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Abstract. One approach to the study of an ecological community begitts w
an important object: its food web. Theoretical studies offaveb must contend
with the question of how to couple the large number of inténgcspecies. One
line of investigation assumes that the “building blocksg apecies interacting
in a pairwise fashion. The model we analyze in this paperrdeszta tritrophic
food chain composed of logistic prey, a classical Lotkat&fwh functional
response for prey and predator, and a Holling type-Il fumel response
for predator and superpredator. Dynamical behaviours sischoundedness,
stability, persistence, bifurcation et cetera of the maatel studied critically.
Computer simulations are carried out to explain the arady/findings. Finally
itis discussed how these ideas illuminate some of the obdgmoperties of real
populations in the field, and explores practical implicasio
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bifurcation.
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1 Introduction

Ever since the pioneering work of Lotka [1] and Volterra [2], theorétitadies

of food webs in ecology, for the most part, focused on the study of ditcop
food chains. However, it has long been recognized that the limited “¢ar&a

of ecological systems by two interacting species can account for only b sma
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number of the phenomena that are commonly exhibited in nature. Theoretical
ecology remained silent about the astonishing array of dynamical beiaib
three-species models for a long time. Of course, the increasing numbidieef d
rential equations and the increasing dimensionality raise considerable adHitio
problems both for the experimenter and theoretician. Nonetheless, su@tsmod
need to be analyzed because certain three-species communities hawe lleeo
focus of considerable attention. For example, in waste treatment prdoesds,
chain of waste (or nutrient)-bacteria-ciliates has got the attention of st¢gej®js

In many field situations, the plant-herbivore-parasitoid food chains hageme
extremely important and it has been shown that parasitoids may determing fitnes
of the plant by destroying herbivores (for experimental evidenceseferences
[4-6]. Also to reduce the indiscriminate use of pesticides, recently teatistsen
are using predators or pathogens to control the pests of tea [7, 8 thhee-
species systems like plant-herbivore-parasitoid, plant-pest-predatetegza are
emerging in different branches of biology in their own right.

To the best of our knowledge, it was only in the late seventies that some inter-
est in the mathematics of tritrophic food chain models (composed of preytpreda
and superpredator) emerged [9-11]. AImost each of these contribul@ait with
the problem of persistence (except [11]). Subsequently, somerchses have
investigated several dynamical behaviours of tritrophic food chainsdferences
see [12]), but the analysis of the dynamics of most of the cases are inamer
without any analytic guide. Not that we undervalue such works, famn fitp but
analytical results are important because they can show the dynamicaldeka
of a class of models, rather than a particular model. This is particularly imgportan
in ecology, where confidence in exact form of any particular model &kwe

In this paper we shall study analytically the dynamical behaviours of a tri-
trophic food chain model. It is beyond doubt that the dynamics of tritropiod f
chains are very complicated and constructing accurate mathematical moasl is e
more complicated. This is so because to have a perfect model we would need
to consider so many factors, namely, growth rate, death rate, carrypagioa
conversion factor et cetera. Nonetheless, it is obvious that a penfetd| cannot
be achieved because even if we could put all these factors in a model, e mo
could never predict ecological catastrophes or Mother Nature cagieefore,
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the best we can do is to look for analyzable models that describe as welisible

the reality. Before we introduce the model and dip into the thick of the rigorous
analysis, we would like to present a brief sketch of the construction of tlieeimo
which may indicate the biological relevance of it.

1. We have three populations namely the prey, whose population density is
denoted byX, the predator whose population density is denoted’bgnd the
superpredator(or top-predator), whose population density is dehgt&d

2. Behaviour of the entire community is assumed to arise from the coupling
of these interacting species, whefgrey onY and only onY” andY prey onX.

This is an interesting practical assumption from both mathematical and biological
point of view. In a waste treatment process, the bacteria lives on the {aaste
nutrient) while other organisms as ciliates feed on the bacteria [3]. Also in tea
plant-pest-predator interaction, the pest specializes on tea plants atatqore
destroys pests by feeding on them [7, 8]. A distinct feature of thes ¢hains

is the so called domino effect: if one species dies out, all the species at highe
trophic level die out as well.

3. We assume that in the absence of the predators the prey populatidy dens
grows according to a logistic curve with carrying capadify X’ > 0) and with
an intrinsic growth rate constantr > 0).

4. Almost each of the food chain models considered in ecological literature
are constructed by invoking same type of functional responsegXol”) and
(Y, Z) populations. But a different selection of functional response would be
perhaps more realistic in this context. From this viewpoint we have condidere
a classical Lotka-Volterra functional response for the sped&ieand Y and a
Hooling type-Il functional response for the speciésnd~.

The above considerations motivate us to introduce a tritrophic food chain
model under the framework of the following set of nonlinear ordinaryedéftial
equations:

dX X

dy oY Z

— =—-d1Y XY — Y(0)>0 1
ir 1Y+ GwtY (0) ) 1)
dz CQYZ

— = —dsZ A .

dr 2 +a1+Y’ (0)>0

173



A. Maiti, B. Patra, G. P. Samanta

Here the positive constartis, dq, c1, be, a1, do andes respectively denote the
predation rate of the predator, the death rate of the predator, the smmvedte,
the maximal growth rate of the predator, the half saturation constant, the death
rate of the superpredator and the conversion factor.

The model we have just specified has nine parameters, which makessnalys
difficult. To reduce the number of parameters and to determine which combina-
tions of parameters control the behaviour of the system, we nondimensenaliz
the system (1) [13]. We choose

_X _Y _Z and t=
x—K, y—K, Z—K = rT.

Then the system (1) takes the form (after some simplification)

d
d—f =z(1—2z) —bry =xF(z,y), x(0)>0,
dy Pyz
— =—d — =yG 0)>0 2
dt Y + cxy 1+ay Yy (xvyvz)v y( )> ) ()
dz qyz
— =— =zH 0)>0
= met (< H ), +(0) >0,
whereb = 25, d =, c= 4K a= 1 p= 2T, m=%, ¢= 2.

The rest of the paper is organized as follows. In Section 2, we discass th
boundedness of the system (2) and study the stability of the boundalijpeqgon
points of it. Persistence of the system (2) is studied in Section 3. In Sectiea 4,
find the necessary and sufficient condition for the existence of the inejia-
librium point E*(z*, y*, 2*) and study its local and global stability. A criterion
for Hopf bifurcation is derived in Section 5. In Section 6, computer simulation
of a variety of numerical solutions of the system (2) is presented. Section 7
contains the general discussions of the paper and biological implicatians of
mathematical findings.

2 Boundedness, boundary equilibria and stability

Boundedness of a model guarantees its validity. Further, it is necassaeyer-
mine persistence of the model. The following theorem establishes the uniform
boundedness of the system (2).
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Theorem 1. All the solutions of the syste(@) which start inR?. are uniformly
bounded.

Proof. Let (z(t),y(t),2(t)) be any solution of the system with positive initial
conditions.
Since

% <z(l—ux),

by a standard comparison theorem, we have

limsup z(t) < 1.

t—o0
Let
W="Sw+y+Lls
b q
Then
2
dd—V;/ = g;c(l —x)—dy — %z < ?C — kW, where k= min{l,d,m}.
Therefore
dw 2c
- < —
7t + W < A

Applying a theorem on differential inequalities [14], we obtain

2¢ W (z(0),y(0), 2(0))
OgW(w,y,z)§E+ .

ent
and fort — oo,

0<W<%.
- ~ bk

Thus, all the solutions of the system (2) enter into the region
2
B= {(x,y,z): 0<WwW< i +e¢, forany e> O}

This proves the theorem. O
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Computations of the boundary equilibria and their stability provide the infor-
mation needed to determine the persistence of the system (2). In the following
lemma we have mentioned the boundary equilibria of the system (2) and the
condition of existence of them.

Lemma 1. Systen(2) always have two boundary equilibrium poinfi% (0, 0, 0)
and F4(1,0,0). The third boundary equilibrium poinky(z, g, 0) exists if and
only if c > d. When this condition is satisfied, j are given byt = ¢, § = <2

The simplest equilibrium point i&,. The variational matriX’(Ey) at Ey is
given by

1 0 0
V(Ey)) = |0 —d 0
0 0 —m

for which two of the eigen values are negative and one is positive, gvimgint
at the origin with non-empty stable manifolds and an unstable manifold.
The equilibrium point/; (1,0, 0) has the variational matrix

-1 -b 0
V(Ey))=|0 c¢—d 0 |,
0 0 -m

which has two negative and one positive eigen values whereved and again
has non-empty stable and unstable manifolds.
The variational matriX/(E2) at the equilibrium poinfy(z, g, 0) is given by

_d _bd 0

c—d . Py
V(By)= |5 O “Ttaj

0 0 -m+

The characteristic equation &f(E») is

9 B 9y N\ _
{eX +dX +d(c d)}{Aer 1+ay} 0

The eigen values ark » = —d= d22_c46d(c_d) and\z = —m + 1%
Sincec > d, therefore the signs of the real parts)gfand )\, are negative.
This implies thatEs is locally asymptotically stable iny-plane. NowE; is

asymptotically stable in-direction if and only ifm{bc + a(c — d)} > q(c — d).
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Remark 1. It is to be noted that the existencelf destabilizedr;.

3 Persistence

From biological point of view, persistence of a system means the sumwfva

all populations of the system in future time. Mathematically, persistence of a
system means that strictly positive solutions do not have omega limit points on
the boundary of the non-negative cone. Budeal.[15], Freedman and Waltman
[16,17] developed the following definition of persistence:

Definition. If a populationN (¢) is such thatV (¢) > 0, we say thatV(t¢) persists

if iminf, .o N(t) > 0. Further, if N(t) € ¢, where/ is a certain class of
function, and there exists > 0 such thaflim inf; .., N(¢) > § forall N(¢) € ¢,
thenN(t) is said to be uniformly persistent (also known as permanence). A system
is said to (uniformly) persist if each component (uniformly) persists.

The following result guarantees the uniform persistence of the systgm (2
whenever there is a finite number of limit cycles in theplane..

Theorem 2. If m{bc+a(c—d)} > q(c—d) > 0 and there exists a finite number
(say,n) of periodic solutionss = ¢;(t), y = ¥;(t), i = 1,2,...,n in thexy-
plane. Then the syste(®) is uniformly persistent, provided for each periodic
solution of periodr’,

T

1 qi(t) .

-m+ = ———=——dt >0, i=1,2,...,n.
T/1+a¢l-(t)

0

Proof. Let #(X) be the orbit through the poilX = (z,y, z) andQ(X) be the
omega-limit set of the orbit throughi. Note that2(X') is bounded.

We claim thatE, does not belong t62(X). If Ey € Q(X), by Butler-
McGehee lemma [16], there exists a paihin Q(X ) "W (Ey), whereW ¥ (Ep)
denotes the stable manifold &. Sinced(P) lies in Q(X) andW*(Ej) is the
yz-plane, we conclude th&{ P) is unbounded, which is a contradiction.

Next E; does not belong t6)( X)), for otherwise, sincé’; is a saddle point,
which follows from the conditior: > d, by Butler McGehee lemma, there exists
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a point P in Q(X) N W9 (E;). Now W9(E,) is the z-axis implies that an
unbounded orbit lies iR (X'), which is contrary to the boundedness of the system.
Lastly we show that no periodic orbit in the-plane orE; belongs td2(X).

The conditionm{bc + a(c — d)} > q(c — d) > 0 implies that the eigenvalues
A1 and e of V(E>) have negative real parts. Let(i = 1,2,...,n) denotes
the closed orbit of the periodic solutidn;(t), 1;(t)) in zy-plane such thay; lies
insidey;_;. The variational matriX; (¢;(t), 1;(t), 0) corresponding tey; is given
by

F(oi(t), i(t))  ¢i(0)Fy(i(t), vi(t)) 0
Vi = |i(t)Ga(¢i(t),0) G(¢i(t),0) $i(t)G=(¢i(t),0)
0 0 H(yi(t))
Here H(¢i(t)) = —m + 11‘5&)0 Computing the fundamental matrix of the

linear periodic system
M =V,(t)M, M) =1,

we find that its Floquet multiplier in the-direction ise™(®). Then proceeding

in an analogous manner like Kumar and Freedman [18], we conclude that no
lies in Q(X). ThusQ(X) lies in the positive octant and system (2) is persistent.
Finally, since only the closed orbits and the equilibria form the omega limit set
of the solutions on the boundarnyi and system (2) is dissipative, by the main
theorem in [15], the system (2) is uniformly persistent. O

Corollary 1. Letm{bc + a(c — d)} > g(c —d) > 0 and —m + &= > 0. If
there is no limit cycle in they-plane, systent) is uniformly per5|stent

Proof is obvious.

4 The interior equilibrium point: its existence and stability

Lemma 2. The interior equilibrium pointE* (z*, y*, z*) of the systen2) exists
if ¢ > m(a +b) andm{bc + a(c — d)} < g(c — d). When these condition are
satisfied, them*, y*, z* are given by

. qg—m(a+b) m qlq(c — d) —m{bc+ a(c — d)}]

=y = andz* = 5
qg—am qg—am p(qg — am)
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The variational matrix of the system (2) &t is given by

a1 a2 0O

V(E®) = |aa1 a2 a]|,
0 as2 0
whereay; = —z*, ajp = —bz*, ao] = cy*, agy = ZHE=D o0 _ _PUT
11 o7 a2 , G21 y*, a 2 , (23 Tray®
andCL32 = (I_ECT*P.

The characteristic equation is

)\3+A1)\2+A2)\+A3 =0,

whereAd; = —aj; —ag = %M, A = ajia22 — agsaze — ajzaz; and
As = anagaz = o= >0
We have
D2 + Ec+ F
A=AA—A3= —F5——,
q°y
where

D = ama**{amz*y* — (bgy** + m?)},
FE = ¢®bx**y*? + amqz*y* (bdy* — 2*?) 4+ 2am?dz*(m — az*y*),

F = a®>m2d*z*y* + amd(qz*?y* — m?2d).
Now we have the following theorem guaranteeing the local stabilitiy"of

Theorem 3. If E* exists withgz* — am(cz* —d) > 0andDc? + Ec + F > 0,
then E* is locally asymptotically stable.

Proof. The conditiongz* — am(cz* — d) > 0 implies that4; > 0. A3 is always
positive. FinallyDc? + Ec + F > 0 implies thatA = A4; A, — A3 > 0. Hence,
by Routh Hurwitz criterion, the theorem follows. O

Let T be the region in the:y-plane given byY' = {(z,9): v* < y < L2

z

or L2 <y < y*}. Then a criterion for the global stability df* in T is the

2%

following.

Theorem 4. If £* is locally asymptotically stable, then it is globally asymptoti-
cally stable inY.
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Proof. In T, let us consider the following positive definite function abalit

J(z,y,2) = M(x Tt —x lnﬁ)—l—(y y =y In y*)—}-N(z Z*—2z"In z*)’
whereM, N are positive constants to be specified later on.
Differentiating.J with respect ta along the solution of (2), a little algebraic
manipulation yields
dJ
= = M- 2*)? + (¢ = Mb)(z — 2™)(y — y)
(Ng—p)ly—y")(z—2") ap(y"z —y2")(y —y")

T Ura)(tar)  (Utap)(tap)

ChoosingM = { and N = g, we see thatfl—{ is negative definite irl’ and
consequently/ is a Lyapunov function with respect to all solutionslinproving
the theorem. O

5 Bifurcation analysis

In this section we provide conditions for the occurrence of a simple Hopf-bif
cation nearE*. First we give, the definition of a simple Hopf bifurcation for
a general three-species population model. Assume that the interior equilibriu
depends smoothly on some parametém an open interval of R. If there exists

au € I such that (i) a simple pair of complex eigenvalues of the variational matrix
of the interior equilibrium point exists, say(u) 4 ¢3(u) such that they becomes
purely imaginary aj. = p*, whereas the other eigenvalue remain real and neg-
ative; and (ii) (g—z) o # 0, then aty* we have a simple Hopf bifurcation.
Liu [19] derived a crﬁgrion of Hopf bifurcation without using the eigelmes of

the variational matrix of the interior equilibrium point. We specify below those
results for the current case.

Liu's Criterion. If the characteristic equation of the interior equilibrium point
is given by\® + a1 (u)A* + az(p)A + az(p) = 0, whereay (u), az(p), A(p) =
ai(p)az(p) — as(p) are smooth functions @f in an open interval aboyt* € R
such that

(i) ar(p*) >0, A(p*) =0, az(p*) >0,
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(“) (%)/L:M* 7é 0,
then a simple Hopf bifurcation occurs at= u*.
Now, owing to the above criterion we have the following theorem.

Theorem 5. If E* exists withD < 0, E > 0, F < 0 and E? > 4DF, then
a simple Hopf bifurcation occurs at the unique value= c¢* = %(—E —
V E? — 4DF), providedgz™* — am(c*z* — d) > 0.

Proof. The characteristic equation &f* is given by
)\3 + Ay (C))\Q + AQ(C))\ + Ag(c) =0.

We notice thatd; > 0 for all positive values of. Now A(c) = Ai(c)Aa(c) —

As(c) = RELECAE and it is easy to see that(c*) = 0. Now, the condition
-y

qr* — am(c*z* — d) > 0 implies thatA;(c¢*) > 0. Furthermore(%)czc* =
—4”5;2‘;[” < 0. Hence, by Liu’s criterion, the theorem follows. O

6 Numerical simulation

Analytical studies always remain incomplete without numerical verificationeof th
results. Here we present computer simulation of some solutions of the sy&gtem (
We take the parameters of the systemhasl, d=1,c=3,p=1, a =1,

m = 1, ¢ = 3 and (z(0),y(0),2(0)) = (0.7,1,1). ThenE*(z*,y*, z*) =
(0.5,0.5,0.75) andgz* — am(cz* —d) =1 > 0, Dc® + Ec+ F = 0.75 > 0.
Therefore, by Theorem 3* is locally asymptotically stable. The correspon-
ding phase portrait is shown in Fig. 1(a). Clearly the solution is a stablel spira
converging toE*. Fig. 1(b) shows that, y andz populations approach to their
steady-state values', y* andz* respectively in finite time.

We notice that for the above choices of parametbrs; —0.375 < 0, £ =
1.5>0,F = —0.375 < 0andE? —4DF = 2.109375 > 0. Now, if we gradually
increase the value ef keeping other parameters fixed, then following Theorem 5,
we have a critical value* = 3.7321 such thatE™ loses its stability ag passes
throughc*. Fore = 4 > ¢*, we see thatl* = (0.5,0.5, 1.5) is unstable and there
is a periodic orbit neaE*(see Fig. 2(a)). Oscillations af, y, z in finite time are
shown in Fig. 2(b).
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The numerical study presented here shows that, using the paramaser
control, it is possible to break the stable behaviour of the system (2) aredidr
to an unstable state. Also it is possible to keep the population levels at a cequire
state using the above control.

(b)

Fig. 1. Herer(0) = 0.7, y(0) =1, 2(0) =1landb=1,d=1,¢c=3, p=1,

a =1, m =1, ¢ = 3. Phase portrait of the system (2) showing th#tis

locally asymptotically stable (a):, y, z approach to their equilibrium values
in finite time (b).

(b)

Fig. 2. Here all the parameter values are same as in Fig. Jpexce 4 >

c¢*. Phase portrait of the system (2) showing periodic orbitr nga (a).

Oscillations ofx, y, z populations respectively in finite time. The top (solid)

curve depicts:(t), the bottom (solid) curve depicts(t) and the dotted one
depictsy(t) (b).
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7 Concluding remarks

In this paper we have studied the dynamical behaviours of a tritrophicdioait
model. As usual, a Lotka-Volterra functional response is taken to reprédse in-
teraction between prey and predator. The interaction between preddteuper-
predator is assumed to be governed by a Holling type-I1l functional rsgp&uch
different choices of functional responses may be particularly udefuplant-
herbivore-parasitoid interactions or for plant-pest-predator interatibis shown
(in Theorem 1) that the non-dimensionalized system (2) is uniformly baijnde
which, in turn, implies that the system is biologically well behaved. Criteria for
long time survival (persistence) of the populations of the system is gezben
Section 3. It has long been recognized that most of the studies of consitiute
deterministic models reveal two basic patterns: approach to an equilibrium or to
a limit cycle. The basic rationale behind such type of analysis was the implicit
assumption that most food chains we observe in nature correspondloexjab
libria of the model. From this viewpoint, we have presented the stability and bifur
cation analysis of the most important equilibrium palfit. The stability criteria
given in Theorem 3 and 4 are the conditions for stable co-existence pfefighe
predator and the superpredator. Criteria for Hopf bifurcation (Térads) provide
the conditions for the existence of small amplitude periodic solution Béar

The nonlinear differential equations (2) may be looked upon as the mathe-
matical model for tea plantQamellia sinensis )-pest (e.g. Looper Caterpiller)-
beneficial predator (natural enemy of the pest) (&grcophaga sp[8]. Then
we observe that the size of the tea plam} in the absence and presence of
beneficial predatofz) are# = ¢ anda* = %&‘jﬂm respectively so that
¥ — & = [e{(¢ — am — bm) — d(q — am)}/{c(q — am)}] > 0. Also g —
y* = [{c(g — am — bm) — d(qg — am)}/{bc(q¢ — am)}] < 0, wherey and
y* are respectively the size of the pest population in absence and pgestnc
predators. This implies that predator attack of pests enhance fitnesspbdnes
and cause depression for the pests. This gives a strong theoreppalsto the
approach of ‘Bio-control of pests’ which is suggested by sevesdarhers to
reduce the hazards of chemical pesticides [7, 8]. By similar arguments with th
maize Zea maysarmyworm Spodoptera sp-parasitoid Cotesa marginiventrjs
system, we may arrive at the same conclusion with Turlings and Fritzscha{@0
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Fritzsche Hoballah and Turlings [4] that endoparasitic wasp or parasitaydact
as bodyguard for maize plant by attacking caterpillars. Also this result isdd g
agreement with the experimental findings of Gomez and Zamora [5] andadm L
et al.[6] on plant-herbivore-parasitoid interactions.

All our important mathematical findings are numerically verified in section
6 and graphical representation of a variety of solutions of the systemarg¢2)
depicted using MATLAB. Our numerical study shows that, using the paramete
as control, it is possible to break the stable (spiral) behaviour of the systdm
drive it to an unstable (cyclic) state. Also it is possible to keep the levels of the
populations at a stable state using the above control.

It is well known that natural populations of plants and animals neither in-
crease indefinitely to blanket the world nor become extinct (except in sarae r
cases and due to some rare reasons). Hence, in practice, we oftielo wethuce
the predatoy to an acceptable level in finite time. In order to accomplish this the
parameters of the system should be regulated in such a way that:(a + b),
m{bc+a(c —d)} < g(c—d), gz* — am(cx* —d) > 0andDc? + Ec+ F > 0.
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