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Abstract. The aim of this article is to study the existence of positive weak
solution for a quasilinear reaction-diffusion system withDirichlet boundary
conditions,
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whereλ is a positive parameter,Ω is a bounded domain inRN (N > 1)
with smooth boundary∂Ω. In addition, we assume that1 < pi < N , for
i = 1, 2, . . . , n. Forλ large by applying the method of sub-super solutions the
existence of a large positive weak solution is established for the above nonlinear
elliptic system.
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1 Introduction

In this paper we consider the existence of positive weak solution to the system
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whereλ > 0 is a parameter,∆p denotes thep-Laplacian operator defined by

∆pz = div (|∇z|p−2∇z), and Ω is a bounded domain inRN (N > 1) with

smooth boundary∂Ω. In addition, we assume that1 < pi < N , for i =

1, 2, . . . , n.

Problems involving thep-Laplacianarise from many branches of pure math-

ematics as in the theory of quasiregular and quasiconformal mapping (see [1]) as

well as from various problems in mathematical physics notably the flow of non-

Newtonian fluids.

The structure of positive solutions for quasilinear reaction-diffusion systems

(nonlinear Newtonian filtration systems) and semilinear reaction-diffusion sys-

tems (Newtonian filtration systems) is a front topic in the study of static electric

fields in dielectric media, in which the potential is described by the boundary

value problem of a static non-Newtonian filtration system, called the Poisson-

Boltzmann problem. This kind of problems also appears in the study of the non-

Newtonian or Newtonian turbulent filtration in porous media and so on, which

have extensive engineering background.

In recent years, many authors have investigated the following initial boundary

value problem of a class of quasilinear reaction-diffusion system

{

ut = div
(

|∇u|p−2∇u
)

+ uα1vβ1 ,

vt = div
(

|∇v|q−2∇v
)

+ uα2vβ2 , (x, t) ∈ Ω × (0, T ),
(2)

whereΩ is as above,p, q > 1 (see e.g. [2]). Forp = q = 2, (2) is the classical

reaction-diffusion system of Fujita type. Ifp 6= 2, q 6= 2, (2) appears in the theory

of non-Newtonian fluids [3] and in nonlinear filtration theory [4]. In the non-

Newtonian fluids theory, the pair(p, q) is a characteristic quantity of the medium.

Media with(p, q) > (2, 2) are called dilatant fluids and those with(p, q) < (2, 2)

are called pseudoplastics. If(p, q) = (2, 2), they are Newtonian fluids.

Yang and Lu [2] studied the nonexistence of positive solutions to the system

(2). We refer to [5–7] for additional results on elliptic systems. In this paper, we

shall prove that if
∑n

j=1 α1j < p1 − 1,
∑n

j=1 α2j < p2 − 1, . . . ,
∑n

j=1 αnj <

pn−1, (1) admits a positive weak solution for eachλ > 0. Our approach is based

on the method of sub- and supersolutions, see [8].
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2 Existence results

Let W 1,s
0 = W 1,s

0 (Ω), s > 1, denote the usual Sobolev space. We first give the

definition of weak solution of(1).

Definition 1. A pair of nonnegative functions(ψ1, ψ2, . . . , ψn), (z1, z2, . . . , zn)

inW 1,p1
0 ×W 1,p2

0 × . . .×W 1,pn

0 are called a weak subsolution and supersolution

of (1) if they satisfyψi(x) ≤ zi(x) in Ω for i = 1, 2, . . . , n, and

∫

Ω

|∇ψi|
pi−2∇ψi∇wi dx ≤ λ

∫

Ω

n
∏

j=1

ψ
αij

j wi dx,

for i = 1, 2, . . . , n and

∫

Ω

|∇zi|
pi−2∇zi∇wi dx ≥ λ

∫

Ω

n
∏

j=1

z
αij

j wi dx,

for i = 1, 2, . . . , n and for allwi(x) ∈W 1,pi

0 , withwi ≥ 0.

We shall obtain the existence of positive weak solution to system (1) by

constructing a positive weak subsolution(ψ1, ψ2, . . . , ψn) and supersolution

(z1, z2, . . . , zn).

Our main result is formulated in the following theorem.

Theorem 1. Suppose thatαii ≥ 0, αij > 0 (i 6= j), and
∑n

j=1 α1j < p1 − 1,
∑n

j=1 α2j < p2 − 1, . . . ,
∑n

j=1 αnj < pn − 1. Then system(1) has a positive

weak solution for eachλ > 0.

Proof. Let λ(i)
1 (i = 1, 2, . . . , n) be the first eigenvalue of the problems, respec-

tively,

{

−∆pi
φ

(i)
1 = λ

(i)
1 |φ

(i)
1 |pi−2 φ

(i)
1 , x ∈ Ω,

φ
(i)
1 = 0, x ∈ ∂Ω, i = 1, 2, . . . , n,

where φ(i)
1 , denote the corresponding eigenfunctions, respectively, satisfying

φ
(i)
1 (x) > 0 in Ω, |∇φ(i)

1 | > 0 on ∂Ω (this is possible since by the Maximum
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principle∂φ(i)
1 /∂n < 0 for x ∈ ∂Ω wheren denotes the outward normal, see [9]),

and||φ(i)
1 ||∞ = 1 for i = 1, 2, . . . , n. We shall verify that

(ψ1, ψ2, . . . , ψn) =

(

k
((p1 − 1)

p1

)

(φ
(1)
1 )

p1
p1−1 , . . . , k

((pn − 1)

pn

)

(φ
(n)
1 )

pn
pn−1

)

,

is a subsolution of (1), wherek > 0 is small and specified later. Letwi ∈ W 1,pi

0

with wi ≥ 0 (i = 1, 2, . . . , n). A calculation shows that
∫

Ω

|∇ψi|
pi−2∇ψi∇wi dx

= kpi−1

∫

Ω

φ
(i)
1 |∇φ

(i)
1 |pi−2∇φ

(i)
1 ∇widx

= kpi−1

{
∫

Ω

|∇φ
(i)
1 |pi−2∇φ

(i)
1 ∇(φ

(i)
1 wi)dx−

∫

Ω

|∇φ
(i)
1 |piwidx

}

= kpi−1

∫

Ω

(

λ
(i)
1 (φ

(i)
1 )pi − |∇φ

(i)
1 |pi

)

widx,

for i = 1, 2, . . . , n. Sinceφ(i)
1 = 0 and|∇φ(i)

1 | > 0 on ∂Ω, for i = 1, 2, . . . , n,

there isδ > 0 such that fori = 1, 2, . . . , n, we have

λ
(i)
1 (φ

(i)
1 )pi − |∇φ

(i)
1 |pi ≤ 0, x ∈ Ω̄δ,

with Ω̄δ = {x ∈ Ω | d(x, ∂Ω) ≤ δ}. Now onΩ̄δ we have

kpi−1
(

λ
(i)
1 (φ

(i)
1 )pi − |∇φ

(i)
1 |pi

)

≤ 0 ≤ λ
n

∏

j=1

ψ
αij

j (i = 1, 2, . . . , n).

Next, we note thatφ(i)
1 (x) ≥ η > 0 in Ω0 = Ω \ Ω̄δ for someη > 0, and

i = 1, 2, . . . , n. Since fori = 1, 2, . . . , n we have
∑n

j=1 αij < pi − 1, then there

is k0 > 0 such that ifk ∈ (0, k0) we have
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(i)
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for i = 1, 2, . . . , n. Then inΩ0

kpi−1
(

λ
(i)
1 (φ

(i)
1 )pi − |∇φ

(i)
1 |pi

)

≤ λ
n

∏

j=1

ψ
αij

j ,

for i = 1, 2, . . . , n. Hence

∫

Ω

|∇ψi|
pi−2∇ψi∇wi dx

=

∫

Ω̄δ

|∇ψi|
pi−2∇ψi∇wi dx+

∫

Ω0

|∇ψi|
pi−2∇ψi∇wi dx

= kpi−1

∫

Ω̄δ

(

λ
(i)
1 (φ

(i)
1 )pi − |∇φ

(i)
1 |pi

)

wi dx

+ kpi−1

∫

Ω0

(

λ
(i)
1 (φ

(i)
1 )pi − |∇φ

(i)
1 |pi

)

wi dx

≤ λ

∫

Ω̄δ

n
∏

j=1

ψ
αij

j wi dx+ λ

∫

Ω0

n
∏

j=1

ψ
αij

j wi dx

= λ

∫

Ω

n
∏

j=1

ψ
αij

j wi dx,

for i = 1, 2, . . . , n, i.e. (ψ1, ψ2, . . . , ψn) is a subsolution of (1).

Next, letζi(x) (i = 1, 2, . . . , n) be the positive solution of

{

−∆pi
ζi = 1, x ∈ Ω,

ζi = 0, x ∈ ∂Ω, i = 1, 2, . . . , n.

For existence results of positive solutions for above boundary value problems

see [9]. Let

(z1, z2, . . . , zn) =
(

C1 ζ1(x), C2 ζ2(x), . . . , Cn ζn(x)
)

,

whereCi > 0 are large numbers to be chosen later. We shall verify that

(z1, z2, . . . , zn) is a supersolution of (1). To this end, letwi(x) ∈ W 1,pi

0 , with
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wi ≥ 0, for i = 1, 2, . . . , n. Then we have
∫

Ω

|∇zi|
pi−2∇zi∇wi dx = Cpi−1

i

∫

Ω

|∇ζi|
pi−2∇ζi∇wi dx

= Cpi−1
i

∫

Ω

widx,

for i = 1, 2, . . . , n. Let li = ||ζi||∞, i = 1, 2, . . . , n. It is easy to prove that there

exist positive large constantsC1, C2, . . . , Cn such that

Cp1−1−α11
1 ≥ λ

(

n
∏

j=2

C
α1j

j

) (

n
∏

j=1

l
α1j

j

)

· · ·

Cpn−1−αnn
n ≥ λ

(

n−1
∏

j=1

C
αnj

j

)(

n
∏

j=1

l
αnj

j

)

.

Then fori = 1, 2, . . . , n we have

Cpi−1
i ≥ λ

(

n
∏

j=1

(Cj lj)
αij

)

≥ λ
(

n
∏

j=1

(Cj ζj)
αij

)

= λ
(

n
∏

j=1

z
αij

j

)

and therefore
∫

Ω

|∇zi|
pi−2∇zi∇wi dx ≥ λ

∫

Ω

n
∏

j=1

z
αij

j wi dx,

for i = 1, 2, . . . , n, i.e. (z1, z2, . . . , zn) is a supersolution of (1) withzi ≥ ψi in

Ω for largeCi, i = 1, 2, . . . , n. Thus, by the comparison principle, there exists

a solution(u1, u2, . . . , un) of (1) with ψi ≤ ui ≤ zi, for i = 1, 2, . . . , n. This

completes the proof of Theorem 1.
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