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Abstract. Given anm×n matrixA, with m ≥ n, the four subspaces associated
with it are shown in Fig. 1 (see [1]).

Fig. 1. The row spaces and the nullspaces ofA andAT ; a1 throughan and
h1 throughhm are abbreviations of thealignerframeandhangerframevectors

respectively (see [2]).

The Fundamental Theorem of Linear Algebra tells us thatN(A) is the ortho-
gonal complement ofR(AT ). These four subspaces tell the whole story of the
Linear SystemAx = y. So, for example, the absence ofN(AT ) indicates that a
solution always exists, whereas the absence ofN(A) indicates that this solution
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is unique. Given the importance of these subspaces, computing bases for them
is the gist of Linear Algebra. In “Classical” Linear Algebra, bases for these
subspaces are computed using Gaussian Elimination; they are orthonormalized
with the help of the Gram-Schmidt method. Continuing our previous work [3]
and following Uhl’s excellent approach [2] we use SVD analysis to compute
orthonormal bases for the four subspaces associated withA, and give a 3D
explanation. We then state and prove what we call the “SVD-Fundamental
Theorem” of Linear Algebra, and apply it in solving systems of linear equations.

Keywords: fundamental theorem of linear algebra, singular values decomposi-
tion, pseudoinverse, orthonormal bases, systems of linearequations.

1 Introduction

1.1 Basic definitions

Let A be anm × n matrix with m ≥ n. Then one form of the singular-value

decomposition ofA is

A = UhΣV T
a (1)

whereUh andV T
a are orthonormal andΣ is diagonal. The indicesa andh indicate

matrices with aligner and hanger vectors respectively. That is,UT
h Uh = Im,

VaV
T
a = In, Uh is m × m, Va is n × n and

Σ =












σ1 0 · · · 0 0
0 σ2 · · · 0 0
...

...
. . .

...
... 0

0 0 · · · σr−1 0
0 0 · · · 0 σr

0












(2)

is anm × n diagonal matrix (the same dimensions as A). In additionσ1 ≥ σ2 ≥

. . . ≥ σn ≥ 0. Theσi’s are called thesingular values(or thestretchers[2]) of

A and the number of the non-zeroσi’s is equal to the rank ofA. The ratioσ1

σn
, if

σn 6= 0 can be regarded as a condition number of the matrixA.
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It is easily verified that the singular-value decomposition can be also written

as

A = UhΣV T
a =

n∑

i=1

σihia
T
i . (3)

The matrixhia
T
i is theouter productof the i-th row ofUh with the corresponding

row of Va. Note that each of these matrices can be stored using onlym + n

locations rather thanmn locations.

1.2 The SVD-fundamental theorem of linear algebra

We now prove constructively (showing at the same time how SVD analysis is

done) that,

Aai = σihi , (4)

which we call the SVD-Fundamental Theorem of Linear Algebra:

Theorem 1. For an m by n matrix, withm ≥ n, A : Rn → Rm there exists an

orthonormal basis{a1, ...,an} of Rn, obtained from the Spectral Theorem1 [2],

as the eigenvectors ofAT A. Define

(i) σi = ‖Aai‖, i = 1, 2, . . . , r,

the nonzero stretchers, where‖‖ is the Euclidean norm, and

(ii) hi =
1

σi
Aai, i = 1, 2, . . . , r,

wherer ≤ n.

Proof. Then we clearly have

σihi = σi
1

σi
Aai = Aai

or

Aai = σihi, i = 1, 2, . . . , r.

1The Spectral Theorem states that ifA is a square symmetric matrix (i.e.A = AT ), then there
is an orthonormal basis of the column spaceR(A) consisting of unit eigenvectors ofA.
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Note, that fromAai = σihi it follows thatAVa = UhΣ and multiplying both

sides byV T
a we obtain (1).

We will use this theorem in solving systems of linear equations. Also note

that if σi = 0 thenAai = 0 and the corresponding aligner vectorai belongs to

the nullspaceof A, N(A). If on the other handσi 6= 0, thenAai = σihi, the

corresponding aligner vectorai belongs to the row space ofA, R(AT ), whereas

the corresponding hanger vectorhi belongs to the column space ofA, R(A).

All of the above mentioned vectors form an orthonormal base of the subspace in

which they belong.

So far, we have obtained orthonormal bases for all subspaces associated with

A except for the nullspace ofAT , N(AT ). One way to obtain an orthonormal

basis forN(AT ) is through the application of Spectral Theorem onAAT , instead

of AT A, completing thus the SVD analysis ofA.

1.3 Geometric interpretation

The figure below (Fig. 2) represents the operation of anm×n matrixA on a vector

x ∈ Rn (the left space). That is, it shows schematically what happens when an

arbitrary vector fromA’s domain (the space corresponding dimensionally toA’s

row dimensionn) is mapped byA onto the range space (the space corresponding

dimensionally toA’s column dimensionm). Hence Fig. 2 shows what happens to

Fig. 2. The domain ofA is the space on the left-hand side, whereas its range
is the space on the right-hand side. MatrixA operates on a vectorx with both
a row-space and a nullspace component,xr andxn−r respectively, mapping it

on the space on the right hand side.
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x from the left space asA transforms it to the range, the right space. In short, this

figure represents the fundamental theorem of linear algebra (forwardproblem).

Both spaces are made up of two orthogonal subspaces;Rn (the space on the

left-hand side) comprises the row and nullspace,R(AT ) andN(A), respectively.

TheRn space is spanned by the aligner vectors{ai}, whereas the hanger vectors

{hi}, span the column space ofA.

The inverse problem is depicted in Fig. 3.

Fig. 3. The inverse problem.

We conclude this section by pointing out two facts regarding the linear system

Ax = y:

1. The absence ofN(AT ) means thaty ∈ R(A), and the systemAx = y has

always, at least, one solution. On the other hand the presence ofN(AT )

indicates that a solution will exist (in the classical sense) only ify ∈ R(A),

which has to be investigated.

2. The absence ofN(A) means that if a solution exists, it is unique, whereas

the presence ofN(A) indicates an infinity of solutions. These points will be

examined in the next section.

2 Classical methods for computing bases for the four subspaces as-
sociated with matrix A

Let’s us briefly review the traditional algorithms of linear algebra used for com-

puting bases for the four subspaces. Remember that for the orthonormalization of
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the bases of the following spaces the Gram-Schmidt procedure is used.

• Algorithm to determine a basis forR(A), thecolumn spaceof matrix A, i.e

the space spanned by the columns ofA:

1. Find the reduced echelon matrix,RE , for the input matrixA.

2. Identify the pivot columns ofRE .

3. Identify the corresponding columns in the input matrixA.

4. A basis forR(A) is the set of pivot column vectors (ofA) from step 3.

• Algorithm to determine a basis forR(AT ), therow spaceof matrixA, i.e the

space spanned by the rows ofA:

1. Find the reduced echelon matrix,RE , for the input matrixA.

2. Identify non-zero rows ofRE .

3. A basis forR(AT ) is the set of row vectors (ofRE) from step 2.

• Algorithm to determine a basis forN(A), theright nullspaceof matrixA, i.e

the space spanned by solutions toAx = 0:

1. Find the reduced echelon matrix,RE , for the input matrixA.

2. Identify free variables and pivot variables ofRE .

3. Set one free variable to 0, other free variables to 1, and solve for pivot

variables.

4. Repeat step 3 for each free variable.

5. A basis forN(A) is the set of special solution vectors from each step 3.

• Algorithm to determine a basis forN(AT ), theleft nullspaceof matrixA, i.e

the space spanned by solutions toxT A = ATx = 0:

1. Find the transposeAT .

2. Perform the nullspace algorithm onAT .

The bases obtained above arenot orthonormal. This is where the Gram-Schmidt

method comes in. Namely, any set of linearly independent vectorsa1, . . . ,an can

be converted into a set of orthonormal vectorsq1, . . . ,qn as follows: We first set
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a′

1 = a1, and then eacha′

i is made orthogonal to the precedinga′

1, . . . ,a
′

i−1 by

subtracting of the projections2 of ai in the directions ofa′

1, . . . ,a
′

i−1:

a′

i = ai −
i−1∑

j=1

a′T
j ai

a′T
j a′

j

a′

j .

Thei vectorsa′

i span the same subspace as theai. The vectorsqi = a′

i/||a
′

i||

are orthonormal.

The problem with the Gram-Schmidt method is that before we can use it, we

have to know that the given spanning set is linearly independent. Such a problem

does not exist using SVD.

3 Solving systems of linear equations with SVD analysis

3.1 SVD and the pseudoinverse

The SVD analysis of a matrixA gives an easy and uniform way of computing its

inverseA−1, whenever it exists, or its pseudoinverse,A+, otherwise. Namely if

A = UhΣV T
a , then the pseudoinverse ofA is:

A+ = VaΣ
+UT

h (6)

The singular valuesσ1, . . . , σr are located on the diagonal of them×n matrixΣ,

and the reciprocals of the singular values,1
σ1

, . . . , 1
σr

, are on the diagonal of the

n×m matrixΣ+. The pseudoinverse ofA+ is A++ = A. WheneverA−1 exists,

thenA+ = A−1.

Note that by making some simple calculations we see thatAA+ = UhUT
h ,

and in this way

AA+A = A

Similarly, we can getA+A = VaV
T
a and

A+AA+ = A+

2It is well known that the projection of one vectorx onto anothery is given by the formula:

projyx =
y · x

y · y
y. (5)
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It also follows thatA+A and AA+ are symmetric, a unique property of the

pseudoinverse.

If the rank of them × n matrix A is n < m, thenΣT Σ is an × n matrix of

rankn and

AT A = VaΣ
T UT

h UhΣV T
a = VaΣ

T ΣV T
a

is invertible, so

(AT A)−1AT = Va(Σ
T Σ)−1V T

a (VaΣUT
h )

and(ΣT Σ)−1Σ = Σ+. Finally, we have

A+ = VaΣ
+UT

h = (AT A)−1AT

If m = n, thenΣ+ = Σ−1 and soA+ = VaΣ
−1UT

h = A−1.

3.2 SVD and linear systems

From the previous discussion we see that, to solve

Ax = y (7)

we have to execute the following two steps:

Step 1. We first do an SVD analysis of the matrixA:Rn → Rm, obtaining

thus orthonormal bases forR(AT ), Rn andRm. Here, we could havem >
< n.

The dimensions of the subspaces,N(A) in Rn, andR(A), N(AT ) in Rm, are

determined from the numberr of the nonzero singular values,σ1, . . . , σr, where

r ≤ min(m, n), which indicates the rank of the matrixA.

From the SVD analysis we have that the vectors{a1, ...,ar} constitute an

orthonormal basis ofR(AT ), whereas the vectors{ar+1, ...,an} an orthonormal

basis ofN(A).

Likewise, the vectors{h1, ...,hr} constitute an orthonormal basis ofR(A),

whereas the vectors{hr+1, ...,hm} an orthonormal basis ofN(AT ), (see Fig. 1).

Step 2. We perform the test

projR(A)y
?
=

r∑

k=1

(hk · y)hk
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to determine wherey lies. To wit, we examine whethery coincides with its

projection inR(A), which is spanned by{h1, ...,hr}, (5). We distinguish two

general cases:

Case A. y ∈ R(A): in this case the system has (at least) one solution. Since we

now havey = projR(A)y, it follows that:

y = projR(A)y =
r∑

k=1

(hk · y)
A.ak

σk

due to (4). Furthermore, due to the linearity of matrix operations, the last equation

becomes

y = A
r∑

k=1

(hk · y)

σk

ak

and comparing with (7) we obtain:

x =
r∑

k=1

(hk · y)

σk

ak (8)

as the solution of the linear system (7). But, the number of solutions of (7)

depends on the existence or not of the nullspaceN(A), so we further examine

two subcases:

A.1 If N(A), the nullspace ofA, doesnotexist, then the linear system (7) has one

solution. We prove this by contradiction: Let’s suppose that there is another

analogous solution of (7), say,x∗. This means that now bothAx = y and

Ax∗ = y hold true. Subtracting, we have

A(x − x∗) = y − y = 0.

Because there is noN(A), it follows that onlyA0 = 0 is possible. This fact

tells us thatx − x∗ = 0 or x = x∗.

A.2 If N(A), the nullspace ofA, does exist, then the linear system has infinite

solutions, given by

xinf = x +
n∑

k=r+1

µkak (9)

131



A. G. Akritas, G. I. Malaschonok, P. S. Vigklas

where the vectorsak, k = r + 1, . . . , n are an orthonormal basis (span)

of N(A). SinceN(A) exists, it follows that there are pointsxN ∈ N(A)

such thatAxN = 0. Each of these pointsxN can be expressed as a linear

combination of the basis vectors, i.e.

xN =
n∑

k=r+1

µkak (10)

whereak are the base vectors ofN(A). Therefore, for each of these points

we have

A(x + xN ) = Ax + AxN = y + 0 = y (11)

or xinf = x + xN or formula (9).

Case B. y 6∈ R(A): in this case the system does not have a solution in the

classical sense. In this case we can only compute the best approximate solution

given also by the same formula (8). When we say “the best approximate solution”,

we mean a vectoryr in R(A), that is closest toy. In other words, the vector

(y − yr) has to be perpendicular to each one of the vectors spanningR(A) (see

Fig. 3). Indeed for eachξ with 1 ≤ ξ ≤ r we have3

(y−yr)·hξ = (y−Axr)·hξ =
(

y−A
( r∑

k=1

(hk · y)

σk

ak

))

·hξ

=
(

y−
r∑

k=1

(hk · y)

σk

Aak
︸︷︷︸

= σkhk

)

·hξ =
(

y−
r∑

k=1

(hk ·y)hk

)

·hξ

= y · hξ −
r∑

k=1

(hk · y)(hk · hξ) = y · hξ − hξ · y = 0

This tell us that, indeed,y − Axr is perpendicular toR(A), and the solution

we obtain from (8) is the best approximate solution.

3Keep in mind thathk andhξ are orthonormal, i.e.

hk · hξ =

{

0 if k 6= ξ

1 if k = ξ
.
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Concluding we see that in both cases, A. and B., the solution to (7) is given

by (8). However, note that

x =
r∑

k=1

(hk · y)

σk

ak

=
{h1 · y

σ1
, . . . ,

hr · y

σr

}

· {a1, . . . ,ar}
︸ ︷︷ ︸

V T
a

= Va ·






1
σ1

0 0

0
.. . 0

0 0 1
σr




 · {h1 · y, . . . ,hr · y}

= VaΣ
+{h1 · y, . . . ,hr · y}

= VaΣ
+ {h1, . . . ,hr}

︸ ︷︷ ︸

UT
h

y = VaΣ
+UT

h y = A+y

(12)

So, we conclude that in all casesx = A+y holds true.

3.3 Example

Here, we present an example showing in detail the process described above for

solving a linear system using SVD. The following data depicts U.S. imports of

telecommunication equipment from Greece (in thousands of dollars) from 2000

to 2004

Table 1. U.S. imports from Greece (in thousands of dollars)

Year 2000 2001 2002 2003 2004

US$ 6076 4741 2502 3083 6787

We want to fit a polynomial of degree 2 to these points. To wit, the poly-

nomial f(x) = c1 + c2x + c3x
2 should be such thatf(xi) should be as close

as possible toyi, where the points{xi, yi}, i = 1, . . . , 5 represent, respectively,

the year(xi) and the value of imported telecommunication equipment(yi). Our
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linear system of equationsAc = y, whereA : R3 → R5 is








1 2000 4000000
1 2001 4004001
1 2002 4008004
1 2003 4012009
1 2004 4016016













c1

c2

c3



 =









6076
4741
2502
3083
6787









.

Performing the SVD analysis of the matrixA = UhΣV T
a we obtain the

following matrices:

Uh =









−0.44632 −0.632771 −0.534896 −0.0257609 −0.337079
−0.446766 −0.317017 0.267074 0.280919 0.741388
−0.447213 −0.000947734 0.534522 −0.688191 −0.201691
−0.44766 0.315438 0.267448 0.636669 −0.472466
−0.448107 0.632139 −0.534149 −0.203636 0.269848









,

Σ =









8.96218 · 106 0 0
0 3.16227 0
0 0 9.33546 · 10−7

0 0 0
0 0 0









,

V T
a =





−2.495 · 10−7 −0.0004995 −1
−0.000999001 −0.999999 0.0004995

−1. 0.000999001 −2.49501 · 10−7



 .

The information on orthonormal bases obtained from the SVD decomposition

of matrixA (see 3.2) is presented below:

• Base ofR(A): {h1,h2,h3}

=















−0.44632
−0.446766
−0.447213
−0.44766
−0.448107









,









−0.632771
−0.317017

−0.000947734
0.315438
0.632139









,









−0.534896
0.267074
0.534522
0.267448
−0.534149















.

• Base ofR(AT ): {a1,a2,a3}

=







(
−2.495 · 10−7 − 0.0004995 − 1

)
,

(−0.000999001 − 0.999999 0.0004995) ,
(
−1. 0.000999001 − 2.49501 · 10−7

)






.
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• Base ofN(A): @.

• Base ofN(AT ): {h4,h5}

=















−0.0257609
0.280919
−0.688191
0.636669
−0.203636









,









−0.337079
0.741388
−0.201691
−0.472466
0.269848















.

We now compute the projection of y on R(A)

projR(A)y=
r∑

k=1

(hk ·y)hk = (5334.01, 5219.07, 3058.74, 4257.25, 5898.8).

We observe that

projR(A)y 6= y = (6076, 4741, 2502, 3083, 6787)

which means (see Case B.) thaty 6∈ R(A). Finally, the solution to our system is

given by (12):

c = (3.69257 · 109, −3.68885 · 106, 921.286).

In Fig. 4 the data points and the polynomial fitted to them are shown.

2000 2001 2002 2003 2004 2005
years

4000

6000

8000

10000

US$

Fig. 4. The data points and the closest polynomialf(x) = 3.69257 109 −
3.68885 106 x + 921.286x2 fitted to them.
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4 Conclusions

In this paper we have presented the “SVD-Fundamental Theorem” of Linear Al-

gebra and used it in solving systems of linear equations. We hope that the geomet-

rical interpretation of SVD makes our approach more appealing for educational

purposes.
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