimal controllers. In order to control the nonlinear vibrations in the qudpe
cable and the bridge deck, one may install a vertical cable between the dedg
and the suspended cable to install a hydraulic actuator able to generativan a
feedback control force.

This paper investigates the control of vibrations due to moving loads on
suspension bridges. In order to control the nonlinear vibrations in ttigddeck,
one may install a vertical cable between the bridge deck and the suspeaided
to install a hydraulic actuator able to generate an active feedback céarirel
The design of the control force to greatly reduce the vertical vibratiorteen
suspended cables and the vertical vibrations in the bridge deck is diddnghis
paper.

The rest of the paper is organized as follows. The dynamic model opasus
sion bridge interacting with a moving load is presented in Section 2. A nonlinear
controller to reduce the vibrations of the system is proposed in Section 3. A
linear controller to reduce the vibrations of the system is presented in Sdction
Simulation results of the proposed control schemes are presented anskdidc
in Section 5. Finally, the conclusion is given in Section 6.

In the sequel, we denote B§’” the transpose of a matrix or a vectdr.

We uselW > 0 (W < 0) to denote a positive- (negative-) definite mat¥ix.
Sometimes, the arguments of a function will be omitted in the analysis when no
confusion can arise.

2 Dynamic model of the suspension bridge system

The basic equations of motion of the suspended cables (see Fig. 1)fimexide
in [35, 36] and [37]. According to the displacements directions definedgnZ;
the general equations of motion are:

0T Az +0) B 02U

25 o7 =%, }_maﬂ’

0r oy +V) B o*V ov

as _(TO+7-) as - _mg+m atQ +C at +F’U(S?t)7 (1)
0T oW *W oW

%_(To-i-T) s } =m 52 c o + Fy(s,t),
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wheres is the spatial coordinate along the cable curved lengtthe time;z(s)

is the horizontal coordinate along the cable spar) is the cable static profile;
U(s,t) is the displacement in the tangential direction of the cabilg, t) is the
displacement in the vertical direction of the calilé(s, t) is the displacement in
the transversal direction of the cablg; is the static tension in the cablejs the
additional dynamic tension in the cablgjs the gravitational acceleration;is
the damping coefficient in the cable; is the mass of the cable per unit length;
F,(s,t) is the external loading per unit length in the vertical directibp(s, t) is
the external loading per unit length in the transverse direction.

u(t)
T u(t)

L

\
Lﬂ

K

Fig. 1. Suspension bridge.

Fig. 2. Displacements directions of suspended cables.

The nonlinear strain-displacement relationship during the deformation of the
cable is given by:

T ds —ds
EA ds

: 2)

whereFL is the modulus of elasticity, and is the cross section area of the cable.
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The deformed cable segmedis; , and the un-deformed cable segmestare
defined as,

ds? = (dz+0U)? + (dy + 0V)? + (OW)?, )
ds? =dz* +dy?

Equations (1) can be simplified [36] based on the assumption of a smallcurva
ture regime and condensing the longitudinal displacerbeirt the case of zero
longitudinal loading which leads to:

(1+ ae)T,LV" (s,t) + aBTye + LF,(s,t) = mLV (s,t) + cLV (s, 1),

(1 + ae)T,LW (s,t) + LEy(s,t) = mLW (s, t) + cLW (s, ), (4)
e= 5@ + %[V’ (s,t) + W 2(s,1)].

In equations (4), the prime indicates differentiation with respect (e spatial
coordinate along the cable curved length) and the dot indicates diffdientith
respect to time. Also, L is the length of the suspended cables, and the parameters
« andg are defined such as,

_EA

o =

mglL
and = .
T, b T,

(5)

When the suspended cables are supporting a bridge deck, the eqoétiootion
become:

(14 ae)T,LV" + afT,e + LKo(z — V) + Tyu(t) = mLV + cLV,
(1+ ae)T,LW" + LE,(s,t) = mLW + cLW,
0tz 0%z 0z (6)

El@‘tmbw‘i‘cba = _KC(Z_V) — U(t)&(.’IJ—.’I}p) —+ P5($—xp),

Lierg s
e:—ﬁ%+§[v + W2

The termK,.(z — V) in equations (6) was used to represent the vertical load
F,(s,t) in equations (4) and it represents the distributed vertical force in the
vertical hangers. Alsoz(z,t) is the vertical displacement of the bridge deck;
K. is the stiffness of the vertical cables which hang the bridge degkis the
mass of the bridge deck;, is the damping coefficient of the bridge dedK] is

208



Control of Vibrations due to Moving Loads on Suspension Bridges

the flexural rigidity of the bridge deck? is the magnitude of the moving load;
xp is the location of the moving load at any timérom the left supporty is the
Dirac delta function which is used to introduce the concentrated moving load on
the differential equation;(t) is the active control force.

The displacement function& (s, t), V (s, t) andz(z, t) are considered to be
the contribution of the first modes of vibrations. Therefore they arenasdias
follows:

W(s,t) = b(s)W(2),
V(s,t) = o(s)V (1), (7)
z(x,t) = n(x)B(t),

whereW (t) is the transverse displacement of the suspended chllg;is the
vertical displacement of the suspended calfi¢;) is the vertical displacement
of the bridge decki(s) and(s) are the first mode shapes in the vertical and
transversal directions, respectively(s) is the first mode shape for the bridge
deck.

The modes)(s), ¢(s) can be determined using linear theory of cables and to
satisfy the boundary conditions [35] which provide:

P (s) = sin %S, (8)
o(s) = Ko<1 —tan’%rsin ,azs — cos ﬂ28>, ©)

whereK, is a constant chosen to ma&é%) = 1 andj is a constant which fits
with the boundary conditions.

For a two hinged bridge deck, the mode shafe) can be assumed as:

n(x) = sin —. (20)

Substituting equations (7)—(10) into equations (6) and applying an integral
transformation one obtains, respectively, the equations of motion of therstded

cable in the vertical and the transverse directions and the vertical motior of th
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bridge deck as follows:
V 4+ 26w,V 4+ 02V 4+ V2 + W2 4+ e3V3 + e, VIV?
=diV + daB + rru(t) + fo(t),
W+ 20w, W + W2 W + s VW + c6VEW 4+ ;W3 = f,,(1),
B + 2CwpB + w2B = d3V + duB + kou(t) + P*sin(vt),

(11)

wherew, is the natural frequency of the cable in the vertical direction, and it is
defined in Appendixiv,, is the natural frequency of the cable in the transversal
direction, and it is defined in Appendixy, is the natural frequency of the bridge
deck, and it is defined in Appendig;is the damping ratio in the suspended cable;
(p is the damping ratio in the bridge deck; = ni—fL, whereP is the magnitude
of the moving loadj is the location of the control force(t) with respect to the
origin of x-axis; v is the speed of the moving load. The scalars:, cs, ..., c7,
d1, da, d3, d4, K1 @ndks are constants which are defined in Appendix.

The forcesf,(t), andf,(t) are such,

_f¢Fv($at)d$ —f@ZJFw(x,t)da:
folt) = —— s fult) = —— . (12)
m [ ¢*dx m [ 2dx
0 0

Define the following state variables:
z1(t) =V(t), x(t)=V(t), x3(t)=B(t),
za(t) = B(t), s(t) = W(t), wo(t) = W(t).

Hence, the equations of a suspension bridge interacting with a moving load
can be written in state-space form as follows:

(13)

x(t) = Ax(t) + Bu(t) + g (x(t)) + d(t), (14)
where
i 0 1 0 0 0 0
—w2+dy —2Cw, do 0 0 0
Ao 0 0 0 1 0 0
- ds 0 —wi+ds —2Qw, 0 0 ’
0 0 0 0 0 1
L 1 0 0 0 —w?  —2Cwy
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[z ] [0 ] [ 0 i
T K1 fu(t)
_ | T3 10 _ 0
x= Xq ’ B= K2 ’ d(t> o P Sin(@ t) ’
xIs 0 0
L L6 | L 0 | L fw()
- 0 -
—clx% — CQZ’% — c;»,x‘i’ — 041’111%
0
0
2 3
| —Z1 — C5T1X5 — CeL1{T5 — C7xy |
Let
9(x,1) = ga(x) + d(2). (15)

Hence the equations of the system in (14) can be written as,
x = Ax + Bu + g(x,t). (16)

Simulations results of the uncontrolled system show that it is a stable sys-
tem. Also, the simulations indicate that the response of the system oscillates.
Therefore, the objective of this paper is to design control schemes toumpre
stability of the system by reducing the oscillations.

Remark 1. The simulation results indicate that the nonlinear functids, ¢) in
(15) is uniformly bounded and hence it can be assumed that the nonlinear term
g(x,t) satisfies the following cone-bounding constraint,

: (17)

lg(x, )] < po|(t)
wherey is a positive scalar.

Remark 2. It can be checked that the paid( B) in (16)is controllable. Hence
the poles of the closed loop system can be selected such that the resptirese
linear part of the system (i.ey(x, t) = 0) is as desired.
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3 Design of the first control scheme

In this section, a nonlinear controller is used to control the suspensiogebrid
system described by (16). The control law is divided into a linear pattaan
nonlinear part. The linear part of the controller is designed by using the po
placement technique. The nonlinear part of the controller is designectamee
the asymptotic stability of the closed loop system.

Let the matrixA. be such that

A.=A- BK (18)

and let the symmetric positive definite matix be the solution of the following
Lyapunov equation,

AP+ PiA = —Q, (19)
whereQ; = QT > 0.

Theorem 1. The control law given by20)}{22) when applied to the suspension
bridge systen(l16) guarantees the asymptotic stability of the system.

U =ur +un (20)
with

ur, = —Kx (22)
and

uy = —p1 sign(BT Pyx). (22)

Proof. Using (16), (20) and (21), it follows that

%X = Ax+ B(—Kx+un) + g(x,t)
= (A— BK)x+ Bun + g(x,t) (23)
= Ax + Buy + g(x, ).

Consider the following Lyapunov function candidate,

Vi = XTP1X. (24)
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Note thatV; > 0 for x # 0 andV; = 0 for x = 0.Taking the derivative o}
with respect to time and using equations (23), (22), (19) and (17), it¥eltbat
V =x'Pix +x'Pix
= (Acx + Buy + g(x, t))TPp( +x'p (Acx + Buy + g(x, t))
=xT(AT P + P A)x + 2xT P Buy + 2g(x,t)T Pix
= —x''Qix + 2xT P Bun + 2¢(x, t)TP1X (25)
BTPx
| BT P x|
= —Anin(Q)X[1? + 2pAmae (P[%|* = 21| BY Pix|
< = (Mnin(Q1) = 2pAmaz (P1)) 1|
Therefore, it can be concluded tHat< 0 if the matricesP, andQ; are selected
such that the conditioA, i, (Q1) — 2 maz (P1) > 0. Hence the control scheme

given by (20)—(22) guarantees the asymptotic stability of the closed |xipray
L]

IN

~Amin (Q)[1x[1 + 206 A mas (P1)[x]|* — 2p1x" PLB

4 Design of the second control scheme

In this section, a linear controller is designed to control the suspensiogebrid
system described by (16). Again, the control law is divided into two pdite
first part of the controller is designed by using the pole placement teahagg)in
the previous section. The second part of the controller is designed targea
the asymptotic stability of the closed loop system.

The matrixA.. is such that

A.= A - BK. (26)
Let the symmetric positive definite matriX, be the solution of the following
Lyapunov equation,

ATP) + PyA. = —Qo, (27)

whereQ, = Q1 > 0.
Let the design parameterbe such that

)\maac<P2)
7= Nwin(PBBT Py)

L. (28)
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Theorem 2. The control law given by29)+(31) when applied to the suspended
cables syster(iL6) guarantees the asymptotic stability of the system.

U =UL; + UL, (29)
with

ur, = —Kx (30)
and

ur, = —~BT Pyx. (31)

Proof. Using (16), (29) and (30), it follows that
%X = Ax+ B(—Kx+ur,) + g(x,t)
= (A— BK)x+ Bup, + g(x,t) (32)
= A.x + Bur, + g(x,1).

Consider the following Lyapunov function candidate,
Vi = x' Pox. (33)

Note thatl, > 0 for x # 0 andV; = 0 for x = 0. Taking the derivative of%
with respect to time and using (32), (31) and (27), it follows that
Vo = xT Pyx + xT Ppx
= (Acx + Bur, + g(x, t))TP2x +xI'Py (Acx + Bur, + g(x, t))
=x (AT Py + Py A)x + 29(x, 1) ! Pox + 2xT Py Buy,
—xT'Qox + 2¢9(x,t)T Pox + 2xT Py Buy,

< —xTQox + 2u|| Pox|| ||x|| — 2vxT P,BBT Pyx (34
< 5T Qux + 2 maa (P) X[ = 23 Amin(PLBET P) x]

— X7 Qux + 2(j s (Ps) — PAunin (BB BT P)) [

< —xTQox.

The choice ofy guarantees thdi\maz (P2) — YAmin(PoBBT P)) < 0.
Therefore, it can be concluded tﬁégt < 0. Hence the control scheme given
by (29)-(31) guarantees the asymptotic stability of the closed loop systeiml
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5 Simulation results

The controllers designed in Sections 3 and 4 are simulated using the MATLAB
software.

The example in Abdel-Rohman and Spencer [1] is used for simulation pur-
poses. The example consists of a suspended cable of IEngth00 m, diameter
D = 10cm, massn. = 62Kg/m, tension in the cabl&, = 2 x 10° N, axial
stiffnressEA = 1.57 x 10° N. The damping ratio of the cable is assumed to be
¢ = 0.1%. The mass of the bridge deckis, = 10000 kg/m, the damping
in the bridge is¢; = 0.01. The vertical hangers stiffness is assumed to be
K, = 10%N/m, the flexural rigidity is taken to b& = 5 x 10'YNm?. The
natural frequencies are such thgt = 2.8 rps,w, = 2.8rps, andv, = 0.552 rps.
The parameters; — ¢; are such that; = 1.2196, ¢ = 0.41, ¢3 = 0.578,
cg = 0.56535, c¢5 = 0.8015, ¢ = 0.5634, c; = 0.55. The parameterg; — d4
are such thatl; = — C/m, do = Kc/m, ds = Kc/mb, dy = — c/mb. The
parameters; andrx, are such thak, = -2, kg = m*—sz The magnitude of the
moving load isP = 100000, and P* = nf—bPL. The speed of the moving load is
v = 10 m/s, and the location of the control fore¢t) is at0.5L.

Fig. 3 shows the vertical displacement of the suspended dé@bigwhen no
control is applied to the system; it can be seen that the response oscillates with

0.25

021

0.15F

0.1f

Displacement (m)
| o o
o o o
[ & o &
T

o
s
a

021

~0.25 I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Time (sec)

Fig. 3. The vertical displacement of the suspended c&il8, with no control.
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amplitude of abouf.5 m peak to peak. Fig. 4 shows the vertical displacement
of the bridge decki3(¢) when no control is applied to the system; it can be seen
that the response oscillates with amplitude of alibGim peak to peak. Fig. 5
shows the transverse displacement of the suspended E&bigwhen no control

is applied to the system; it can be seen that the response oscillates with amplitude

Displacement (m)
o

-0.1f

-0.15

021

~0.25 I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Time (sec)

Fig. 4. The vertical displacement of the bridge de8k;) with no control.

Displacement (m)
o

‘ % ‘

I I

-0.04

-0.06 -

-0.08

01 L L L L L L I I I
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Fig. 5. The transverse displacement of the suspended cdble), with no
control.
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of about0.02m peak to peak. Therefore the objective of the proposed control
schemes is to greatly reduce the oscillation¥ ¢f) and5(t).

Fig. 6 shows the vertical displacement of the suspended dablewhen the
first controller is applied to the system; it can be seen that the responatesc
with amplitude of abou0.05 m peak to peak. Fig. 7 shows the vertical displace-

0.1

Displacement (m)
o

|
o
9
N

-0.04

-0.06 -

-0.08 -

-0.1
0

I I I I I I I I I
10 20 30 40 50 60 70 80 920 100
Time (sec)

Fig. 6. The vertical displacement of the suspended c&h8, when controller
1is used.

Displacement (m)

-0.041

-0.06

-0.08

01 I I I I I I I I I
0 10 20 30 40 50 60 70 80 920 100
Time (sec)

Fig. 7. The vertical displacement of the bridge de8k;) when controller 1 is
used.
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ment of the bridge decl3(¢) when the first controller is applied to the system;
it can be seen that the response oscillates with amplitude of &b@umn peak

to peak. Fig. 8 shows the transverse displacement of the suspendedZgh
when the first controller is applied to the system; it can be seen that thensespo
oscillates with amplitude of aboQt02 m peak to peak. Hence, it can be concluded
that the first control scheme is able to greatly reduce the oscillationgfand
B(t). The controller did not have much of an effect on the transverse despkaat

of the suspended cabl&/(¢). The plot of controller 1 versus time is shown in
Fig. 9; the range of the controller is abdug x 10°.

0.1

Displacement (m)
o o o o
° o o o
2 g S o S

‘ % ‘

I I

o

=3

&
T

-0.1
0

I I I I I I I I I
10 20 30 40 50 60 70 80 90 100
Time (sec)

Fig. 8. The transverse displacement of the suspended c&lbl¢) when
controller 1 is used.

Fig. 10 shows the vertical displacement of the suspended cébt¢ when
the second controller is applied to the system; it can be seen that the respons
oscillates with amplitude of abo0t06 m peak to peak. Fig.11 shows the vertical
displacement of the bridge dedB(t) when the second controller is applied to the
system; it can be seen that the response oscillates with amplitude oftati®uort
peak to peak. Fig. 12 shows the transverse displacement of the sadpaiie,
W (t) when the second controller is applied to the system; it can be seen that the
response oscillates with amplitude of abow2 m peak to peak. Hence, it can be
concluded that the second control scheme is able to greatly reduce ilestioss
of V(¢) andB(t). The controller did not have much of an effect on the transverse
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displacement of the suspended cabl&(t). The plot of controller 2 versus time
is shown in Fig. 13; the range of the controller is ab@atx 10°.

Therefore, the simulation results show that the proposed control sclames
able to greatly reduce the oscillations of the vertical displacement of thersusp

x 10

0.8

0.6

0.4

u(t)

1 L L L L

. . . . .
0 10 20 30 40 50 60 70 80 90 100
Time (sec)

Fig. 9. The response of controller 1 versus time.

Displacement (m)

-0.06 -

-0.08

I I I I I
10 20 30 40 50 60 70 80 90 100
Time (sec)

01 L L L I
0

Fig. 10. The vertical displacement of the suspended cablg;) when
controller 2 is used.
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ded cable and the vertical displacement of the bridge deck. It should ft#omed
that the first controller gave slightly better results than the second controller

For comparison purposes, a simple velocity feedback controller is delsigne
for the suspension bridge system.

0.1

Displacement (m)

-0.04

-0.06 -

-0.08 -

70'10 1‘0 2‘0 3‘0 A‘D 5‘0 Z;O 7‘0 8‘0 9‘0 100
Time (sec)
Fig. 11. The vertical displacement of the bridge de6k;) when controller 2
is used.
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o o o o
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I
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Fig. 12. The transverse displacement of the suspended, cEb(&) when
controller 2 is used.
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Fig. 13. The response of controller 2 versus time.
The controller is as follows:
u= -V — B, (35)

wherea; andas are design parameters.
Fig. 14 shows the vertical displacement of the suspended dablewhen

Displacement (m)

-0.05- il

-0.1 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Fig. 14. The vertical displacement of the suspended cdble) when the
velocity feedback controller is used.
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the velocity feedback controller is applied to the system; it can be seen that the
response oscillates with amplitude of abéw m peak to peak. Fig. 15 shows
the vertical displacement of the bridge ded¥t) when the velocity feedback
controller is applied to the system; it can be seen that the response osciiliites w
amplitude of abou®.2 m peak to peak. Fig. 16 shows the transverse displacement

0.1
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0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Fig. 15. The vertical displacement of the bridge de8k;) when the velocity
feedback controller is used.
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Fig. 16. The transverse displacement of the suspended, d&ljle when the
velocity feedback controller is used.
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of the suspended cabl&/ (¢) when the velocity feedback controller is applied

to the system; it can be seen that the response oscillates with amplitude of about
0.02m peak to peak. The plot of the velocity feedback controller versus time is
shown in Fig. 17; the range of the controller is abo2t x 10°.

x10°

u(t)

I I I I I I I I I
[ 10 20 30 40 50 60 70 80 90 100
Time (sec)

Fig. 17. The response of the velocity feedback controllesugtime.

Therefore, it can be concluded that the velocity feedback controlldnlés a
to reduce the oscillations of the vertical displacement of the suspendésl cab
and the vertical displacement of the bridge deck. However, the redutitre
oscillations with the velocity feedback controller is less than the reduction of the
oscillations when the proposed two control schemes are applied to the system.
The range of the proposed controllers is a bit higher than the range oéliaty
feedback controller.

6 Conclusion

The control of the nonlinear vibrations of suspension bridges due to igéyaads

is investigated in this paper. In order to control the vertical vibrations of the
suspended cables and the bridge deck, a hydraulic actuator can lednisea
tween the bridge deck and the suspended cables. This actuator is useéitatg

an active control force on the bridge deck. A linear and a nonlineatraon
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schemes are presented to generate the active control force. Thuasallers
guarantee the asymptotic stability of the closed loop system. The performance
of the controlled system is investigated through simulations using the MATLAB
software. The simulation results indicate that the proposed control sclverries
well. Moreover, simulation results indicate that the proposed controllees giv
better results than a velocity feedback controller.

Appendix

The natural frequency of the cable in the vertical direction is such:

L

2 _Hofdxzﬁda:'
"l
0

The natural frequency of the cable in the transversal direction is such:

L
o
m

f P2dx
0

The natural frequency of the bridge deck is such:

fL llll
oo Pl
b — m L *
[ n2ds
0
The parameters,, co, c3, ¢4, 5, cg andey are such:
2d ’Qd
1. 5ﬂEAf¢¢ N ﬂEAfW v
1 = mL ) Cy = omL )
f¢2d:c fd)zdx
0 0
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L L L
/2 //d ! ! //d —’_0'5 1 /2d
ismal 990 [eSW 05 [ o0y
C3 = I , G4 = m I )
[ ¢?dx [ ¢*dx
0 0
L 1 L ! 1 i L /2 1"
d dx + 0.5 d
EAofcbW x _EAofqﬁcbwwx gasww x
C6=——F—"F7» C= - 2 )
[ W?dx [ w2z
0 0
L /2 1
d
ispa VYTV
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[ 2z
0
The parameterd,, ds, ds andd, are such:
_KC KC Kc _KC
dy = , do=—, d3=—, d4y= .
m m my my

2 -2

K] = Ko = .

L my L
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