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Stability of Nuclear Reactor: Point Model Analysis
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Abstract. A point model of a nuclear reactor with delay in feedback line
“ower — reactivity” estimating the influence of six groupsdeflayed neutrons is
presented and investigated by means of linear and nonlaredysis methods.
The results of numerical experiments and the comparisorhemtto the
asymptotic solution of differential equations are presdras well.
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1 Introduction

Let’s take the point model of a nuclear reactor that was introduced inTg
dynamics equations are given by

N(t) =ry - [1 va-(1- CCS?) _ NG ];0’”‘“} N(1), 1)
6
e =re [F2 -2 D sl m| -cw. @

where N(t) is the density of neutrons at the time moment\ is its steady
value;ry is the linear growth coefficient of the density of neutro@%t) is the
integral density of all delayed neutrons at the titn€’; is its steady state value;
rc is the coefficient of linear growth of the density of delayed neutréas;> 0
is the delay in the feedback line “power — reactivity”;= 1,6 is a number of
delayed neutrons group; > 0 generation time of delayed neutrons of grgup
aj = % (Z?:1 a; = 1) is the relative yield of delayed neutrons; is a part
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of delayed neutrons belonging to grogpgd is a number of all delayed neutrons
B = 2521 Bj); a (=1 < a < 0) is the feedback parameter regulating the power
of the reactor.

As the delayed neutrons make up from 0.7 % to 1.5 % of the whole number
of neutrons, sa will be considered as a small parameter. ket 0. Then the
system (1), (2) is transformed into

80 =y [1- 20 v, @
6
Clt) = ro - {%? - Cio ;%C(t - hj)] O, @)

2 Linear analysis

The system (3), (4) has equilibrium states

N(t)=0, C(t)=0, (5)
N(t) = Ny, C(t) =0, (6)
N(t) = Ny, C(t) = Cy. (7)

As shown in [2] the equilibrium states (5), (6) are unstable. So, the furthe
analysis of the system (3), (4) is needed in the neighbourhood of eranezjui-
librium state (7). After the substitution of

N(t) = No[1 + 2(t)], (8)
C(t) = Co[1 +y(t)] (9)

into equations (3), (4), we get the equations

E(t) +ry - 2(t — hy)[L+ z(t)] (10)

6

=0,
J() —rc [:cu) S gl m-)] )] =0 (11)
j=1
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The linear parts of (10), (11) are given by

(t) = —ry - x(t — hy), (12)
6
) = e [of6) = D aglt~ 1), (13)
j=1
The characteristic equation of the system (12), (13) is defined as
6
[A+ 7y exp(=Ahy)] - [)\ +re Z a; exp(—)\hj)} =0. (14)
j=1

The analysis of the roots of (14) splits into the investigation of two quasi-
polynomial roots. The disposition of the roots of the quasi-polynomigl) =
A + ryexp(—Ahy) on the complex plane is well-known [2], but in order to
determine the disposition of the roots of the quasi-polynomial

6

P(A) = A+rc Y ajexp(—Ahy) (15)
j=1

on the complex plane the further analysis is performed below.
The roots of the quasi-polynomial

6
P\ = )\—|—p+cmaj exp(—Ah;) (16)
j=1

are analysed usinf)-decomposition method [3]. K = 0, then
p+rc=0. 17
The line (17) becomes one of tli&decomposition curves on the plape-. Let
A = io. Other curves are determined by the following parametric equations:
g
51 ajsin(ohy)’
o 2?21 a; cos(ohy)

6
= - = —r o cos(oh;). 19
p Z?:l a; SiIl(O’hj) C ; 7 (U j) ( )

ro = (18)
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In the case o& — 0, the coordinates of recurrence point of the curves (17), (18)
and (19) are calculated as follows:

(po3 o) ( ! !
0570) = - 6 ) 6
Zj:l ajh; Zj:l a;hj

) ~ (=0.11;0.11). (20)

The results oD-decomposition of the parameterandr are presented as Fig. 1.
The values of; anda; are taken from Table 1 [4]. Two roots of (16) with positive
real parts appear in thB, domain.

Table 1. Numerical characteristics of delayed neutrons

Fuel J Ti/9 = hj(S) Q;
1 54.28 0.035
2 23.04 0.298
29py 3 5.60 0.211
(Plutonium) 4 213 0.326
5 0.618 0.086
6 0.257 0.044

Fig. 1. TheD-decomposition of quasi-polynomial (15).
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3 Nonlinear analysis

3.1 The reason of oscillation — the feedback line

Let's take differential equations (10), (11). If the parameter of bdtiom ez =
rnhy—7% has a sufficiently small and positive value, then as shown in [3] equation
(10) has a stable periodic solution.

z(t) = Exr(t) + E2(t) + O(£?), (21)
where

1
z1(t) = cosot, x9(t) = —(sin20t + 2cos20t),
10

Co 2 s e
1+2:40 - ==
o +,c o ) o ST\ by
1 3 — 2
o 2T @

Cy) =

Theorem 1. If TC'Z§:1 ajh; < 1, then the roots of quasi-polynomidls) satisfy
the inequalityRe A < 0 and the differential equatio(iL1) has a stable periodic
solution[3].

The periodic solution of equation (11) can be calculated using the formula
y(t) = Eyi(t) + (1) + O(€%), (22)

where functiongy;(¢) are found from the linear differential equations.

6

1(t) +re Yy aj(t —hy) = rex(t), (23)
j=1
6
9a(t) + 10 Y ajya(t — hy) = rewa(t) + yi(t)in (¢). (24)
j=1

Then from (23)

yi(t) = 5 [ImP(ic) sin(ct) + ReP(io) cos(at)], (25)
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and from (24)

ya(t) = Asin(20t) + B cos(20t), (26)
where

A= m [WiReP(2ic) + WoImP(2i0)], (27)

= m [WaReP(2ic) — WiImP(2i0)], (28)

Wy = % + 2\1'%?0)\2 [Im?P(ic) — Re?P(io)], (29)

Wy = %C + 2\1'%%0)\2 [ReP(ic) - ImP(ic)], (30)

andP()) is the quasi-polynomial (15).
Therefore, differential equations (3) and (4) have the following stpbi®-
dic solutions

N(1) = No[L+Ecos gior +Ea(r) +0(6%)]. (31)
C(t) = Co[L+ &y (1) + Ea(1) + O(£%)], (32)

where functions:a(7), y1(7), y2(7) and variable, by, co are defined by formulas
(21), (25)—(30), withr =
When

=t
Shn' T T Tgca€?

hy =1072s, ryhy = 1.8, ry = 1800, ro = 0.1,
Ny =100kW, Cyp=1kW e =0.229,

then

by ~ 0.1856194, co ~ 0.0318309, ¢ ~ 1.1107237,
o~ 1511.4419, 7 ~ 0.9622138¢

The stable periodic solution (31) of differential equation (3)

N(t) ~ 100 - [1 + 1.1107237 cos 1511, 442¢
+ 0.1233707(sin 3022, 884t + 2 cos 3022.884¢) |
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is presented in Fig. 2.
The stable periodic solution (32) of differential equation (4)
C(t) =~ 1+ 4.86242- 10*8(1511.442 sin 1511.442¢ — 0.025197 cos 1511.442t)

+1.2337072(6.5151-1075 sin 3022.884t — 2.5033-103 cos 3022.884t)
is presented in Fig. 3.
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Fig. 2. The stable periodic solution of equation (3), whep = 1800,
Ny = 100 KW.

Fig. 3. The stable periodic solution of equation (4), when = 0.1,
Co = 1kw.

3.2 Oscillations of two frequencies

Letry = ﬁ +¢e, rc = r& + p, parameters, p are assumed to be small,

. o . . .
and v, = —zj?:lajsina*hj’ where o, is the unique root of the equation

>°5_, ajsino; = 0 belonging to the interval0, 57).
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The substitution of (8), (9) into equations (3), (4) will produce

(1) + (ﬁ +e)alt - hy) - [L+a()] =0, (33)

ajy(t — hj) —z(t)| - [1+y(@)] =0. (34)

6
=1

90+ (ro-+0) |
J
When0 < ry — ﬁ = ¢ < 1, the differential equation (33) has a stable periodic

solution [3]

x(t) = £ cos Lult + 0(€?), (35)
2hn
where
hne
é-: bia V1:1702€27 (36)
2
3r — 2 1
by = 20 C2 = 10_71' (37)

Whenhy = 0.001s;e = 0.3, thenby = 0.1856; ¢ = 0.0318; £ ~ 0.001616;
v, ~ 0.99999. The stable periodic solution (35) of differential equation (33)

x(t) = 0.001616 cos 1570.791¢

is presented in Fig. 4.
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Fig. 4. The stable periodic solution of equation (33), witepn = 0.001s,
e=0.3.

If e = u = 0, then the characteristic equation (14) of the linear part of diffe-
rential equations (33), (34) has two pairs of purely imaginary rm%, +ioy,
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and the real parts of the other roots are negative. Then the systenfieoéuifal
equations (35), (36) under certain conditions has a stable periodic sotifitiovo
frequencies. The asymptotic expression of this solution is too complicatédsIn
case the oscillation of two frequencies is caused both by the perturbatitmes in
feedback line and by the influence of delayed neutrons.

3.3 The reason of oscillation given by the influence of delayetkeu-
trons

Let's assume thatyhy < 7, but the characteristic quasi-polynomial (15) of the
differential equation (4) in the neighbourhood of the equilibrium state = Cj
whenrc = r§+p, parametey is assumed to be small, and = 26"—

j=1

_,ajsino.h;’
whereo, is the unique root of the equatiofl:gz1 ajcoschj = OJbeIonging to
the interval(0, ﬁ), has one pair of purely imaginary rootso,, and real parts
of other roots are negative.

Let's us analyse the equation (34). It is clear thet) — 0, whent — cc.
Then the problem leads to the finding a periodic solution of the equation

6
gt + (s +p) - [+ ()] ) eyt — hy) = 0. (38)
7=1
As shown in [3] it is possible to get an asymptotic expression of this solution [3

4 Numerical experiments

The numerical solutions of the system of differential equations (3), &4 wlso
investigated using the MODEL MAKER software modelling system. The values
of parametersy; andh; for the numerical model were taken from the Table 1.
Then the numerical solutions were calculated for different values anpaters
rn andre (providing Ny andCy are constant).

By changing the values of parameters andr¢, the periodic solutions of
the differential equations (3), (4) can be found (see Fig. 7 and Fig. 8)

The produced numerical results are also compared against asymptotic solu
tions as presented in Fig. 9, Fig. 10 for simple periodic solution and in Fig. 11,
Fig. 12 for two frequencies case.
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Fig. 5. The asymptotic stable solution of the differentiquation (3), when
hxy = 0.001s, Ny = 100KkW, rn = 1.200.
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Fig. 6. The asymptotic stable solution of the differentiquation (4), when
Ny = 100kW, Cy = 1kW, ro = 0.05.
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Fig. 7. The stable periodic solution of the differential atjan (3), when
hx = 0.001s, Ny = 100 kW, r = 1800.
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Fig. 8. The stable periodic solution of the differential atjon (4), when
Ny = 100kW, Cy = 1 KW, rc = 0.1.
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Fig. 9. The asymptotic stable solution of the differentigliation (3), when
hn = 0.001s, Ny = 100 kW, r = 1800.
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Fig. 10. The asymptotic stable solution of the differenéigliation (4), when
Ny = 100kW, Cy = 1kW, r¢ = 0.1.
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Fig. 11. The asymptotic stable solution of the differengéiguiation (3), when
hny = 0.001s, Ng = 5kW, ry = 1800.
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Fig. 12. The asymptotic stable solution of the differengéiquation (4), when
No =5kW, Cy = 0.03kW, rc = 0.8.

)

5 Conclusion

The point model of a nuclear reactor with delayed feedback referrinlyetdn-
fluence of delayed neutrons has been described by the system of hioean
differential equations with seven delays. The linear analysis of the sysésm
been done byD-decomposition method. The nonlinear analysis is performed
using the methods of the theory of bifurcations. The asymptotic solutions of the
model coincide well enough with the results of the numerical experiments.
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