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Abstract. In this paper, we address the problem of output feedbackigtgion
for a class of uncertain dynamical systems. An asymptdyicsthbilizing
controller is proposed under the assumption that the ndnsgatem is
absolutely stable.
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1 Introduction

The problem of stabilization for dynamical systems with uncertainties has been
studied by several authors; see, e.g., [1-10]. The design of a staipiiairiroller
is generally based on the so called mini-max approach: a control law is in fact
designed as if there were no uncertainties, and a Lyapunov functioroigigé.
Then, this known Lyapunov function is employed as a Lyapunov functmalie
date for the uncertain dynamical system and a control law is then chosle thst
the Lyapunov function decreases along the trajectories of the unceyteamical

system.
In this paper, we consider nonlinear uncertain systems of the followimg. for

{g;«:Ax+Bu+f(t,:z:,U), (1)

y = Cu,

wheret € Ry, z € R", u, y € RP, A € R™", B € R"P, C' € RP*". The
pair of known matriceg A, B), defining the nominal system is assumed to be
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controllable withA Hurwitz. The pair(A, C) is assumed to be observable. The
unknown functionf: Ry x R" x RP — RP models plant uncertainties in the
system. In the absence of uncertainties, the Lurie problem, describddbyf]
and [17], consists in finding conditions oty B andC such that the equilibrium
pointz = 0 of the closed loop system with = —(t,y), where satisfies a
sector condition, is globally asymptotically stable. This problem is also referre
to as the absolute stability problem since it gives sufficient conditions taeprov
global asymptotic stability of the closed loop system for a whole class of &adb
nonlinearitiesy. It was solved in [12] using two Lyapunov functions candidates:
a quadratic function and a Lurie type Lyapunov function.

Our goal is to design an output feedback controller under the assumption
that the nominal system is absolutely stable and the uncertainties are bannded
Euclidean norm by known functions, and such that the zero state of stensy
(1) is globally asymptotically stable. In most of the literature, no consideration
is given to Lyapunov functions which depend on the uncertainties bouthel®,
as for the nominal system, we consider the problem of stabilizing the uncertain
system (1) using two Lyapunov functions. The first one is the quadrgsipinov
function of the nominal system, and the second one is a Lurie type Lyafuncv
tion that depends on the uncertainties bound. This work extends in a simple wa
the classical absolute stability circle and Popov criterion to uncertain nonlinea
systems.

2 Output feedback control

We first introduce the following definitions.

Definition 1. A nonlinearityy: Ry x R? — RP is said to belong to a sector
[0, K] if

(it y) [Y(t,y) — Ky] <0, Vt>0,VycRP
for some symmetric positive definite matkix

Definition 2. A (p x p) matrix Z(s) of functions of complex variableis called
positive real if
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e Z(s) has elements that are analytic fBe [s] > 0,

o 7*(s) = Z(s*)forRe([s] > 0, and

o ZT(s*) + Z(s) is positive semi definite fdke [s] > 0,
where the asterisk denotes complex conjugation.

The matrixZ(s) is called strictly positive real i (s — ¢) is positive real for
somes > 0.

The contents of this section depends on the following result known as the
Kalman-Yakubovich-Popov lemma [12].

Lemmal. LetZ(s) = C(sI — A)~'B+ D be a(p x p) transfer function matrix,
whereA is Hurwitz, (A, B) is controllable, and A4, C) is observable. The# (-)
is strictly positive real if and only if there exist a symmetric positive definiteirmatr
P, matricesi¥ and L, and a positive constamtsuch that

PA+A"P=-L"L-eP,

PB=ct - LTw,
WTW =D + DT.
As stated earlier, the problem is to design an output feedback controlien wh

forces the state to converge to zero. To accomplish this goal, we propmse th
following controller

U(t, y) = _d)(tvy) = _w(tv y) - U(t, y)a (2)

where(t, y) is a k-Lipschitz function (i.e. |4 (t,y) — ¥ (L, 2)|| < klly — |,

vVt > 0, Yy, ¥z) which belongs to a sectf, K], whereK is a symmetric positive
definite matrix, and (¢, y) is an auxiliary control which will be given later. We
shall investigate asymptotic stability of the origin using two Lyapunov functions
candidates. The first one is a simple quadratic function

V(z)=a2TPz, P=PT'>0

and the second one is a function of the form

y
Vix) = 2! Px + n/qb(o’)TKda, pP=r" >0,
0
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n > 0, which is known as a Lurie type Lyapunov function. In the latter case we
assume that the nonlinearigyis time invariant and satisfies some conditions to
ensure that the integral is well defined and nonnegative.

2.1 Circle criterion design
If we dictate the condition
(A1) The(p x p) matrix Z;(s) defined by
Zi(s) =1+ KC(sI — A)™'B
is strictly positive real.

Thenu = —(t,y) stabilizes exponentially and globally the nominal system.
This problem is referred to as the circle criterion for absolute stability. ¢t fa
using Lemma 1, (see [12]) there exist a symmetric positive definite matrix
P(n x n),amatrixL(p x n) ande > 0, such that

PA+ ATP=—LTL —¢P, (3)
PB=CTK —V2L". (4)

To achieve stabilization of the uncertain system (1) subject to the controller
(2), we suppose that assumption jAand the assumptions below are fulfilled.

(A2) There exists a mapping: Ry x R” x RP — RP, satisfying
flt,x,u) = P_lcTh(t,ﬂ;u),
whereP is the positive definite matrix given by (3).

(A3) The uncertairi(t, z, u) is bounded by a known function, i.e. there exists a
nonnegative continuous functigi-, -), such that

|A(t, 2z, u)|| < p(t,y).
(A4) There exists a nonnegative functipg(-, -), such that

p(t,y) < po(t, y)|lyll
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with

(2 = Apin(K))?
4 )

po(t,y) <

where\,,;, (K) denotes the minimum eigenvalue of the matkixandk is
the Lipschitz constant.

The proposed auxiliary controller is given by
v(t,y) = alt,y) Ky, (5)

wherea(t, y) is a positive function which will be chosen later. Therefore, we have
the following result.

Theorem 1. Consider the uncertain system described by satisfying assump-

tions(A1)—(A4). Suppose that < A’"+(K) Then, there exists a positive function

a(t,y) such that the closed loop systéi—2) with auxiliary control(5) is glo-
bally exponentially stable.

Proof. Consider the Lyapunov function
V(z) = 2T Px.
The time derivative o/ along the trajectories of (1) is
V =2:TPAx 4 20T PBu + 22T Pf(t, 2, u).
Since (A) is satisfied, then we can use equations (3) and (4) to obtain
20T PAx = —||Lz||? — ex® Px
and
20" PBu = 2y Ku — 2v2(Lx)" .
Hence

V = —||Lz|?* — eaT Pz + 2yT Ku — 2v/2(La)Tu + 22T Pf(t, x, u)
= —||Lz + V2ul?* — exT Pz + 2yT Ku2|[u||® + 22T Pf(t,z, u)

141



A. Benabdallah, M. A. Hammami

which implies that
V < —ex Pa+ 29" Ku 4 2|ul® + 22T Pf(t, 2, u).
Now using the controller (2) and the auxiliary controller (5), we get

2T Ku+ 2||ul|? = 247 (¢ — Ky) — 29T Kv + 2||v||? + 49T v

< —2yT Kv + 2|jv||* + 49T v

= —2ally|* + 202 | K y||> + dap" Ky

< =2ally|® + 2| KPP |lyl|* + dkal| K[y
o? 4k

min

:<—2a—|—2

Moreover, from assumption(slz), (As) and(A,) it follows that

227 Pf(t,2,u) = 297 h(t, 2, u) < 2yt 2, w)]
< 2llyllp(t, v) < 2p0(t, y) |yl

The above two inequalities in conjunction with the estimatiof ofield,

. 1 2k
< T L e ek 2
V < —ex’ Pz + 2()\2 (K)a + ()\mzn(K) 1)04 + p0> |yl

min
If we can choose the functiam(¢, i) in such away

a2+< QkK)—l)a+p0:0,

1 e —
)\2 )\mzn(

(K)

min
that is the equation (6) ot admits a solution, then, we obtain
1% < —ex' Py

which achieves global exponential stability of (1).

(6)

Let us consider the quadratic equation (6). The discrimidate given by

(Qk - /\mm(K>)2 _ 4p0(ta Z/)
22 (K) A2in(K)

min min

A =
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which is positive by assumption (A Therefore, there are two distinct real
solutions to equation (6)

o — (Amm(K) _ \/—> mm(K)

mzn(K)
— A) mzn .
a2 ( mm(K) Liva P
. Amin (K) . .
Sincek < — we getas > 0 and so isy;. In conclusion, we can choose

a = a1 Ofr @ = ao to guarantee global exponential stability of the closed loop
system (1)—(2). O

Remark 1. In [3], output feedback stabilization of uncertain systems of the form
(1) has been investigated. The established result is different from the ome give
here. In fact, in Theorerfh, we are concerned not with a particular stabilizing
controller but with an entire family of controllers, singg-) can be any nonlin-
earity in the sectof0, K.

2.2 Popov criterion design

Now, consider again the system (1) subject to the controller (2) andsapbatf
and¢ are time invariant. Suppose thatis decentralized in the sense that edag¢h
depends only og;, and belongs to the sectfr, K] with K = diag(A1,..., \n).
As in the former case, we start by giving conditions guaranteeing glalyaha:
totic stability of the nominal system subject to the controllee —1(y), which
is referred to as the Popov criterion for absolute stability.

(A]) There existg) > 0, with —+ not an eigenvalue ofl, such that
Zy(s) =1+ (1+ US)KC(SI — At
is strictly positive real.

If assumption (A) is satisfied, then, by Lemma 1 (see [12]), there exist a sym-
metric positive definite matri¥’, matricesL andWW ande > 0 such that

PA+ATP=—LTL —¢P, (7)
PB=CTK +nATCTK — LTW, (8)
21 + nKCB +nBTCTK = WTW. (9)
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Before stating and proving our second result, let us modify the assumptions
introduced above.

(A%) There exists a mapping: R” x RP — RP satisfying
2
f(@,u) = PO h(a, ),
whereP is the positive definite matrix given by (7).

A’) There exists a nonnegative continuous funcjén such that
3
|A(z, w)|| < p(y).

A’)) There exists a positive constamntsuch that
4

(2K — Anin(K))®

4 )

p(y) < pollyll  with  pg <

where\,,;, (K) denotes the minimum eigenvalue of the matkixandk is
the Lipschitz constant.

We are now ready to state the following theorem.

Theorem 2. Consider systerfil) subject to the controller

where)(+) is a k-Lipschitz function which belongs to the secfork]. Suppose
that there exists) small enough satisfyingA}). If assumptiongA’)—(A),) are

fulfilled and the Lipschitz constait < ===, then there exists an auxiliary

controllerv(-) such that the closed loop system is globally asymptotically stable.

Proof. The proof consists of demonstrating that the function

y y
V(z) = 2T Pz + 21 / ¢(0)' Kdo = z7 Pz + 21 / Z bi(a:) T Nido;,
0 o =1
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wheren > 0 is to be chosen, is a Lyapunov function for the closed loop system.
We will choose a decentralized auxiliary controliér). Thus,¢(-) is decentrali-

zed and the integral term is well defined and positive. Therefore, tietidun V/

is positive definite. Its derivative along the trajectories of the system édiy

V = 22T Pi + 2n¢" (y) Ky
= 22" P(Az + Bu + f(z,u)) + 2n¢" (y)KC(Az + Bu + f(z,u))
= 20T PAz — 22T PBo(y) + 227 Pf(x,u) + 2n¢’ (y) KC Ax
— 29" (y) KCB@(y) + 2n¢" (y) KC f (x, ).

Using equations (7)—(9), it is easy to see that

V =—|Lz—Wo(y)|* — ez’ Pz +2|¢|?
— 2y Ko(y) + 22" Pf(z,u) + 20¢" (y) KC f(z, u)
< — el Pr+2(|¢|* —2y" K¢ (y)+22" Pf(z,u)+2n¢" (y) KC f(z,u).

Since¢(y) = ¥ (y) + v(y) andy is ak Lipschitz function which belongs to
the sectof0, K], it follows that

21812 — 2y" Ko(y) = 29" + 49T v + 2070 — 29T Kyp — 297 Kw
< 4wTv + 2HU||2 — 2yTKv
< 4llpll|v]l + 2[v]|* - 2y" Kv
< 4kl|y|||v]| + 2[|v]|* — 2y" Kv.

Choose a decentralized-) as follows,
v(y) = oK "Ly, with o > 0.

Then

2/|gl|* — 2y" Ko(y) < 4kall K~ [lyl1? + 22| K (lyl* — 2aly|?

dak 202 9
= -2 .
()\mm(K) HBYINTS O‘) Iyl

min

(10)
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Moreover, under assumptions{A(A}), we have

2¢T Pf(z,u) + 2n¢T KCf(x,u)
=2y"h(z,u) + 2n(¢ + ) KOP'CT h(z, )
< 2|lyllp(y) + 2n[¢ + v[[|KCP~CT | p(y)
< 2|lyl1*po + 20| KC P~ CT || po(k +

(11)
«
—Amm(K))Hyll2

nmpo 2
Y N 7 T T
po + nmp oo () 1yl

wherem = |[KCP~1CT]|.

From (10) and (11) we obtain the following upper boundian
2 _ 2k 4+ nmpo

V < —exT P+ 2<70‘ o (1 ol

32 )a+po+nmpok>llyll2-

min
Following the proof of Theorem 1, we want to show that there exists 0 such
that

a? 2k + nmpo

) (1- N ()

7 )a —+ po +nmpok = 0. (12)

First suppose that is small enough to satisfy

B 2k 4+ nmpo

1

> 0.

That is

Amin(K) — 2k
0<77<M::n0.
mpo

It is possible, since\,;,(K) > 2k. If Ais the discriminate of (12) then

(/\m'm(K) - 2k)2 - 4,00 + (ﬁmP0)2 - 277mp0>\mzn(K)
Ain (K) '

min

A =

Now consider the quadratic equationgn

(Amin(K) — 2k)* = 4po + (nmpo)? — 20mpoAmin (K) = 0. (13)
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Its discriminate) is given by
& = 4m?pg (po + k(Amin(K) — k).

Hence, > 0, since\,,;,(K) > 2k. Consequently, there exigt < 7, solutions
to equation (13), with

Amin (K) = 2(po + k(Amin (K) — k))1/2
mpo

m =

which is positive. Ifn is small enough to satisfy < min(ng,n1), thenA > 0
which achieves this proof. O

Remark 2. It is important to note that the Lyapunov function used to prove
Theoren is different from the one used to prove absolute stability of the nominal
system which has been givenbyz) = =7 Pz + 2 [/ ¢(0)" Kdo, (see{12]).

3 Conclusion

We have investigated the problem of state trajectory control via outpubde&d
for a class of nonlinear uncertain dynamical systems. We proved thayshe s
tem can be globally exponentially stabilized or globally asymptotically stabilized,
provided that the controlled system without uncertainties is absolutely stéthle w
respect to the zero state and that the uncertainties are bounded in Buddtea

by known functions of the system output. An auxiliary controller is used tainb
the stability of the system in presence of uncertainties.
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