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Abstract. Given anm x n matrix A, with m > n, the four subspaces associated
with it are shown in Fig. 1 (see [1]).

dmm-r

Fig. 1. The row spaces and the nullspacesiaind A”’; a; througha,, and
h, throughh,,, are abbreviations of thaignerframeandhangerframerectors
respectively (see [2]).

The Fundamental Theorem of Linear Algebra tells us fiia#) is the ortho-
gonal complement oR(AT). These four subspaces tell the whole story of the
Linear Systemix = y. So, for example, the absenceréfAT) indicates that a
solution always exists, whereas the absend¥ @4) indicates that this solution
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is unique. Given the importance of these subspaces, comgplodises for them
is the gist of Linear Algebra. In “Classical” Linear Algebraases for these
subspaces are computed using Gaussian Elimination; teeyrénonormalized
with the help of the Gram-Schmidt method. Continuing ouvjaes work [3]

and following Uhl's excellent approach [2] we use SVD analyte compute
orthonormal bases for the four subspaces associated Ayitnd give a 3D
explanation. We then state and prove what we call the “SVBeamental
Theorem” of Linear Algebra, and apply it in solving systerhrear equations.

Keywords: fundamental theorem of linear algebra, singular valuesmiposi-
tion, pseudoinverse, orthonormal bases, systems of lggpaations.

1 Introduction

1.1 Basic definitions

Let A be anm x n matrix withm > n. Then one form of the singular-value
decomposition ofd is

A=U,xVr (1)

whereU;, andV,! are orthonormal antl is diagonal. The indicesandh indicate
matrices with aligner and hanger vectors respectively. Thalt]fsUh = In,
Vo,V = I, Uyism x m, V, isn x n and

or 0 0 0
0 o2 0 0
: ; 0
Y= 2
0 0 - op—1 O @
o o0 - 0 9o
0

is anm x n diagonal matrix (the same dimensions as A). In additipr> oo >
... > o, > 0. Theo;'s are called thesingular valueqor the stretcherq?2]) of
A and the number of the non-zesg's is equal to the rank off. The ratiog—i, if
on # 0 can be regarded as a condition number of the matrix
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It is easily verified that the singular-value decomposition can be also written
as

A=UpSV,] = ohjal. (3)
=1

The matrixh;a! is theouter producbf the i-th row ofU;, with the corresponding
row of V,. Note that each of these matrices can be stored usingranly n
locations rather thamn locations.

1.2 The SVD-fundamental theorem of linear algebra

We now prove constructively (showing at the same time how SVD analysis is
done) that,

Aa; = o;h; , (4)
which we call the SVD-Fundamental Theorem of Linear Algebra:

Theorem 1. For anm by n matrix, withm > n, A: R™ — R™ there exists an
orthonormal basiga, ..., a,} of R", obtained from the Spectral Theor&g],
as the eigenvectors of” A. Define

() o: =[lAa, i=1,2,...,m,
the nonzero stretchers, wheté is the Euclidean norm, and

. 1
(II) h;=—Aa;, i=1,2,...,r,
oj
wherer < n.

Proof. Then we clearly have

1
O'Z'hi = O'i—Aai = Aai
a;
or

Aa,-:crl-hl-, i:1,2,...,r.

O

The Spectral Theorem states thatlifs a square symmetric matrix (i.el = A7), then there
is an orthonormal basis of the column spdtfd) consisting of unit eigenvectors of.
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Note, that fromda; = o;h, it follows that AV, = U, X and multiplying both
sides byl we obtain (1).

We will use this theorem in solving systems of linear equations. Also note
that if o; = 0 then Aa; = 0 and the corresponding aligner vectgrbelongs to
the nullspaceof A, N(A). If on the other hand; # 0, thenAa; = o;h;, the
corresponding aligner vectay; belongs to the row space df, R(A”), whereas
the corresponding hanger vecthy belongs to the column space df R(A).
All of the above mentioned vectors form an orthonormal base of the aabsp
which they belong.

So far, we have obtained orthonormal bases for all subspacesasdogith
A except for the nullspace oi”, N(AT). One way to obtain an orthonormal
basis forN (A”) is through the application of Spectral TheoremA4mn?’, instead
of AT A, completing thus the SVD analysis df

1.3 Geometric interpretation

The figure below (Fig. 2) represents the operation ofaqn matrix A on a vector

x € R™ (the left space). That is, it shows schematically what happens when an
arbitrary vector fromA’s domain (the space corresponding dimensionallyt®

row dimensiom) is mapped by4 onto the range space (the space corresponding
dimensionally tad’s column dimensiomn). Hence Fig. 2 shows what happens to

R" R
R(AT) R(A)
T® Y-
4 ~ L%
i ~
! ~ o
f’ / iy
x f”\/ —— Y
| i
|
| i
| !
: i
N(A) N(AT)

Fig. 2. The domain ofA is the space on the left-hand side, whereas its range
is the space on the right-hand side. Matdoperates on a vecter with both
a row-space and a nullspace compongntandx,, _,. respectively, mapping it

on the space on the right hand side.
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x from the left space ad transforms it to the range, the right space. In short, this
figure represents the fundamental theorem of linear algebra (fopvabdem).

Both spaces are made up of two orthogonal subspdtegthe space on the
left-hand side) comprises the row and nullspaged’) and N (A), respectively.
The R™ space is spanned by the aligner vectgis}, whereas the hanger vectors
{h;}, span the column space df

The inverse problem is depicted in Fig. 3.

R" R
R(AT) R(A)

N{A) N{AT)

Fig. 3. The inverse problem.

We conclude this section by pointing out two facts regarding the linear system
Ax =y:
1. The absence af(AT) means thay € R(A), and the systemix = y has
always at least, one solution. On the other hand the presendﬁ(@h‘T)

indicates that a solution will exist (in the classical sense) only & R(A),
which has to be investigated.

2. The absence aV(A) means that if a solution exists, it is unique, whereas
the presence oV (A) indicates an infinity of solutions. These points will be
examined in the next section.

2 Classical methods for computing bases for the four subspas as-
sociated with matrix A

Let’s us briefly review the traditional algorithms of linear algebra used don-c
puting bases for the four subspaces. Remember that for the orthon@tioaliaf
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the bases of the following spaces the Gram-Schmidt procedure is used.

e Algorithm to determine a basis fd?(A), thecolumn spacef matrix A, i.e
the space spanned by the columnsiof

1. Find the reduced echelon matri®g, for the input matrixA.

2. ldentify the pivot columns oR .

3. Identify the corresponding columns in the input maiix

4. A basis forR(A) is the set of pivot column vectors (ef) from step 3.

e Algorithm to determine a basis fdt(AT), therow spaceof matrix 4, i.e the
space spanned by the rowsAf

1. Find the reduced echelon matrig, for the input matrixA.
2. ldentify non-zero rows oRg.
3. Abasis forR(AT) is the set of row vectors (aR ) from step 2.

e Algorithm to determine a basis fa¥ (A), theright nullspaceof matrix A, i.e
the space spanned by solutions4dg = 0:

1. Find the reduced echelon matri®g, for the input matrixA.
2. ldentify free variables and pivot variables Bf .

3. Set one free variable to O, other free variables to 1, and solvevor pi
variables.

4. Repeat step 3 for each free variable.
5. Abasis forN(A) is the set of special solution vectors from each step 3.

e Algorithm to determine a basis foN(AT), theleft nullspaceof matrix A4, i.e
the space spanned by solutionxtod = A7x = 0:

1. Find the transposé”’ .
2. Perform the nullspace algorithm oif .

The bases obtained above ai@ orthonormal. This is where the Gram-Schmidt
method comes in. Namely, any set of linearly independent veators. , a,, can
be converted into a set of orthonormal vectqrs. . ., q,, as follows: We first set
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aj = aj, and then each/ is made orthogonal to the precediag, ... a,_, by

subtracting of the projectioA®f a, in the directions o/, ..., a} ;:
i—1 T,
. Z aj a; ,
a; =a; alg! ™
j=173 <

The: vectorsa span the same subspace asaheThe vectorsy; = a;/||a||
are orthonormal.

The problem with the Gram-Schmidt method is that before we can use it, we
have to know that the given spanning set is linearly independent. Sudblkem
does not exist using SVD.

3 Solving systems of linear equations with SVD analysis

3.1 SVD and the pseudoinverse

The SVD analysis of a matrid gives an easy and uniform way of computing its
inverseA—!, whenever it exists, or its pseudoinverse;, otherwise. Namely if
A= UhZVaT, then the pseudoinverse dfis:

AT =V, xtUl (6)
The singular valuesy, .. ., o, are located on the diagonal of thex n matrix %,
and the reciprocals of the singular valugls, ce a% are on the diagonal of the

n x m matrix 2*. The pseudoinverse of " is AT+ = A. Wheneverd—! exists,
thenAt = A1,

Note that by making some simple calculations we see thét = U, U],
and in this way

AATA=A

Similarly, we can gei* A = V, V. and

ATAAT = AT
2It is well known that the projection of one vectaronto anothey is given by the formula:
. y-x
projyx = ——-y. 5)
y-y
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It also follows thatA™A and AA™ are symmetric, a unique property of the
pseudoinverse.

If the rank of them x n matrix A isn < m, thenX”'Y is an x n matrix of
rankn and

ATA=vxTulu, vl =v,utsv!
is invertible, so

(ATA) AT = v, (=Te) v (v, xul)
and(27¥)~12 = %+, Finally, we have

AT =V, 2TUl = (AT A)~L AT
If m =n,thent™ =X~ and sod* =V, 271U = 4.

3.2 SVD and linear systems
From the previous discussion we see that, to solve
Ax =y (7)

we have to execute the following two steps:

Step 1. We first do an SVD analysis of the matrik: R — R™, obtaining
thus orthonormal bases fdt(A”), R and R™. Here, we could haven Z n.
The dimensions of the subspacég(A) in k", and R(A), N(AT) in R™, are
determined from the numberof the nonzero singular values;, . .., o, where
r < min(m,n), which indicates the rank of the matrik

From the SVD analysis we have that the vectfas, ..., a,} constitute an
orthonormal basis oR(AT), whereas the vectofs, . 1, ..., a, } an orthonormal
basis of N (A).

Likewise, the vectorghy, ..., h,} constitute an orthonormal basis B{ A),
whereas the vectod, 1, ..., h,,,} an orthonormal basis d¥ (AT), (see Fig. 1).

Step 2. We perform the test

T
2

projreay = Y _(hy - y)hy
=1
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to determine wherg lies. To wit, we examine whethey coincides with its
projection inR(A), which is spanned byhy, ..., h,}, (5). We distinguish two
general cases:
Case A. y € R(A): inthis case the system has (at least) one solution. Since we
now havey = projga)y, it follows that:

4 }Lak

Y = Projr(a)y = Z(hk ’ Y)O,—k
k=1

due to (4). Furthermore, due to the linearity of matrix operations, the lastiequ
becomes

_ e (hyy)
y=A4 Z Tak
k=1
and comparing with (7) we obtain:
T h .
-y ey, ®)
Ok
k=1
as the solution of the linear system (7). But, the number of solutions of (7)

depends on the existence or not of the nullsp&del), so we further examine
two subcases:

A.1 If N(A), the nullspace ofi, doesnotexist, then the linear system (7) has one
solution. We prove this by contradiction: Let’s suppose that there is anothe
analogous solution of (7), say;". This means that now bothx = y and
Ax* =y hold true. Subtracting, we have

Ax—x")=y—-y=0.
Because there is "y (A), it follows that only A0 = 0 is possible. This fact
tells us thatx — x* = 0 orx = x*.

A.2 If N(A), the nullspace ofd, does existthen the linear system has infinite
solutions, given by

n
Xinf = X + Z prag %)
k=r+1
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where the vectoray, £ = r + 1,...,n are an orthonormal basis (span)
of N(A). SinceN(A) exists, it follows that there are poinksy € N(A)
such thatAx = 0. Each of these pointsy can be expressed as a linear
combination of the basis vectors, i.e.

XN = Z Ay (10)
k=r+1
wherea;, are the base vectors of(A). Therefore, for each of these points
we have

Ax+xy)=Ax+Axy =y + 0=y (11)
Of X;nr = X + x Or formula (9).

Case B. y ¢ R(A): in this case the system does not have a solution in the
classical sense. In this case we can only compute the best approximaiensolu
given also by the same formula (8). When we say “the best approximatesd]u

we mean a vectoy, in R(A), that is closest ty. In other words, the vector
(y — y») has to be perpendicular to each one of the vectors spatt(idg (see

Fig. 3). Indeed for eachwith 1 < ¢ < r we havé

(y—yr)-he = (y—Ax,)-he = (y—A(zr: %a@) ‘he

k=1
= (y—g(}l';—:’)%k)-hg = (y—g(hk'}’)hk>'h§

r

=y -he—) (hy y)(hg-hg) =y -he—he-y =0
k=1

This tell us that, indeed; — Ax, is perpendicular td?(A), and the solution
we obtain from (8) is the best approximate solution.

3Keep in mind thah; andh, are orthonormal, i.e.

o ifk£e
hk'hf_{1 ifh=¢
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Concluding we see that in both cases, A. and B., the solution to (7) is given
by (8). However, note that

I8
_ (h; - y)
X = ; or ag

B hy -y h, -y
= ey Hay,...,a }
~————

o1 Op
Vi
1
o 00 (12)
:Va' 0 0 {h1Y77hTY}
0 0 g%

=V, 2 {h;-y,...,h, -y}
=V, 2" {hy,...,h}y =V, 2 Uy = Aty
e’

T
Uh

So, we conclude that in all cases= A*y holds true.

3.3 Example

Here, we present an example showing in detail the process describeel fai
solving a linear system using SVD. The following data depicts U.S. imports of
telecommunication equipment from Greece (in thousands of dollars) fr@® 20

to 2004

Table 1. U.S. imports from Greece (in thousands of dollars)

Year 2000 2001 2002 2003 2004
Us$ 6076 4741 2502 3083 6787

We want to fit a polynomial of degree 2 to these points. To wit, the poly-
nomial f(x) = ¢1 + cox + c3z? should be such thaf(z;) should be as close
as possible t@;, where the point§x;,y;}, 7 = 1,...,5 represent, respectively,
the year(z;) and the value of imported telecommunication equipnignt Our
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linear system of equationéc = y, whereA : R? — R is

12000 4000000 6076
12001 4004001 1 4741
12002 4008004 c2 | = | 2502
12003 4012009 c3 3083
12004 4016016 6787

Performing the SVD analysis of the matrik = U,XV.I we obtain the
following matrices:

—0.44632 —0.632771 —0.534896 —0.0257609 —0.337079
—0.446766 —0.317017 0.267074  0.280919 0.741388

Up = | —0.447213 —0.000947734 0.534522 —0.688191 —0.201691 |,
—0.44766 0.315438 0.267448  0.636669 —0.472466
—0.448107 0.632139 —0.534149 —0.203636 0.269848

8.96218-10% 0 0
0 3.16227 0
Y= 0 0 9.33546-1077 |,
0 0 0
0 0 0
—2.495-10~7 —0.0004995 -1
VI = —0.000999001 —0.999999 0.0004995
—1. 0.000999001 —2.49501 - 10~7

The information on orthonormal bases obtained from the SVD decomposition
of matrix A (see 3.2) is presented below:

e Base ofR(A): {h;,hy, h3}

—0.44632 —0.632771 —0.534896
—0.446766 —0.317017 0.267074
= —0.447213 |, | —0.000947734 |,| 0.534522
—0.44766 0.315438 0.267448
—0.448107 0.632139 —0.534149

e Base ofR(AT): {a;,ay, a3}

(—2.495-1077 —0.0004995 — 1),
= ¢ (—0.000999001 — 0.999999 0.0004995) ,
(—1.0.000999001 — 2.49501 - 10~ ")
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e Base ofN(A): 7.

e Base ofN(AT): {hy, h5}

—0.0257609 —0.337079
0.280919 0.741388

= —0.688191 |, | —0.201691
0.636669 —0.472466
—0.203636 0.269848

We now compute the projection of y on R(A)

T
projreayy= Y (hi - y)hy = (5334.01,5219.07, 3058.74, 4257.25, 5398.8).
k=1

We observe that
projreayy #y = (6076, 4741, 2502, 3083, 6787)

which means (see Case B.) thatZ R(A). Finally, the solution to our system is
given by (12):

c = (3.69257 - 10°, —3.68885 - 10°, 921.286).

In Fig. 4 the data points and the polynomial fitted to them are shown.
Us$

10000

8000

6000 o

4000

years
2000 2001 2002 2003 2004 2005

Fig. 4. The data points and the closest polynonfiat) = 3.6925710° —
3.6888510° 2 + 921.286 22 fitted to them.
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4

Conclusions

In this paper we have presented the “SVD-Fundamental Theorem” o&Lie
gebra and used it in solving systems of linear equations. We hope thatimege
rical interpretation of SVD makes our approach more appealing for édueh
purposes.
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