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Stability of Nuclear Reactor: Point Model Analysis
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Abstract. A point model of a nuclear reactor with delay in feedback line
“ower – reactivity” estimating the influence of six groups ofdelayed neutrons is
presented and investigated by means of linear and nonlinearanalysis methods.
The results of numerical experiments and the comparison of them to the
asymptotic solution of differential equations are presented as well.

Keywords: nuclear reactor, differential equation, delay, periodic solution.

1 Introduction

Let’s take the point model of a nuclear reactor that was introduced in [1].The

dynamics equations are given by

Ṅ(t) = rN ·

[

1 + a ·

(

1 −
C(t)

C0

)

−
N(t − hN )

N0

]

· N(t), (1)

Ċ(t) = rC ·

[

N(t)

N0

−
1

C0

6
∑

j=1

αj C(t − hj)

]

· C(t), (2)

whereN(t) is the density of neutrons at the time momentt; N0 is its steady

value;rN is the linear growth coefficient of the density of neutrons;C(t) is the

integral density of all delayed neutrons at the timet; C0 is its steady state value;

rC is the coefficient of linear growth of the density of delayed neutrons;hN > 0

is the delay in the feedback line “power – reactivity”;j = 1, 6 is a number of

delayed neutrons group;hj > 0 generation time of delayed neutrons of groupj;

αj =
βj

β
(
∑

6

j=1
αj = 1) is the relative yield of delayed neutrons;βj is a part
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of delayed neutrons belonging to groupj; β is a number of all delayed neutrons

(β =
∑

6

j=1
βj); a (−1 < a ≤ 0) is the feedback parameter regulating the power

of the reactor.

As the delayed neutrons make up from 0.7 % to 1.5 % of the whole number

of neutrons, soa will be considered as a small parameter. Leta = 0. Then the

system (1), (2) is transformed into

Ṅ(t) = rN ·

[

1 −
N(t − hN )

N0

]

· N(t), (3)

Ċ(t) = rC ·

[

N(t)

N0

−
1

C0

6
∑

j=1

αjC(t − hj)

]

· C(t). (4)

2 Linear analysis

The system (3), (4) has equilibrium states

N(t) ≡ 0, C(t) ≡ 0, (5)

N(t) ≡ N0, C(t) = 0, (6)

N(t) ≡ N0, C(t) = C0. (7)

As shown in [2] the equilibrium states (5), (6) are unstable. So, the further

analysis of the system (3), (4) is needed in the neighbourhood of non-zero equi-

librium state (7). After the substitution of

N(t) = N0

[

1 + x(t)
]

, (8)

C(t) = C0

[

1 + y(t)
]

(9)

into equations (3), (4), we get the equations

ẋ(t) + rN · x(t − hN )
[

1 + x(t)
]

= 0, (10)

ẏ(t) − rC ·

[

x(t) −

6
∑

j=1

αjy(t − hj)

]

·
[

1 + y(t)
]

= 0. (11)
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The linear parts of (10), (11) are given by

ẋ(t) = −rN · x(t − hN ), (12)

ẏ(t) = rC ·

[

x(t) −
6
∑

j=1

αjy(t − hj)

]

. (13)

The characteristic equation of the system (12), (13) is defined as

[

λ + rN exp(−λhN )
]

·

[

λ + rC

6
∑

j=1

αj exp(−λhj)

]

= 0. (14)

The analysis of the roots of (14) splits into the investigation of two quasi-

polynomial roots. The disposition of the roots of the quasi-polynomialP (λ) =

λ + rN exp(−λhN ) on the complex plane is well-known [2], but in order to

determine the disposition of the roots of the quasi-polynomial

P (λ) = λ + rC

6
∑

j=1

αj exp(−λhj) (15)

on the complex plane the further analysis is performed below.

The roots of the quasi-polynomial

P (λ) = λ + p + rC

6
∑

j=1

αj exp(−λhj) (16)

are analysed usingD-decomposition method [3]. Ifλ = 0, then

p + rC = 0. (17)

The line (17) becomes one of theD-decomposition curves on the planeprC . Let

λ = iσ. Other curves are determined by the following parametric equations:

rC =
σ

∑

6

j=1
αj sin(σhj)

, (18)

p =
σ
∑

6

j=1
αj cos(σhj)

∑

6

j=1
αj sin(σhj)

= −rC

6
∑

j=1

αj cos(σhj). (19)
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In the case ofσ → 0, the coordinates of recurrence point of the curves (17), (18)

and (19) are calculated as follows:

(p0; r0) =

(

−
1

∑

6

j=1
αjhj

;
1

∑

6

j=1
αjhj

)

≈ (−0.11; 0.11). (20)

The results ofD-decomposition of the parametersp andrC are presented as Fig. 1.

The values ofhj andαj are taken from Table 1 [4]. Two roots of (16) with positive

real parts appear in theD2 domain.

Table 1. Numerical characteristics of delayed neutrons

Fuel j T1/2 = hj(s) αj

1 54.28 0.035
2 23.04 0.298

239PU 3 5.60 0.211
(Plutonium) 4 2.13 0.326

5 0.618 0.086
6 0.257 0.044

Fig. 1. TheD-decomposition of quasi-polynomial (15).
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3 Nonlinear analysis

3.1 The reason of oscillation – the feedback line

Let’s take differential equations (10), (11). If the parameter of bifurcation ε =

rNhN−π
2

has a sufficiently small and positive value, then as shown in [3] equation

(10) has a stable periodic solution.

x(t) = ξx1(t) + ξ2x(t) + O(ξ3), (21)

where

x1(t) = cos σt, x2(t) =
1

10
(sin 2σt + 2 cos 2σt),

σ
(

1 +
c2

b2

ε + O(ε2)
)

=
π

2hN

, ξ =

√

ε

b2

,

c2 =
1

10π
, b2 =

3π − 2

40
.

Theorem 1. If rC ·
∑

6

j=1
αjhj ≤ 1, then the roots of quasi-polynomial(15)satisfy

the inequalityRe λ < 0 and the differential equation(11) has a stable periodic

solution[3].

The periodic solution of equation (11) can be calculated using the formula

y(t) = ξy1(t) + ξ2y2(t) + O(ξ3), (22)

where functionsyj(t) are found from the linear differential equations.

ẏ1(t) + rC

6
∑

j=1

αjy1(t − hj) = rCx1(t), (23)

ẏ2(t) + rC

6
∑

j=1

αjy2(t − hj) = rCx2(t) + y1(t)ẏ1(t). (24)

Then from (23)

y1(t) =
rC

∣

∣P (iσ)
∣

∣

2

[

ImP (iσ) sin(σt) + ReP (iσ) cos(σt)
]

, (25)
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and from (24)

y2(t) = A sin(2σt) + B cos(2σt), (26)

where

A =
1

∣

∣P (2iσ)
∣

∣

2

[

W1ReP (2iσ) + W2ImP (2iσ)
]

, (27)

B =
1

∣

∣P (2iσ)
∣

∣

2

[

W2ReP (2iσ) − W1ImP (2iσ)
]

, (28)

W1 =
rC

10
+

σr2
C

2
∣

∣P (2iσ)
∣

∣

2

[

Im2P (iσ) − Re2P (iσ)
]

, (29)

W2 =
rC

5
+

σr2
C

2
∣

∣P (2iσ)
∣

∣

2

[

ReP (iσ) · ImP (iσ)
]

, (30)

andP (λ) is the quasi-polynomial (15).

Therefore, differential equations (3) and (4) have the following stableperio-

dic solutions

N(t) = N0

[

1 + ξ cos
π

2hN

τ + ξ2x2(τ) + O(ξ3)
]

, (31)

C(t) = C0

[

1 + ξy1(τ) + ξ2y2(τ) + O(ξ3)
]

, (32)

where functionsx2(τ), y1(τ), y2(τ) and variableξ, b2, c2 are defined by formulas

(21), (25)–(30), withσ = π
2hN

, τ = t
1+c2ξ2 .

When

hN = 10−3 s, rNhN = 1.8, rN = 1800, rC = 0.1,

N0 = 100 kW, C0 = 1 kW ε = 0.229,

then

b2 ≈ 0.1856194, c2 ≈ 0.0318309, ξ ≈ 1.1107237,

σ ≈ 1511.4419, τ ≈ 0.9622138t .

The stable periodic solution (31) of differential equation (3)

N(t) ≈ 100 ·
[

1 + 1.1107237 cos 1511, 442t

+ 0.1233707(sin 3022, 884t + 2 cos 3022.884t)
]
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is presented in Fig. 2.

The stable periodic solution (32) of differential equation (4)

C(t) ≈ 1 + 4.86242·10−8(1511.442 sin 1511.442t − 0.025197 cos 1511.442t)

+1.2337072(6.5151·10−6 sin 3022.884t−2.5033·10−3 cos 3022.884t)

is presented in Fig. 3.

Fig. 2. The stable periodic solution of equation (3), whenrN = 1800,
N0 = 100 kW.

Fig. 3. The stable periodic solution of equation (4), whenrC = 0.1,
C0 = 1 kW.

3.2 Oscillations of two frequencies

Let rN = π
2hN

+ ε, rC = r∗C + µ, parametersε, µ are assumed to be small,

and r∗C = σ∗
∑

6

j=1
αj sin σ∗hj

, where σ∗ is the unique root of the equation
∑

6

j=1
αj sinσj = 0 belonging to the interval(0, π

2hN
).
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The substitution of (8), (9) into equations (3), (4) will produce

ẋ(t) +
( π

2hN

+ ε
)

· x(t − hN ) ·
[

1 + x(t)
]

= 0, (33)

ẏ(t) + (rC + µ) ·

[ 6
∑

j=1

αjy(t − hj) − x(t)

]

·
[

1 + y(t)
]

= 0. (34)

When0 < rN − π
2hN

= ε ≤ 1, the differential equation (33) has a stable periodic

solution [3]

x(t) = ξ cos
π

2hN

ν1t + O(ξ2), (35)

where

ξ =

√

hNε

b2

, ν1 = 1 − c2ξ
2, (36)

b2 =
3π − 2

40
, c2 =

1

10π
. (37)

WhenhN = 0.001 s; ε = 0.3, thenb2 = 0.1856; c2 = 0.0318; ξ ≈ 0.001616;

ν1 ≈ 0.99999. The stable periodic solution (35) of differential equation (33)

x(t) ≈ 0.001616 cos 1570.791t

is presented in Fig. 4.

Fig. 4. The stable periodic solution of equation (33), whenhN = 0.001 s,
ε = 0.3.

If ε = µ = 0, then the characteristic equation (14) of the linear part of diffe-

rential equations (33), (34) has two pairs of purely imaginary roots±i π
2hN

, ±iσ∗,
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and the real parts of the other roots are negative. Then the system of differential

equations (35), (36) under certain conditions has a stable periodic solution of two

frequencies. The asymptotic expression of this solution is too complicated. Inthis

case the oscillation of two frequencies is caused both by the perturbations inthe

feedback line and by the influence of delayed neutrons.

3.3 The reason of oscillation given by the influence of delayedneu-
trons

Let’s assume thatrNhN < π
2
, but the characteristic quasi-polynomial (15) of the

differential equation (4) in the neighbourhood of the equilibrium stateC(t) = C0

whenrC = r∗C +µ, parameterµ is assumed to be small, andr∗C = σ∗
∑

6

j=1
αj sin σ∗hi

,

whereσ∗ is the unique root of the equation
∑

6

j=1
αj cos σhj = 0 belonging to

the interval(0, π
2hN

), has one pair of purely imaginary roots±iσ∗, and real parts

of other roots are negative.

Let’s us analyse the equation (34). It is clear thatx(t) → 0, whent → ∞.

Then the problem leads to the finding a periodic solution of the equation

ẏ(t) + (r∗C + µ) ·
[

1 + y(t)
]

·

6
∑

j=1

αjy(t − hj) = 0. (38)

As shown in [3] it is possible to get an asymptotic expression of this solution [3].

4 Numerical experiments

The numerical solutions of the system of differential equations (3), (4) were also

investigated using the MODEL MAKER software modelling system. The values

of parametersαj andhj for the numerical model were taken from the Table 1.

Then the numerical solutions were calculated for different values of parameters

rN andrC (providingN0 andC0 are constant).

By changing the values of parametersrN andrC , the periodic solutions of

the differential equations (3), (4) can be found (see Fig. 7 and Fig. 8).

The produced numerical results are also compared against asymptotic solu-

tions as presented in Fig. 9, Fig. 10 for simple periodic solution and in Fig. 11,

Fig. 12 for two frequencies case.
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Fig. 5. The asymptotic stable solution of the differential equation (3), when
hN = 0.001 s,N0 = 100 kW, rN = 1.200.

Fig. 6. The asymptotic stable solution of the differential equation (4), when
N0 = 100 kW, C0 = 1 kW, rC = 0.05.

Fig. 7. The stable periodic solution of the differential equation (3), when
hN = 0.001 s,N0 = 100 kW, rN = 1800.
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Fig. 8. The stable periodic solution of the differential equation (4), when
N0 = 100 kW, C0 = 1 kW, rC = 0.1.

Fig. 9. The asymptotic stable solution of the differential equation (3), when
hN = 0.001 s,N0 = 100 kW, rN = 1800.

Fig. 10. The asymptotic stable solution of the differentialequation (4), when
N0 = 100 kW, C0 = 1 kW, rC = 0.1.
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Fig. 11. The asymptotic stable solution of the differentialequation (3), when
hN = 0.001 s,N0 = 5 kW, rN = 1800.

Fig. 12. The asymptotic stable solution of the differentialequation (4), when
N0 = 5 kW, C0 = 0.03 kW, rC = 0.8.

5 Conclusion

The point model of a nuclear reactor with delayed feedback referring tothe in-

fluence of delayed neutrons has been described by the system of two nonlinear

differential equations with seven delays. The linear analysis of the systemhas

been done byD-decomposition method. The nonlinear analysis is performed

using the methods of the theory of bifurcations. The asymptotic solutions of the

model coincide well enough with the results of the numerical experiments.
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